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New data are reported from the operation of a 2-liter C3F8 bubble chamber in the SNOLAB
underground laboratory, with a total exposure of 211.5 kg-days at four different energy thresholds
below 10 keV. These data show that C3F8 provides excellent electron-recoil and alpha rejection
capabilities at very low thresholds. The chamber exhibits an electron-recoil sensitivity of < 3.5 ×
10−10 and an alpha rejection factor of > 98.2%. These data also include the first observation of a
dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were
observed during the run. The candidate events exhibit timing characteristics that are not consistent
with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is
claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-
dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent
WIMP-nucleon scattering.

PACS numbers: 29.40.-n, 95.35.+d, 95.30.Cq, FERMILAB-PUB-14-456-AE-E

Understanding the nature of dark matter is one of the
most important goals in modern particle physics [1, 2].
A leading candidate to explain the dark matter is a relic
density of cold, nonbaryonic weakly interacting massive
particles or WIMPs, and direct detection dark matter ex-
periments hope to observe the nuclei recoiling from the
rare collisions of WIMPs with ordinary matter [3–6]. His-
torically, the interaction of dark matter with normal mat-
ter has been divided into two categories, spin dependent
(SD) and spin independent (SI).

The superheated detector technology has been at the

forefront of SD searches [7–10], using refrigerant targets
including CF3I, C4F10 and C2ClF5, and two primary
types of detectors: bubble chambers and droplet detec-
tors. The PICO Collaboration (formed from the merger
of PICASSO and COUPP) has now operated a 2.90 kg
C3F8 bubble chamber from October 2013 to May 2014
in the SNOLAB underground laboratory in Canada, at
6010 meters of water equivalent depth. Here we report
results from that run.

The bubble chamber (called PICO-2L) deployed in this
experiment was very similar to the 2 liter chambers de-
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FIG. 1: A schematic of the PICO-2L bubble chamber.

scribed previously [7, 8], primarily consisting of a fused-
silica jar sealed to a flexible, stainless steel bellows, all
immersed in a pressure vessel filled with hydraulic fluid.
The jar was filled with 2.90±0.01 kg of C3F8 (2.09 liters
of fluid at a density of 1.39 kg/L at 12◦C and 30 psia), as
measured by a scale, with the uncertainty due to losses
in the fill lines and electronic noise in the scale readout.
To isolate it from contact with any stainless steel surfaces
or seals, the C3F8 is topped with a water buffer layer. A
schematic of the chamber is shown in Fig. 1.

Three lead zirconate (PZT) piezoelectric acoustic
transducers epoxied to the exterior of the fused-silica
jar recorded the acoustic emissions from bubble nucle-
ations [11]. Previously, high levels of radioactivity in
the transducers provided a measurable neutron rate [7].
For PICO-2L, we developed PZT sensors from source
material with a factor 100 reduction in radioactivity.
The acoustic signals were digitized with a sampling rate
of 2.5 MHz. Two VGA resolution CCD cameras pho-
tographed the chamber at a rate of 100 frames per sec-
ond.

The PICO-2L event cycle was similar to that described
previously [7]. The chamber was operated at four pres-
sure and temperature combinations, listed in Table I. The
pressure and temperature determine the conditions for
radiation-induced bubble nucleation, approximated by
Seitz’s “hot spike” model [16] in which the particle in-
teraction must provide the energy necessary to produce
a critically-sized bubble. We follow the method described
in [12] to calculate the Seitz threshold for bubble nucle-
ation (ET ) for each run condition of PICO-2L and for the
remainder of the letter refer to each data set by the calcu-
lated threshold. We quote both experimental and theo-
retical uncertainties in ET , the former from uncertainties
in the pressure and temperature of the target fluid, and
the latter from uncertainties in the surface tension for

very small bubbles [12].
The chamber was exposed to an AmBe calibration

source ten times during the run to monitor the detec-
tor response to nuclear recoils. All calibration data were
handscanned to check bubble multiplicities, and hand-
scanned single bubble events were used to determine the
data cleaning cut efficiencies.

The data analysis begins with an image reconstruction
algorithm to identify bubbles and their locations in 3D
space. An optical-based fiducial volume cut is derived
from neutron calibration data such that 1% or fewer of
wall or surface events, defined as events located on the
glass jar or at the interface between the C3F8 and wa-
ter buffer respectively, are reconstructed as bulk events,
defined as bubbles that do not touch either the glass or
water. The efficiency of the optical fiducial cut is deter-
mined to be 0.82 ± 0.01 by volume (all error bars on cut
efficiencies are 1σ and represent total uncertainties).

In [7], the rate-of-pressure-rise during an event was
used as a highly efficient fiducial volume cut, as bubble
growth is affected by proximity to the jar or the liquid in-
terface. A similar analysis was implemented in PICO-2L
with an efficiency of 0.92 ± 0.02, in agreement with [7].
The pressure-rise analysis could not be applied to all data
as improvements to the PICO-2L data acquisition system
and hydraulic cart reduced the time between trigger and
compression, stopping bubble growth before the pressure
could increase significantly. A trigger delay of 10-40 ms
was imposed for most of the low threshold data to allow
more time for the bubble to evolve, enabling use of the
pressure rise cut. For the higher threshold data without
the trigger delay, the optical fiducial cut is used.

The acoustic analysis follows the procedure described
in [7] to define AP , a measurement of the acoustic power
released in an event. Figure 2 shows the AP distributions
for calibration and WIMP search data at a threshold of
4.4 keV. The AP distribution is normalized to have a
value of unity at the nuclear recoil peak observed in the
AmBe data, and an acoustic cut is applied to select these
events. For the two low threshold data sets, we adopt the
same acoustic cut as in [7, 8], such that 0.7 < AP < 1.3.
Because of the decreased acoustic signal at higher oper-
ating pressure, the width of the calibration peak at 6.1
keV threshold is a factor of 1.5 larger than at low thresh-
olds; the acceptance region for this data set is chosen
such that the difference between the cut value and the
mean divided by the resolution is the same as for low
thresholds (0.55 < AP < 1.45). At 8.1 keV threshold,
some neutron-induced events are too quiet to be regis-
tered acoustically, so all events with AP < 2 are counted
as nuclear recoil events. The acceptance of these cuts for
neutron-induced single bubble events was statistically in-
distinguishable for all data sets with a value of 0.91±0.01.

A set of quality cuts is applied to all data to elimi-
nate events with excessive acoustic noise, events where
the cameras failed to capture the initiation of the bub-
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T (◦C) P (psia) Seitz threshold, ET (keV) Livetime (d) WIMP exposure (kg-d) No. of candidate events
14.2 31.1 3.2 ± 0.2(exp) ± 0.2(th) 32.2 74.8 9
12.2 31.1 4.4 ± 0.3(exp) ± 0.3(th) 7.5 16.8 0
11.6 36.1 6.1 ± 0.3(exp) ± 0.3(th) 39.7 82.2 3
11.6 41.1 8.1 ± 0.5(exp) ± 0.4(th) 18.2 37.8 0

TABLE I: Table describing the four operating conditions and their associated exposures. The experimental uncertainty on the
threshold comes from uncertainties on the temperature (0.3◦C) and pressure (0.7 psi), while the theoretical uncertainty comes
from the thermodynamic properties of C3F8 (primarily the surface tension).
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FIG. 2: AP distributions for neutron calibration data (black)
and WIMP search data (red) at 4.4 keV threshold. Note that
the x-axis shows ln(AP ). As discussed in the text, alphas from
the 222Rn decay chain can be identified by their time signature
and populate the two peaks in the WIMP search data at high
AP , with higher energy alphas from 214Po producing larger
acoustic signals.

ble, and events in which the optical reconstruction algo-
rithm failed to converge. The total efficiency of the data
quality cuts is 0.961 ± 0.003. The total acceptance for
neutron-induced, single nuclear recoils including fiducial,
acoustic and data quality cuts is 0.80±0.02 for data with
the trigger delay and the pressure-rise based fiducial cut,
decreasing to 0.72 ± 0.02 for the optical fiducial cut.

One of the main strengths of the superheated fluid de-
tectors is their insensitivity to electronic recoils. The
PICO-2L chamber was exposed to a 1 mCi 133Ba source
to confirm this behavior in C3F8. With no candidate
events observed during the gamma exposure at 3.2 keV,
the probability for a gamma interaction to nucleate a
bubble was determined to be less than 3.5×10−10 at 90%
C.L. by performing a Geant4 [13] Monte Carlo simulation
of the source and counting the total number of above-
threshold interactions of any kind in the active target.
Combining these results with a dedicated NaI measure-
ment of the gamma flux at the location of the chamber
in the absence of any sources [14], we expect electronic
recoils to produce fewer than 0.05 events in the PICO-2L
WIMP search data.

A second key method for background rejection in su-
perheated detectors is the acoustic rejection of alpha de-
cays [7, 8, 10, 15]. PICO-2L observed a rate of high-AP
events at 4.4 keV threshold immediately after the initial

fill that decayed with a half-life consistent with that of
222Rn to a steady state of about 4 events/day. None of
the high acoustic power events leak into the nuclear recoil
acceptance band in that data set, confirming that acous-
tic alpha rejection is present in the C3F8 target. The 4.4
keV data provide a statistics-limited, 90% lower limit on
the alpha rejection in PICO-2L of 98.2%.

In addition to the acoustic discrimination, PICO-2L
data show a dependence of AP on alpha energy that was
not previously observed in CF3I. At low threshold, two
distinct peaks appear at high AP (see Fig. 2). The time
structure of the high-AP peaks is consistent with that
of the fast radon chain (222Rn, 218Po, and 214Po decays
having energies of 5.5 MeV, 6.0 MeV, and 7.7 MeV, re-
spectively). The events in the louder peak come primarily
from the third event in the chain, the high energy 214Po
decay. To our knowledge, this constitutes a first instance
of particle energy spectroscopy using acoustic methods.

Background neutrons produced primarily by (α,n) and
spontaneous fission from nearby 238U and 232Th can pro-
duce both single and multiple bubble events. We per-
form a detailed Monte Carlo simulation of the detector
to model the neutron backgrounds, predicting 0.9(1.6)
single(multiple) bubble events in the entire data set, for
an event rate of 0.004(0.006) cts/kg/day, with a total un-
certainty of 50%. There were no multiple bubble events
observed in the WIMP search data, providing a 90% C.L.
upper limit of 0.008 cts/kg/day, consistent with the back-
ground model.

The sensitivity of the experiment to dark matter de-
pends crucially on the efficiency with which nuclear re-
coils at a given energy produce bubbles. The classical
Seitz model [16] indicates that nuclear recoils of energy
greater than ET will create bubbles with 100% efficiency,
but past results show that the model does not accurately
describe the efficiency for detecting low energy carbon
and fluorine recoils in CF3I [7, 17]. This breakdown is
attributed to the relatively large size of carbon and fluo-
rine recoil tracks in CF3I, as bubble nucleation only oc-
curs if the energy deposition is contained within a criti-
cal bubble size. Iodine recoils in CF3I have much shorter
tracks and have been shown to more closely match the
Seitz model predictions [12]. Simulations of nuclear re-
coil track geometries using the Stopping Range of Ions in
Matter (SRIM) package [18] as well as measurements in
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C4F10 [19] indicate that fluorine recoils in C3F8 are also
in the regime where the Seitz model is a close approxi-
mation for bubble nucleation.

To confirm this expectation, we performed neutron cal-
ibrations in situ in the PICO-2L chamber with an AmBe
neutron source. We also deployed a ∼30-ml C3F8 bubble
chamber at the Tandem Van de Graaff facility at the Uni-
versity of Montreal, using well-defined resonances in the
51V(p,n)51Cr reaction to produce monoenergetic 61- and
97-keV neutrons. Each of the three neutron calibration
experiments is simulated in MCNP [20] using updated
differential cross sections for elastic scattering on fluo-
rine [21].

A single calibration point, i.e., a bubble rate measured
at a given thermodynamic threshold and produced by
a single spectrum of nuclear recoil energies, can in gen-
eral be fit by a family of possible nucleation efficiency
curves. In this analysis, the fluorine and carbon effi-
ciency curves at each threshold are fit by monotonically
increasing, piecewise linear functions to allow for a vari-
ety of different efficiency shapes, with no reference to the
Seitz theory except that bubble nucleation cannot occur
for recoil energies below ET (subject to the experimental
uncertainties). In addition, the carbon efficiency is as-
sumed to be less than or equal to the fluorine efficiency
at a given recoil energy from track geometry considera-
tions. Figure 3 shows the observed rates of single and
multiple bubbles for the AmBe and test beam sources
compared to the best-fit efficiency model at a thermody-
namic threshold of 3.2 keV. The best-fit efficiency curves
for fluorine and carbon at 3.2 keV are shown by the solid
lines in Fig. 4.

We take a conservative approach when determining the
sensitivity of PICO-2L to dark matter. For each WIMP
mass and coupling, we select the pair of fluorine and car-
bon efficiency curves giving the worst sensitivity for that
particular WIMP that is consistent with the calibrations
at 1σ. As an example, the dashed lines in Fig. 4 show the
actual efficiency curves used to determine the sensitivity
of the experiment for a 5 GeV SI WIMP for the ET = 3.2
keV data set. For this case, where most of the sensitiv-
ity to WIMPs comes from the lowest energy fluorine re-
coils, our conservative approach uses a weaker response
to fluorine relative to the best-fit case (e.g. the turn-on
is shifted to slightly higher energies). Because the total
rate in the calibration data is unchanged, the fit com-
pensates for the weaker fluorine response by assuming a
larger contribution from carbon. The difference between
the solid and dashed lines is small, attesting to how well
the calibration data constrain the C3F8 response.

As shown in Table I, WIMP search data were taken
at four different thresholds, with most data coming at
thresholds of 3.2 keV and 6.1 keV. There are nine can-
didate events within the AP acceptance region at 3.2
keV and three candidate events at 6.1 keV, with no can-
didate events observed at 4.4 and 8.1 keV. All 12 can-
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FIG. 3: The green points show the observed rates of single
and multiple bubbles for the calibration sources at a ther-
modynamic threshold of 3.2 keV. Green error bars indicate
statistical uncertainties, and the black error bars at the bot-
tom show the systematic uncertainty on the neutron flux (a
flat percent uncertainty that is common to all multiplicities
in a given data set at the 10%, 12%, and 30% level for 61
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tograms show the predicted rates from the simulation given
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didate events were hand scanned and found to be well
reconstructed, bulk events.

In [7], WIMP-candidate events were observed exhibit-
ing correlations with events in previous expansions, and
the candidate events in PICO-2L exhibit similar cor-
relations. To explore this anomaly further, simulated
events with random timing are populated into the ac-
tual data to model the expected timing distribution of
a potential WIMP signal. Figure 5 shows the cumula-
tive distribution function (CDF) of the time to previous
non-timeout (TPNT) for a randomly distributed sam-
ple, along with the TPNT for each candidate event at
3.2 keV. A Kolmogorov-Smirnov test comparing the two
samples returns a p-value of 0.04 that they are drawn
from the same distribution. Given these results, the can-
didate events are not treated as evidence for a dark mat-



5

ter signal but instead as an unknown background. Stud-
ies are now underway to test hypotheses for the source
of these events.
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FIG. 5: The CDF of the time to previous non-timeout
(TPNT) for events with random timing (simulated WIMP-
like events) and the 3.2 keV candidate events. The two dis-
tributions are not consistent with each other.

The correlation of the candidate events with previ-
ous bubbles can be used to set a stronger constraint on
WIMP-nucleon scattering by applying a cut on TPNT.
Since there is no valid basis for setting the cut value a
priori, a method based closely on the optimum interval
method [22] is used to provide a true upper limit with
TPNT cuts for each WIMP mass optimized simultane-
ously over all four operating thresholds. The optimum
cuts remove all 12 candidate events at each WIMP mass,
while retaining 49–63% of the efficiency weighted expo-
sure, with the range due to changes in the relative weight-
ing of the four threshold conditions for different WIMP
masses. If the optimum cuts had simply been set a pos-
teriori, without applying the tuning penalty inherent in
the optimization method, the cross section limits would
be a factor of 1.2–2.4 lower than reported here, with the
bigger factor applying to higher WIMP masses.

The limit calculations assume the standard halo
parametrization [23], with ρD = 0.3 GeV c−2 cm−3,
vesc = 544 km/s, vEarth = 232 km/s, v0 = 220 km/s,
and the spin-dependent parameters from [24], and the re-
sulting 90% C.L. limit plots for spin-independent WIMP-
nucleon and spin-dependent WIMP-proton cross sections
are presented in Figs. 7 and 6. Using the same pa-
rameters as in [23] would yield approximately 5 − 20%
stronger limits depending on the WIMP mass. The re-
sults shown here represent the most stringent constraint
on SD WIMP-proton scattering from a direct detection
experiment and the first time supersymmetric parameter
space has been probed by direct detection in the SD-
proton channel (e.g. the purple region, taken from [30]).
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