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Abstract

Transverse mode coupling instability is considered in the paper at different bunch and wake

shapes. Exact solution for “hollow” bunch is arrived at and used to develop a proper technique

for more realistic distributions. The three-modes approach is proposed for arbitrary bunch with

chromaticity included. It is shown that the TMCI threshold and rate depend only slightly on the

bunch model used being rather sensitive to the wake shape. Resistive wall wake is considered in

detail, and a comparison of the TMCI and collective mode instability with this wake is performed.

Space charge tune shift of arbitrary value is included in the consideration providing a firm bridge

between the known cases of absent and dominating space charge.
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I. INTRODUCTION

Transverse Mode Coupling Instability of a single bunch in a circular accelerator, also

known as “fast head-tail instability” or “head-tail turbulence”, has been considered first

by R. D. Kohaupt who used a simple model of two particles propelling each other through

the mediation of constant wake fields [1]. Later the TMCI theory has been developed on

the base of Vlasov equation [2, 3]. The instability has been treated as a result of reciprocal

influence of a neighboring pair of head-tail modes which frequencies approach each other due

to the wake field (two-modes model). Effect of the beam space charge has been investigated

later in papers [4–6].

However, there is a number of unresolved problems in this area including reliability of

the two-modes model, role of chromaticity, dependence of the effect on the bunch and wake

shape. The space charge investigations look incomplete being based either on not quite

realistic models [4] or restricted to ultimate cases only [5, 6].

These and other problems are considered in presented paper where a unified three-modes

model is proposed and used far and wide. The model itself is built on the base of exact

analytical solution which has been found with hollow bunch model without any additional

assumptions. It is shown that the TMCI depends only slightly on the bunch shape but is

rather sensitive to the wake shape. Resistive wall wake is investigated especially to assign

which effect is more danger in specific cases: either TMCI or collective mode instability which

is unavoidable with the long-range wake. Chromaticity is included to demonstrate that there

is no the well defined boundary between the head-tail instability (separated multipoles) and

TMCI (coalesced multipoles). Space charge influence is investigated with arbitrary ratio of

betatron tune shift to synchrotron tune.

II. BASIC EQUATIONS AND DEFINITIONS [6]

Linear synchrotron oscillations are considered in this paper. They are characterized by

amplitude A and phase φ or by corresponding Cartesian coordinates:

θ = A cos φ, u = A sin φ. (1)

So θ is azimuthal deviation of a particle from the bunch center in the rest frame whereas

the variable u is proportional to the momentum deviation with respect to the central bunch
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momentum (proportionality coefficient is not a factor in this paper).

Steady state of a bunch will be described by distribution function F (A) and by corre-

sponding linear density

ρ(θ) =

∫

∞

−∞

F (
√

θ2 + u2) du (2)

with the normalization conditions

2π

∫

∞

0

F (A) AdA = 1,

∫

∞

−∞

ρ(θ) dθ = 1. (3)

Coherent transverse displacement of the bunch dependent on time and position in the

longitudinal phase space will be described by the function

Y (A, φ) exp
[

− i(Q0 + ζ) θ − i (Q0 + ν) Ω0t
]

(4)

where Ω0 is the revolution frequency, Q0 is the central betatron tune, ν is an addition to

the coherent tune caused by the wake field, and ζ is the normalized chromaticity:

ζ =
Ω0Q

′

p

Ω′
p

=
ξ

1/γ2 − α
, (5)

with ξ as usual chromaticity, and α as the momentum compaction factor. As it has been

shown in Ref. [6], the function Y satisfies the equation

νY + i Qs
∂Y

∂φ
= 2

∫

∞

θ

q(θ′ − θ) exp
[

i(ζ−ν)(θ−θ′)
]

dθ′
∫

∞

−∞

F (A′)Y (A′, φ′) du′ (6)

where Qs is synchrotron tune, and q(θ) is the reduced wake function which is related to the

usual wake field function W1(z) by the equation:

q(θ) =
r0RNW1(Rθ)

8πβγQ0

(7)

with r0 = e2/mc2 as classic radius of the particle, R as the accelerator radius, N as the

bunch population, β and γ as normalized velocity and energy.

It is assumed that q(θ) is rather short range function so that the wake field cannot reach

neighboring bunches or turns. With this reservation, constant wake q = q0 will be used to

start with, and more general case will be considered in Sec. 6. Eq. (6) with this wake obtains

the form

νY + i Qs
∂Y

∂φ
= 2q0 exp(iζνθ)

∫

∞

θ

exp(−iζνθ
′)dθ′

∫

∞

−∞

F (A′)Y (A′, φ′) du′ (8)

where ζν = ζ − ν. Note that, in most cases, the addition ν is rather small to identify ζν

with normalized chromaticity given by Eq. (5).
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III. EXACT SOLUTION FOR HOLLOW BUNCH

(CONSTANT WAKE, NO CHROMATICITY)

The hollow bunch model which is applied in this section is characterized by the functions

F (A) =
δ(A − A0)

2π
, ρ(τ) =

1

π
√

θ2
0 − θ2

(9)

where A0 = θ0 is synchrotron amplitude of any particle and, simultaneously, the bunch

half-length. The case ζν = 0 will be considered in detail what means zero chromaticity,

in practice. Special interest of this case is that its exact solution can be obtained without

any additional assumptions. Therefore the results can be substantially used further for

development of adequate approximate methods applicable for more realistic models.

The only amplitude A = A0 is essential in this case. Therefore Eq. (8) can be reduced to

the one-dimension equation for the function Y (φ) ≡ Y (A0, φ):

νY (φ) + i QsY
′(φ) =

q0

π

∫ [φ]

−[φ]

Y (φ′) dφ′ (10)

where [φ] is the periodic polygonal function of period 2π taking the value [φ] = |φ| at

|φ| < π. It is convenient to separate even and odd parts of the function Y (φ) presenting it

in the form Y (φ) = Y+(φ) + Y−(φ), with Y+(φ) = Y+(−φ), and Y−(φ) = −Y−(−φ). It is

easy to see that the even part satisfies the equation

Q2
sY

′′

+(φ) + ν2Y+(φ) =
2q0ν

π

∫ [φ]

0

Y+(φ′)dφ′ (11)

Restricting the consideration to the region 0 < φ < π, one can transform it to ordinary third

order differential equation

Y ′′′

+ (φ) +
ν2

Q2
s

Y ′

+(φ) =
2q0ν

πQ2
s

Y+(φ) (12)

with boundary conditions

Y ′

+(0) = 0, Q2
sY

′′

+(0) + ν2Y+(0) = 0, Y ′

+(π) = 0. (13)

General solution of this equation is

Y+(φ) =
3

∑

j=1

Cj exp

(

νλj

Qs

)

(14)
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where λ1−3 are roots of the third order algebraic equation:

λ3 + λ = g, g =
2q0Qs

πν2
(15)

and C1−3 are some constant which have to be determined trough the boundary conditions.

The substitution of Eq. (14) to (13) provides a system of linear uniform equation for C1−3

which is solvable if its determinant is 0. It results in the dispersion equation for the bunch

eigentunes ν:

λ1(λ2 − λ3)(1 − λ2λ3) exp(πνλ1/Qs) +

λ2(λ3 − λ1)(1 − λ3λ1) exp(πνλ2/Qs) + (16)

λ3(λ1 − λ2)(1 − λ1λ2) exp(πνλ3/Qs) = 0

Therefore following steps are evident for handling the problem: (i) to find the roots λ1−3

of first Eq. (15) with given parameter g; (ii) to use them in Eq. (16) for determination of

possible solutions ν; (iii) to substitute the solution in second Eq. (15) obtaining dependence

ν(q0) by exclusion of parameter g.

Generally, this way is applicable for all roots including complex ones. However, in this

section we will restrict our consideration to real rots only, postponing discussing of complex

eigentunes to next sections where they will be analyzed with chromaticity taken into account.

Eq. (16) gas infinite number of solutions, and some of them are plotted in Fig. 1. It is

seen that ν ≃ mQs at small q0 which case has to be treated as independent oscillations of

different multipoles. These tunes are real numbers that is instability is impossible at slight

wake and zero chromaticity. Complex roots appear for the first time at |q0| > 0.567 Qs as a

result of coalescing of the multipoles m = 0 and m = ±1, dependent on sign of the wake.

Presented inequality should be treated as the threshold of the lowest TMCI mode. Higher

TMCI modes are possible too being caused by a coalescence of higher multipoles. They have

essentially higher thresholds as it is shown in Table I (only positive wakes are considered

in the Table; negative wakes create similar pattern with negative multipoles). No other

coalescences and TMCI appearances have been observed at the calculations.

Because thresholds of the higher TMCI modes are relatively high, they are not so inter-

esting in practice, and will be not considered in subsequent sections of the paper.
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FIG. 1: Real eigentunes of hollow bunch without chromaticity (exact solutions). There are complex

roots at |q0|/Qs > 0.567 (not shown).

TABLE I: Threshold of different TMCI modes

Coalesced

multipoles

(0-1) (2-3) (4-5) (6-7) (8-9) (10-11)

(q0)thresh/Qs 0.567 3.459 7.366 11.894 16.871 22.198

IV. INTEGRAL EQUATION FOR REALISTIC DISTRIBUTIONS

(CONSTANT WAKE, NO CHROMATICITY)

General solution of Eq. (8) can be presented as a Fourier series:

Y (A, φ) =
∑

m

Ym(A) exp(imφ) (17)

which is just expansion over the multipoles. Its substitution to Eq. (8) allows to get set of

coupled integral equations for the functions Ym(A):

(ν − mQs) Ym(A) = 2πq0

∑

n

∫

∞

0

Km,n(A, A′)Yn(A
′) F (A′)A′ dA′ (18)

with the kernels

Km,n(A, A′) =
2

π2

∫ A

−A

exp(iζνθ)
Tm(θ/A) dθ√

A2 − θ2

∫ A′

θ
A′

exp(−iζνθ
′)

Tn(θ′/A′) dθ′√
A′2 − θ′2

(19)
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where Tm(x) = cos(m arccos x) are Chebyshev polynomials,

θA′ = θ at A
′2 > θ2, and θA′ = A′θ/|θ| at A

′2 < θ2.

Chromaticity is included in the expression for future but actually it is not considered in this

section.

As is evident from Fig. 1, only 3 multipoles are essentially involved in the formation of

the lowest TMCI mode whereas the multipoles |m| ≥ 2 remain almost untouched and can be

neglected. Following features of the kernels are important at the consideration being valid

at ζν = 0.

Km,m(A, A′) = Km,−m(A, A′) = δm,0 (any m) (20)

K0,±1(A, A′) = −K±1,0(A
′, A) =

2

π2A′

∫ A

−A

√

A′2 − θ2
A′

A2 − θ2
dθ (21)

Therefore equations for three mentioned multipoles can be written as

νY0(A) = 2πq0

∫

∞

0

{

Y0(A
′) + K0,1(A, A′)

[

Y−1(A
′) + Y1(A

′)
]

}

F (A′)A′ dA′ (22a)

(ν ∓ Qs)Y±1(A) = −2πq0

∫

∞

0

K0,1(A
′, A)Y0(A

′)F (A′)A′ dA′ (22b)

Excluding Y±1 one can arrive at the ordinary integral equation for the function Y0(A):

νY0(A) = 2πq0

∫

∞

0

Y0(A
′)F (A′)A′ dA′ − 8π2q2

0ν

ν2 − Q2
s

∫

∞

0

K(A, A′)Y0(A
′)F (A′)A′ dA′ (23)

with the kernel

K(A, A′) =

∫

∞

0

K0,1(A, X)K0,1(A
′, X)F (X) XdX (24)

Multiplying Eq. (23) by Y0(A)F (A)A and integrating over A, one can get a simple equation

for ν
ν − qef

2

(

ν − Q2
s

ν

)

= −α2q2
0 (25)

with the coefficients

qef =
2πq0 [

∫

∞

0
Y0(A)F (A) AdA]2

∫

∞

0
Y 2

0 (A)F (A)A dA
(26)

and

α2 =
4π2

∫

∞

0

∫

∞

0
K(A, A′) Y0(A)Y0(A

′) F (A)F (A′) AA′ dAdA′

∫

∞

0
Y 2

0 (A)F (A)A dA
(27)
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Solution of Eq. (25) allows to know all characteristics of the lowest TMCI mode of arbitrary

bunch, including its threshold and rate. Of course, it is pithy if the function Y0(A) is known

being at least an approximate solution of Eq. (23). The simplest and very reasonable choice

is Y0 = 1 because it coincides with solution without coupling and is in a full agreement

with special case of hollow bunch. Then qef = q0, and Eq. (27) also obtains the compact

form (see Appendix):

α2 =
8

π

∫

∞

0

F (A)A3 dA
[

∫ π

0

ρ(A cos φ) sin2 φ dφ
]2

(28)

Results of calculations by this formula are collected in Table II for several distributions

including hollow, rectangular, parabolic, and Gaussian bunches. The TMCI thresholds are

also shown in the Table being found by solution of Eq. (25) with obtained α2 and presented

as Thresh = |q0|thresh/Qs. Results of Sec. 3 for hollow bunch are added in this line and

marked as Hollow*.

TABLE II: TMCI threshold of different bunch shapes

Hollow* Hollow Rectang Parabol Gauss

α2 N/A 16/π4 1/6 93/560 0.16163

Thresh 0.5671 0.5689 0.5672 0.5676 0.5708

1/(1 + 2α) N/A 0.552 0.551 0.551 0.554

Note that rather precise expression for the threshold can be found with neglect of

reciprocal influence of multipoles m = ±1 which formally means the approximation

(ν2 − Q2
s)/2ν ≃ ν − sQs with s as q0 sign. The TMCI tunes and threshold are in this

approximation

ν ≃ q0 + Qs

2
±

√

(

q0 − Qs

2

)2

− q2
0α

2, (29)

Thresh =
|q0|thresh

Qs
=

1

1 + 2α
≃ 0.55 (30)

Corresponding row is added to Table II to demonstrate that associated underestimation of

the threshold does not exceed 3%.

Global picture is shown in Fig. 2 where complex roots of Eq. (25) are plotted against the

wake strength. Data of previous section are also included in the plot being transfered from
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FIG. 2: Eigentunes of hollow bunch without chromaticity (3-modes approximation). Red and blue

curves present real and imaginary parts of the tune. Solid lines are obtained by solution of Eq. (25),

and some data are transfered from Fig. 1 being presented by circles.

Fig. 1 and presented by dark circles. Note that 2-modes approximation gives an error 3-5%

but fully ignores the arms of the red curve where sign ν is opposite of the wake sign.

Two points stand out at once. First, results of this 3-modes method are in ideal agreement

with exact solution of Eq. (10) for hollow bunch when all multipoles are taken into account.

Second not so expected result appears as very weak dependence of the tunes on the bunch

shape. It is seen from Table 2 that even the models so far apart as hollow and Gaussian

bunches lead to practically indistinguishable results. Therefore it would serve no purpose

to ask which bunch shape has been applied to plot the curve in Fig. 2. Further still, rather

close value Thresh = 2/π ≃ 0.64 has been obtained with 2-particles model developed in

the original paper [1]. Thus it would be valid to say that the lowest TMCI threshold with

rectangular wake in usual terms is

r0RN |W1|
8πβγQ0Qs

> 0.57

independently on the bunch shape.
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V. INSTABILITY RATE WITH CHROMATICITY (CONSTANT WAKE)

Next step is an invoking of chromaticity to consider its influence on the instability growth

rate. It could be done by taking into account corresponding exponential factors in the kernels

given by Eq. (19). However, this way would lead to rather unwieldy expressions, so we will

apply slightly modified method using a simplified version of the 3-modes approximation It

will be seen in the end that cost of this simplification is no more than 3% of accuracy.

It follows from Eq. (21) and (22b) that, with approximation Y0 = 1, other involved modes

are

Y±1(A) ∝ A

∫ π

0

ρ(A cos φ) sin2 φ dφ (31)

This expression is not too far removed from Y±1 ∝ A for all considered distributions pro-

viding exact result for the rectangular bunch. It means that above used 3-modes solution is

reasonably close to the function

Y (A, φ) = 1 + Cθθ + Cuu (32)

with Cθ and Cu as some unknown constants. This statement will be actually monitored

below, though the main goal of this section is an incorporation of TMCI and head-tail

instabilities.

It is pertinent to note at this point that only lowest radial head-tail modes are actually

involved in Eq. (32). It was an immaterial factor in previous consideration because the higher

radial modes were absent in those cases at all. However, they come to realistic distributions

with chromaticity which circumstance should be discussed now.

The main thing is that dependence of the higher modes on intensity and wake strength is

relatively slight effect which is proportional to chromaticity. Therefore, though their merging

and resulting TMCI is possible in principle, it would have significantly higher threshold being

probably inessential in practice (see e.g. [3]). At least, it is quite allowably to ignore the

higher head-tail modes when the lowest TMCI mode is the subject of interest.

Substitution of the intended solution given by Eq. (32) to Eq. (8) leads to the expression

ν + (νCθ+iQsCu) θ + (νCu−iQsCθ) u = 2q0 exp(iζθ)

∫

∞

θ

ρ(θ′)(1+Cθθ
′) exp(−iζθ′) dθ′ (33)

Relation Cu = iCθQs/ν follows from this immediately. Two more equations are achievable
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through the multiplication of Eq. (33) by ρ(θ) or ρ(θ)θ with subsequent integration over θ:

ν − 2q0

∫

∞

−∞

ρ(θ) exp(iζθ)dθ

∫

∞

θ

ρ(θ′) exp(−iζθ′)dθ′

= 2q0Cθ

∫

∞

−∞

ρ(θ) exp(iζθ)dθ

∫

∞

θ

ρ(θ′)θ′ exp(−iζθ′)dθ′ (34a)

Cθ

(

ν2 − Q2
s

ν
− 2q0

∫

∞

−∞

ρ(θ) exp(iζθ) θdθ

∫

∞

θ

ρ(θ′) exp(−iζθ′) θ′dθ′
)

= −2q0

∫

∞

−∞

ρ(θ) exp(iζθ) dθ

∫

∞

θ

ρ(θ′)θ′ exp(−iζθ′) dθ′ (34b)

Dispersion equation for tune ν is derived from these relations by excluding of parameter Cθ.

To avoid a cumber, we restrict the consideration by the case |ζθ0| ≪ 1 which assumption

leads to the equation

(ν − q0 + iαq0χ)

(

ν2 − Q2
s

2ν
− iβq0χ

)

= −q2
0

(

α − iχ

4

)2

(35)

where χ = 2
√

2 ζνσθ, and following designations are used:

σ2
θ =

∫

∞

−∞

ρ(θ) θ2dθ (36a)

α =

√
2

σθ

∫

∞

−∞

ρ(θ) θdθ

∫ θ

0

ρ(θ′) dθ′ (36b)

β =
1

σ3
θ

√
2

∫ 1

−1

ρ(θ) θdθ

∫ θ

0

ρ(θ′) θ′2dθ′ (36c)

Because σθ is rms bunch length, χ can be treated as betatron phase advance caused by

TABLE III: TMCI coefficients of different bunches

Hollow Boxcar Parabolic Gaussian

σ2
θ θ2

0/2 θ2
0/3 θ2

0/5 Any

α 0.405 0.408 0.407 0.400

α2 0.164 0.167 0.166 0.160

β 0.135 0.123 0.113 0.100
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FIG. 3: Eigentunes with chromaticity: left – hollow bunch, right – Gaussian distribution. All the

curves are odd functions of the wake strength. Real parts do not depend on sign of chromaticity,

imaginary parts change sign. Some curves are indistinguishable because the modes starting from

the point ν = −Qs almost do not depend on chromaticity.

chromaticity in the entire bunch (it is really true for the hollow bunch of length 2θ0 when

σθ = θ0/
√

2). Other parameters are presented in Table III for several distributions. It is

seen that, at χ = 0, Eq. (35) coincides with Eq. (25) not only formally but also actually,

because the discrepancy of coefficients α2 does not exceed 1%. Parameters β associated with

chromaticity depends on distribution a bit stronger but moderately.

Complex solutions of Eq. (35) are plotted in Fig. 3 for hollow and Gaussian bunches.

Only positive wakes and chromaticities are presented in the graphs because all curves have

following symmetry properties: (i) they are odd functions of q0/Qs; (ii) the real parts of the

tunes do not depend on sign of chromaticity; (iii) the imaginary additions reflect specularly

with respect to the line ν = 0 when the chromaticity change sign. Comparison of the figures

suggest again that the TMCI with chromaticity depends of the bunch shape very weakly

when rms bunch length is fixed.

A reasonable accuracy can be reached also with 2-modes approximation which has been

used earlier for Eq. (29)

ν ≃ q0 + Qs − iq0χ(α − β)

2
±

√

(

q0 − Qs − iq0χ(α + β)

2

)2

− q2
0

(

α − iχ

4

)2

(37)

The instability has no threshold with chromaticity, and TMCI appears against the head-tail
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background. In particular, it is seen from Fig. 3 that the TMCI and head-tail contributions

are comparable at |q0| ≃ 0.7 Qs and |θ0ζ | ≃ 0.5. However, the transverse mode coupling is

negligible at all at |q0| ≪ Qs when the separate multipole approximation is applicable, and

the known expression for eigentunes of hollow bunch follows from Eq. (17)-(19) being valid

with any integer m

νm = mQs + q0δm,0 +
8iq0θ0ζν

π2(4m2 − 1)

VI. REALISTIC BUNCH WITH ARBITRARY WAKE (NO CHROMATICITY)

It would be beyond reason to treat the rectangular wake as an exclusive case. On the

contrary, Eq. (31) can be applied as an approximate solution of general Eq. (6) to look for the

TMCI parameters with arbitrary wake function. Then the same as above transformations

result in the dispersion equation like Eq. (25)

(ν − qef )

(

ν2 − Q2
s

2ν
− α2qef

)

= −α2
1q

2
ef (38)

with the coefficients

qef = 2

∫

∞

0

q̃(θ)dθ ×
∫

∞

−∞

ρ(θ′ − θ/2) ρ(θ′ + θ/2) dθ′ (39a)

α1 =
1

σθqef

√
2

∫

∞

0

q̃(θ) θdθ ×
∫

∞

−∞

ρ(θ′ − θ/2) ρ(θ′ + θ/2) dθ′ (39b)

α2 =
1

σ2
θqef

∫

∞

0

q̃(θ) dθ

∫

∞

−∞

ρ(θ′ − θ/2) ρ(θ′ + θ/2) (θ′2 − θ2/4) dθ′ (39c)

where σθ is rms bunch length given by Eq. (36a). Note that chromaticity could be included

in the consideration because q̃(θ) = q(θ) exp(−iζνθ). However, we will investigate in this

section only the case ζν = 0, q̃ = q. Besides, we restrict ourself to 2-modes approximation

as it was introduced for Eq. (29). Then solutions of dispersion equation (38) are

ν ≃ qef (1 + α2) + sQs

2
±

√

[

qef(1 − α2) − sQs

2

]2

− α2
1q

2
ef (40)

Without chromaticity, α1−2 are real numbers not depending on qef . Therefore the TMCI

threshold is in this case

|qef |thresh =
Qs

1 + 2α
, α = α1 −

α2

2
(41)
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For Gaussian bunch with dispersion σθ, used parameters obtain the forms

qef =
1

σθ

√
π

∫

∞

0

exp

(

− θ2

4σ2
θ

)

q(θ) dθ (42a)

α1 =
1

2
√

2π σ2
θqef

∫

∞

0

exp

(

− θ2

4σ2
θ

)

q(θ) θdθ (42b)

α2 =
1

4
√

π σθqef

∫

∞

0

(

1 − θ2

2σ2
θ

)

exp

(

− θ2

4σ2
θ

)

q(θ) dθ (42c)

Two examples are considered below.

A. Short rectangular wake

Gaussian bunch with a rectangular wake of restricted length θw is considered in this

subsection as first example. Eq. (42) gives in this case

qef = q0 erf(x), α1 =
1 − exp(−x2)√

2π erf (x)
, α2 =

x exp(−x2)

2
√

π erf (x)
(43)

where x = θw/(2σθ). These functions are plotted in Fig. 4. Threshold value of q0 is shown

as well:
|q0|thresh

Qs
=

1

[1 + 2α(x)] erf (x)
(44)

It is seen that shortening of the wake results in an increase of the threshold which becomes

especially noticeable at θw <∼ 2σ.

0.0 0.5 1.0 1.5 2.0 2.5
X = θW/(2σ)

0.0

0.5

1.0

1.5

2.0

2.5

P
A

R
A

M
E

T
E

R

qeff/q0

α1
α2
1/(1+2α)
|q0|thresh/Qs

FIG. 4: Parameters of Gaussian bunch with short rectangular wake. Brown line describes an

effective deterioration of the wake in a short bunch, red line represents TMCI threshold.
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B. Resistive wake

Resistive wall impedance is the most general and important source of transverse insta-

bilities in circular accelerators. Corresponding normalized wake function is

q(θ) =
q0√
θ
, q0 = − r0R

2N

2πβγQ0b3

√

c

Rσc
(45)

where b is the beam pipe radius, and σc is the pipe wall conductivity (see e.g. [7]). With

this wake, integrals in Eq. (42) are representable in terms of gamma functions:

qef =
q0 Γ(1/4)√

2πσθ

=
1.4464 q0√

σθ
, (46a)

α1 =
Γ(3/4)√
2 Γ(1/4)

= 0.2390, α2 =
1

8
(46b)

Threshold value of effective and usual wakes can be found then with help of Eq. (41):

|qef |thresh = 0.739 Qs, |q0|thresh = 0.511 Qs

√
σθ. Therefore, with usual notation, the resistive

wall TMCI threshold is
r0R

2Nthresh

2πβγQ0Qsb3

√

c

σcσz

= 0.51 (47)

where standard bunch length σz = σθR is used. Note an essential decrease of the threshold

at the bunch shortening which effect is explained by a concentration of the particles in the

strong wake field area. Of course, it is necessary to take into account that Eq. (45) is valid

only at Rθ >∼ b/γ where the wake reaches a maximal value. Therefore sufficient condition

of applicability of Eq. (47) can be written as σz ≫ b/γ.

Another restriction comes from the fact that the resistive wake has a long and slowly

decaying tail. Therefore it can reach not only neighboring bunches but also succeeding

turns. These multibunch/multiturn collective effects should be included to a comprehensive

investigation of resistive wall instabilities. However, this point is beyond the scope of this

work where only single bunch effects are examined. Nevertheless obtained results give a

possibility to estimate a relative danger of the transverse mode coupling and the collective

instabilities.

The bunch population should be taken for this estimation as the threshold value given

by Eq. (47). Then the TMCI tune shift is |ν|TMCI ≃ 0.77 Qs as it can be seen from Fig. 1-3.

The collective modes tune shift with this intensity is [7]

|ν|COL ≃ 0.51 Qs

√

2βσz

2πR|k − Q|

(

h − (2|k − Q0|)3/2

h1/2

)

(48)
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where h is number of bunches, and k is the collective mode number (the mode can be

unstable at k > Q0). We accept further |k − Q0| = 0.25 and β = 1 to estimate the

maximal shift and to get the ratio:
∣

∣

∣

∣

νCOL

νTMCI

∣

∣

∣

∣

∼ 2

(

h − 0.35√
h

)
√

σz

2πR
(49)

With great probability this value is < 1 or even ≪ 1 at h = 1, that is the multiturn effect of

single bunch is small or ever negligible in comparison with TMCI. However, the collective

effects are more danger in a multibunch machine with h ≫ 1, hσz ∼ R. Of course, more

detailed analysis is required at intermediate cases.

VII. TMCI WITH SPACE CHARGE

TMCI with ultimate space charge was considered in works [4-7]. The most remarkable

effect is a pronounced asymmetry of the curves with respect to the wake sign as it has been

shown in Ref. [6]. It is illustrated by Fig. 5 taken from quoted article where a rectangular

(“boxcar”) bunch with constant wake was explored at space charge betatron tune shift

∆Q0 ≫ Qs. It is seen that TMCI appears only with positive wake satisfying the instability

condition

(q0)thresh ≃ 0.5 Q2
s

∆Q0
(50)

−4 −3 −2 −1 0 1 2 3 4 5 6 7
q0∆Q0/Qs

2

−3

−2

−1

0

1

2

3

4

5

6

ν∆
Q

0/
Q

s2

n=0
n=1
n=2
n=3
TMCI Re
TMCI Im

FIG. 5: TMCI with space charge by [6]. Boxcar bunch, n = m(m + 1)/2.
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which drastically differs from the conditions presented by Fig. 1-3 and Eq. (30) of this paper.

It is needless to say that investigation of the effect at ∆Q0 ∼ Qs is the only way to resolve

the problem by a joining of these conflicting pictures. It turns out that just Eq. (32) bridges

these ultimate cases providing a general form of the bunch eigenfunction near the TMCI

threshold.

Actually, Eq. (8) has been presented in Ref. [6] just in the form with space charge included:

νY + i Qs
∂Y

∂φ
+ ∆Qav

(

ρ(θ)Y (θ, u) −
∫

∞

−∞

F (θ, u)Y (θ, u)du

)

= 2q0 exp(iζνθ)

∫

∞

θ

exp(−iζνθ
′)dθ′

∫

∞

−∞

F (A′)Y (A′, φ′) du′ (51)

with ∆Qav as the space charge tune shift averaged on all coordinates. We will consider

further a rectangular bunch where tune shift does not depend on θ; then ρ = 1/2 and

Qav = Q0. Thereupon, using Eq. (32) as a pattern of the solution, one can get the expression

like Eq. (33) with the only addition ∆Q0Cuu in the left hand part. Therefore relation

between coefficients obtains the form Cu = iCθQs/(ν + ∆Q0) resulting in the dispersion

equation (without chromaticity)

ν − q0

2

(

ν − Q2
s

ν + ∆Q0

)

= −α2q2
0 (52)

It looks like Eq. (25) but can have rather different solutions dependent on the parameter

∆Q0/Qs. Some of them are plotted in Fig. 6 which displays the asymmetry very clearly:

space charge propels the TMCI threshold to the centerline at q0 > 0, and away from it at q0 <

0. Corresponding dependence is shown quantitatively in Fig. 7 being presented separately

for positive and negative wakes and supplemented by appropriate analytical formulae. There

is very good agreement of these results with Fig. 5. For example, TMCI threshold of positive

wake is

(q0)thresh =
0.57 Q2

s

Qs + ∆Q0
→ 0.57 Q2

s

∆Q0

what is very close to the estimation given by Eq. (50).

However, it is well to bear in mind that more often than not wakes have negative sign in

reality. Space charge tune shift raises the TMCI threshold in such a case, and in this sense

it promotes the beam stability. For example, Eq. (47) for resistive wall TMCI threshold

obtains the form

r0R
2Nthresh

2πβγQ0Qsb3

√

Ω0R

σcσz

≃ 0.51

(

1 +
0.7∆Q0

Qs

+
0.3∆Q2

0

Q2
s

)
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FIG. 6: TMCI of rectangular bunch without chromaticity but with space charge. Presented ra-

tios ∆Q0/Qs are: 0 (maroon), 1 (red), 2 (green), and 3 (blue). Solid/dashed lines relate to

real/imaginary parts of the tune.
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0

1
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FIG. 7: TMCI threshold of the rectangular bunch against the space charge tune shift. Positive

and negative wakes are presented separately, no chromaticity.

VIII. SUMMARY

Theory of transverse mode coupling instability is proceeded in the paper being founded

on exact solution of equations for hollow bunch, and on three-modes approximation for
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arbitrary one.

It is shown without additional assumptions that different TMCI modes of the hollow

bunch arise through a coalescence of 2 neighboring multipoles which frequencies approach

each other under the influence of wake field. The multipoles of indexes m = (0− 1), (2− 3)

etc. are coalescing to create first, second, etc. TMCI modes if the wake is positive, and the

same happens with negative multipoles at negative wake. There were no other kinds of the

TMCI appearances observed at these calculations.

The lowest TMCI mode arises by coalescing of multipoles m = 0 and m = ±1 dependent

on sign of the wake. It holds the greatest interest in practice because all other TMCI modes

have significantly higher thresholds of intensity. Therefore this mode is investigated in detail

in the paper.

Special 3-modes approach is developed to be applied to arbitrary shaped bunch. The

method allows to get very simple 3-order dispersion equation for the bunch eigentunes which

has 3 different solutions at given wake strength. For hollow bunch, these solutions coincide

very closely with mentioned exact results having a difference certainly less of 0.1%.

Another interesting point obtained by this method is very slight dependence of the in-

stability parameters on the bunch shape. For example, difference of the TMCI thresholds is

less of 1% even for so variously shaped bunches as hollow and Gaussian ones, if they have

the same rms length.

A modest modification of this method allows to take into account effects of chromaticity.

TMCI has no clear threshold in this case because this kind of instability grows more or less

smoothly from the head-tail instability owing to coalescence of the lowest radial modes of

low-order multipoles. Higher radial modes do not contribute to this process because their

coalesce would require significantly higher intensity. Dependence of the instability rate on

bunch shape remains at the level of several percents if the bunches rms length is fixed.

The results obtained with a simple constant wake are extended in the paper to arbitrary

wakes. In particular, dependence of TMCI on the length of rectangular wake is investigated

thoroughly demonstrating that its threshold increases significantly when the wake becomes

shorter than 2σ of the bunch.

More complicated results are obtained with resistive wall wake. It is shown that corre-

sponding TMCI effect significantly increases at the bunch shortening, so it can easy over-

power well known effect of single bunch multiturn instability. However, the collective insta-
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bility can prevail in multibunch machine though special analysis is needed in each concrete

case. Simple formula for comparison is presented in the paper.

Space charge is included in consideration at the end of the paper to make a bridge

between the known ultimate cases of neglected space charge tune shift and dominating one.

It is confirmed that space charge decreases threshold of positive wakes and increases it if

the wake is negative. Simple analytical formulae are proposed in both cases to describe

dependence of the threshold on the tune shift.

Taking into account that wake field is negative more often than not, one can say that

TMCI is typically depressed by the space charge.
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IX. APPENDIX: DERIVATION OF EQ. (28)

With Y0 = 1, it follows from Eq. (24) and (27)

α2 = 8π3

∫

∞

0

F (A) AdA

[
∫

∞

0

K0,1(A
′, A)F (A′)A′ dA′

]2

Substitution of K0,1 from Eq. (21) results in

α2 =
128

π

∫

∞

0

F (A)
dA

A

[
∫

∞

0

F (A′)A′dA′

∫ A′

0

√

A2 − θ2
A

A′2 − θ2
dθ

]2

where θA = θ or A. Changing sequence of the integrals obtain

α2 =
128

π

∫

∞

0

F (A)
dA

A

[
∫ A

0

√
A2 − θ2 dθ

∫

∞

θ

F (A′)A′ dA′

√
A′2 − θ2

]2
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The last integral is ρ(θ)/2 so the expression is reducible in the form

α2 =
8

π

∫

∞

0

F (A)A3 dA

[
∫ 1

−1

ρ(Aξ)
√

1 − ξ2 dξ

]2

which can be transformed in Eq. (28) by the substitution ξ = cos φ.
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