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Abstract

Novel generation of silicon-based photodetectors are attractive alternatives to the traditional phototubes. They offer significant
advantages but they present new challenges too. Afterpulsing is an inrinsic property of the silicon detectors. Its influence on the
observable characteristics of photodetectors is investigated within a simple statististal model.
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1. Introduction

Silicon photomultipliers (SiPM’s, MPPC’s) are the arrays of avalanche photodiodes operating in a Geiger mode.
Their high gain, high detection efficiency and compact sizes in conjunction with very high pulse height resolution
enabling photon counting’ make them very attractive candidates for replacement of the traditional photomultipliers,
PMTs, especially in applications where the total area of photodetectors required is small.

SiPM’s offer several advantages over the PMT tubes but they also present new challenges related to solid state
nature of these devices. Thermally generated free charge carriers create signals identical to those caused by photo-
electrons, hence the dark count rates in typical devices are relatively large, in the range 10kHz — | MHz/mm?[1].

Large number of carriers are present in the Geiger discharge; some of them may be trapped in metastable traps.
Their subsequent release may produce additional pulses, afterpulses, which contribute to the observed signal. The
stochastic nature of this process affects the performance of photodetectors.

2. Modeling of Afterpulses; Single Pulse

Afterpulses can be characterized in terms of the probability that a given pulse will produce a subsequent afterpulse
and their time constant 7,4, In this note the P, will be used to denote the average number of trapped electrons
(hence the number ofafterpulses produced by a single pulse, not counting the next generation of afterpulses). For
P,s < 1 it has the meaning of the actual probability of producing an afterpulse. These parameters depend on the
operating point of the SiPM. Increase of the bias voltage V., leads to corresponding increase of the Py, because of
the increase of the number of charge carriers in the avalanche Q = Ceei(Viias — Vireakdown) = CeeltVov, Where Ceey
is the cell capacitance and the Vi eqrdown 1S the breakdown voltage, and the simultaneous increase of the probability
that a free charge carrier will initiate an avalanche, Pg,jc.-. The afterpulsing time constant 7,5, may depend on the
temperature of the photodetector.
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In general there might be several trapping levels present with different trapping probabilities and corresponding
time constants. In the following we explore a simple model of one trapping level with a single afterpulsing probability
and one time constant.

Afterpulsing is a stochastic process, the actual number of additional pulses undergoes fluctuations according to
the Poisson distribution with P,y being the expectation value. In the note the quantity P,y will be referred to as
“afterpulsing probability’. Every afterpulse produces a standard avalanche, hence it may lead to a production of
additional afterpulses.

In a realistic detector the situation is somewhat more complicated as the bias voltage after an avalanche drops to
Vireakdown and is being restored with the time constant 7g¢ characteristic for a given device. Electrons released from
the traps at timescales shorter than 7gc have lower probability of producing an avalanche because of reduced Pgeiger
and the charge of the avalanche will be reduced proportionally to the actual value of overvoltage, V,,. The latter effect
will lead to a reduced afterpulsing probability P, of the subsequent afterpulses regardless of their timing. These
effects depend on the specific devices and they are ignored in the present study.

Afterpulsing is simulated assuming a single avalanche creating a Poisson-distributed number of afterpulses dis-
tributed with the exponential decay time. The procedure is iteratively applied to each of the generated afterpulses,
thus leading to trains of pulses with varying numbers of pulses and theirt ime distributions.

3. Afterpulsing Pulse Rates; Effective Gain

Afterpulsing with fixed probability would lead to an increase of the number of pulses by an additional contribution
of

P,
Najt = Pagi + Pogy + Py + o = -—5— _If;’ﬂ (1)
a

and it may be treated as an additional gain factor, albeit dependent on the bias voltage. As shown in Fig.1 the same is
true even in the case when the afterpulses are created with fluctuations governed by the Poisson statistics.
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Figure 1: Average number of afterpulses as a function of the after-  Figure 2: Excess noise factor as a function of the afterpulsing
pulsing probability with the actual number of afterpulses undergo-  probability. For comparison a linear function 1 + P,y is shown
ing statistical fluctuations. as a blue line.

The additional gain factor undergoes additional fluctuations thus it reduces the intrinsic resolution of the photode-
tector, which can be expressed in terms of the Excess Noise Factor, ENF'. Fig. 2 shows that the ENF grows very
rapidly, much faster than linearly, with the Pyy;.

Excess noise factor is defined as ENF = m‘er;nz . For purely poissonian fluctuations ENF = 1.0. Any deviation of ENF from unity indicates

additional fluctuations beyond purely statistical ones.
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The increase of the number of additional pulses with P, (thus with V) is the primary reason for the observed
increase of the dark count rates with the bias voltage.

4. Afterpulses Time Distribution

Afterpulsing time constant can be determined experimentally by studying the observed time distribution of pulses
following some ’trigger’ pulse. An external light pulse can be used to provide the initial trigger and the contribution
of thermal pulses can be subtracted. The shape of resulting time distribution is modified by the statistical nature of
afterpulsing, however.
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Figure 3: Time distribution, in units of 7gc, of the observed
pulses for aftepulses probability ranging from 0.1 to 0.5.
The black distribution corresponds to the underlying expo-
nential and no subsequent afterpulsing.

Figure 4: Time distribution, in units of 7gc, of the observed
pulses for aftepulses probability ranging from 0.6 to 0.95.
The black distribution corresponds to the underlying expo-
nential and no subsequent afterpulsing.

Figs. 3 and 4 illustrate the impact of subsequent afterpulsing on the time distribution of the observed pulses
for different values of the P,s,. The time distribution of the observed pulses retains its exponential shape, but the
characteristic time constant 7,,; grows with the afterpulsing probability, as shown in Fig. 5.

The value of 7, is a relevant parameter to describe the performance of a photodetector at the given operating
conditions but it does not, in general, reflect the time constant of the underlying physics process, 7,y,. The latter can
be determined better by studying the time distribution of the ’first’ afterpulse. Such a method would yield a correct
result in the case when the number of afterpulses to a given pulse is one. A Poisson nature of the number of produced
afterpulses leads, however, to a systematic underestimate of the 7,5, as shown in Fig. 6.

5. Modeling of Afterpulses; Multiple Thermal Pulses

’Dark’ pulses, i.e. pulses in the absence of the light signal consist of several components. The primary source
of these pulses are the thermal excitations of free charge carriers leading to the avalanche process with the Pgeiger
probability. The rate of these pulses depends on the temperature and the bias voltage, but the resulting pulses are
randomly distributed in time with the overall rate

R(T, Vov) = Rthermal(T) X PGeiger(Vov) (2)

where Ryermar 18 a rate of thermally generated carriers at the temperature T.

The afterpulses (including the subsequent after-afterpulses) will increase the average rate of the observed pulses
by a factor 1 + N, but the time structure of the resulting ensemble of pulses will be depend on the interplay between
the afterpulsing time constant and the typical time distance between the thermal excitations Atyermqi- The dark pulses
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will be distributed randomly in time when Atpermar << T4y, OF there will be randomly distributed trains of pulses (with
the train multiplicity and duration dependent on Pgs;) when Atyermar > Taf:.

Thermally produced pulses have been generated in the interval O — 10usec and the resulting afterpulses have been
generated with the average multiplicity given by Py, and time constant 7,7, = 50nsec. Fig. 7 shows an example of the
time distributions of pulses simulated with the thermal random rate of 2M Hz and different afterpulsing probabilities.
The apparent raise of the instantenous rate is a reflection of the lack of afterpulses corresponding to thermal pulses
produced at ¢ < 0. the time interval required to reach the asymptotic level in such a situation depends on the interplay
of the afterpulsing time constant and the afterpulsing probability.

6. Thermal Pulses Rate Estimates

In the presence of afterpulses the observed ’dark’ pulse rate is an overestimate of the rate of random thermal
excitations by a factor 1 + N,y which can exceed an order of magnitude. A better estimate of the initial thermal rate
can be obtained from a distribution of pulses multiplicity in some time interval Az. The probability of observation of
zero pulses P(0) in the given time interval provides an estimate of the average number of pulses expected in this time
interval

< N >= -logP(0) 3

If there were no thermal pulses in the specific time interval then there will be no afterpulses either, therefore such
method appears to be systematically superior to the use of the the raw observed rate. A possible presence of the
afterpules to the pulses preceding the time interval in question reduces the probability of observing zero pulses and
biases the resulting < N > towards the higher values, however. To study the resulting bias the random thermal pulses
were generated in the time interval of 10usec with afterpulses corresponding to the time constant 7,y of 50nsec. To
avoid an additional bias due to the imperfection of the simulation at the beginning of the simulated time interval the
method was applied using variable gate length, all of the gates starting at t = 7.5usec, well inside the steady state even
for large afterpulsing probability, see Fig. 7.

Figs. 8 and 9 illustrate the magnitude of the systematic bias introduced by afterpulsing in the determination of
the thermal pulses rates as a function of the of used gate length and the afterpulsing probability. For the gate length
longer than 1usec = 207,y, the true thermal rate can be determined with the accuracy better than 20% even for very
large afterpulsing probability.

7. Afterpulsing and Absolute Calibration

Absolute calibration of photodetectors, i.e. conversion of the observed signals into the number of photons impact-
ing the photodetector, is the crucial step in several classes of experiments. One of they methods successfully used with
photomultipliers involves illumination of the photodetector with a light signals of constant intensity and determination
of the average number of photons impacting the photodetector from the width of the observed pulse height distribution
using the Eq. 4
Mean?
RMS?

This method relies on the assumption that the variation of the observed signal is dominated by the Poisson fluctu-
ations of the number of detected photons. It is a very good approximation for the PMT tubes, which have ENF very
close to one. Fluctuations of afterpulsing contribute significantly (Fig. 2) to the fluctuations of the observed signals
thus reducing the ’determined’ number of the incident photons with respect to the true size of the photon signal. This
effect can be parameterized as

<N >=

“

< N9 >=< N"™ > (1 = Pupy) 3)

and it is illustrated in Fig. 10.



Adam Para/ 00 (2014) 1-5 5
8. Summary

Afterpulsing is an intrinsic feature of SiPM-type photodetectors and it does contribute to the various factors rel-
evant to the performance of these photodetectors. Proper inclusion of the afterpulsing in the analysis of the data is
very important, but it depends on the properties of the photodetector (including the overall rate of afterpulsing and
its time constant as well as the RC recharge time of the cells) as well as on the details of the experimental analysis
(gate length). The results presented here can be used as a guidance to derive the corrections relevant for specific
applications.
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Figure 5: Effective afterpulsing time constant, in units of Tgc, Figure 6: Time constant, in units of Tgc, determined from the
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Figure 7: Instantenous rate as function of time after a "turn-on’ for different afterpulsing probabilities. The themral random rate is 2M Hz and
afterpulsing time constant is SOnsec.
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Figure 8: Ratio of the rate of thermal pulses estimated from  Figure 9: Ratio of the rate of thermal pulses estimated from
the P(0) to the true rate of the underlying thermal pulses for  the P(0) to the true rate of the underlying thermal pulses for
different afterpulsing probability Py, as a function of the  different time intervals as a function of afterpulsing proba-
length of the time interval used. bility.
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Figure 10: Reduction of size of the photon signal using the Eg.4 with respect to the truth as a function of Afterpulsing probabiluty.





