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Abstract

Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses
using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology
and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calcu-
lations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a
new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance
development of inference tools across the community. We describe the modules already available in CosmoSIS, including
camb, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you
can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis.

1. Introduction

Cosmological parameter estimation (CPE) is the last
step in the analysis of most cosmological data sets. After
completing all the acquisition, verification, and reduction
of the data from an experiment, we transform compressed
data sets, such as power spectra or brightnesses of super-
novae, into constraints on cosmological model parameters
by comparing them to theoretical predictions.

The standard practice in cosmology is to take a Bayesian
approach to CPE. A likelihood function is used to assess
the probability of the data that were actually observed
given a proposed theory and values of that theory’s pa-
rameters. Those parameters are varied within a chosen
prior in a sampling process such as Markov Chain Monte-
Carlo [1].

The result is a distribution that describes the posterior
probability of the theory’s parameters, often summarised
by the best fit values and uncertainties on the parameters
given the model and data.

A golden age of CPE has just ended; over the past
decade the most powerful cosmological probes measured
either the background expansion of the universe (like su-
pernovae and baryon acoustic oscillations) or linear per-
turbations to it (like the microwave background or large-
scale structure). These observations established a pow-
erful concordance model of cosmology, ΛCDM, in which
pressureless dark matter forms the seed and backbone of
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physical structures and a cosmological constant dominates
expansion.

In the background and linear regimes inter-probe cor-
relations were negligible, statistical errors dominated, and
predictions were easy to make. The challenge for the next
decade, for stage III cosmological surveys [2] and beyond,
is to test the ΛCDM model with data from new regimes.
This will be extremely difficult: on the non-linear scales we
must probe, systematic effects require complex modelling,
adding new physics becomes much harder, and different
probes have subtle statistical correlations. In this paper
we argue that this new era requires a new generation of
parameter estimation tools.

A range of CPE tools exists today. The first and
most widely used has been cosmomc [3], a sophisticated
Metropolis-Hastings sampler coupled closely to the camb
[4] Boltzmann integrator. Other Boltzmann codes have
had their own samplers attached, such as analyzethis [5]
for the cmbeasy [6] code and montepython [7] for class
[8]. Additions to cosmomc to perform new kinds of sam-
pling have been made by codes like cosmonest [9], and
methods to interpolate or approximate likelihood spaces
have included cmbfit [10], cmbwarp [11], pico [12], dash
[13], bambi [14] and scope [15]. Other methods, like
fisher4cast [16] and icosmo [17] have focused on the
Fisher matrix approximation, particularly for forecasting
results. More recently, cosmohammer [18] has intro-
duced cloud computing and a more pipeline-like approach
to the genre, while cosmopmc [19] has focused on late-
time data with a new sampling algorithm, and cosmolike
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[20] has made great strides in the high-accuracy calcula-
tion of the covariances and other statistics of late-time
quantities. Codes like cosmopp [21] and cosmoslik have
moved towards an object-oriented or plug-in approach to
building pipelines.

In this paper we present CosmoSIS, a new parameter
estimation code with modularity at its heart, and discuss
how this focus can help overcome the most pressing chal-
lenges facing the current and future generations of pre-
cision cosmology. The goal of CosmoSIS is not to pro-
duce new calculations of physical quantities, but to pro-
vide a better way to bring together and connect existing
code. It does this with a plug-in architecture to connect
multi-language modules performing distinct calculations,
and provides a simple mechanism for building and extend-
ing physics, likelihood, and sampler libraries. CosmoSIS
differs from previous parameter estimation codes in simul-
taneously emphasizing this modular approach, and allow-
ing cosmologists to develop in their language of choice and
thus leverage the large amount of powerful existing code
in the community.

In Section 2 we discuss the challenges brought on by
the new generation of data. We describe how modularity
addresses many of these challenges in 3. We outline the
structure of CosmoSIS in 4 and illustrate the Cosmo-
SIS features with a number of examples in 5. We propose
a model for future collaborative development of Cosmo-
SIS in Section 6 and wrap up with a discussion of future
prospects in 7. Guides for developers and users, and a
worked example are included among the appendices.

2. Challenges

Several problems have conspired to end the pleasant
period of CPE. Cosmological data sets now probe a non-
linear, multi-probe regime where complex physical and
analysis systematics are dominant. These systematics (such
as photometric redshift errors or baryonic effects on the
power spectrum) are correlated between probes: we must
take care to consistently model their impact on different
measurements and inferred statistics.

A richer model accounting for more physics will also
require a large increase in the number of parameters. The
Planck mission, for example, required about 20 nuisance
parameters to account for physical and instrumental sys-
tematics [22]. This expanded parameter space carries with
it computational costs, and the number of parameters and
the associated costs will increase with future experiments.

Since systematics are both dominant and poorly un-
derstood, each analysis must be run with different models
for each systematic to ensure that conclusions are robust
and insensitive to model choices. Galaxy bias, for exam-
ple, which describes the relative clustering of a sample of
galaxies compared to the underlying matter distribution,
can be described by a range of different models and pa-
rameterizations that are accurate to varying degrees over
a given range of scales or galaxy types. A computational

framework that does not allow these models to be simply
replaced with alternatives can quickly become overwhelm-
ingly complicated.

It is not only models of systematics that are getting
more complicated. With the rich data expected from cur-
rent and next generation experiments, we will be able to
test a wide range of alternatives to vanilla ΛCDM, such as
theories of modified gravity or dynamical dark energy (see
[23] for a recent review). Many analyses and calibration
methods assume ΛCDM throughout and can make switch-
ing to another cosmological model very difficult. Clarifying
and making assumptions explicit is vital to correct work in
these areas. Moreover, alternative models or parameteri-
zations vary from analyst to analyst, and the most generic
of them contains dozens of new cosmological parameters
(for example, the effective Newton’s constant as a function
of scale and time that relates density to potential), all of
which can be constrained.

Since all these complexities can make for a rather slow
likelihood evaluation, more advanced sampling methods
than the basic Metropolis-Hastings sampling are often con-
sidered. Making it as easy as possible to change and ex-
plore sampling methods is therefore a key goal. Of partic-
ular interest are those samplers designed to perform their
calculations in parallel which can be used on modern multi-
core and multi-node computing platforms.

Many of these problems have been tackled (in code)
in a heterogeneous way by multiple authors, with multiple
programming languages and in different ways. A useful
CPE framework must make use of the large amount of
existing code that was created to tackle different parts of
the problems already discussed.

A final problem is social. Most cosmology collabora-
tions are large and widely geographically spread, mak-
ing cleanly sharing and comparing code and methods a
significant challenge. There may be multiple approaches
to treatment of systematics, multiple ideas for theoretical
models to be tested, and multiple preferred computer lan-
guages. An easy way to communicate about code develop-
ment maximizes collaboration between experts at different
institutions.

We therefore have a slate of problems: correlated sys-
tematics, dimensionality, systematic models, variant cos-
mologies, advanced sampling, legacy code, bug finding,
and diverse approaches; these inform our requirements for
CosmoSIS.

3. Modularity

Modularity is the key to solving most of the problems
listed above.

A modular (or loosely coupled) approach breaks up a
larger complicated code into smaller parts. The philosophy
is then that each module has a specific task to complete - it
does one thing, and does it well, and its functionality does
not depend directly on what other modules are used in the
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pipeline - provided that the required inputs are present a
module does not care which other code they came from.

The modules are only connected in a specific and lim-
ited way - the inputs they take and the outputs they make
are passed on only through a specific set of functions de-
signed for this purpose, rather than, for example, creating
new global variables or structures to pass around. They
do not have direct read and write access to the data each
other hold.1.

All data is then passed around via a single mechanism
- the loading and saving of information in a single place
(in this case the datablock; see Section 4).

A likelihood function then becomes a sequence of mod-
ular processes, run one-by-one to form a pipeline. The
last module(s) generates the final likelihood numbers. Any
module in the sequence can be replaced at runtime by an-
other calculation of the same step without affecting the
others. This independence and easy replacement of mod-
ules creates a flexible CPE framework where systematic
models and alternative cosmologies can be fully explored.

As an example, consider a likelihood calculation for
a spectroscopic survey’s galaxy power spectrum P (k, z)
(see, for example, [24] [25]). We can split the physical
calculation into:

• Compute the linear matter power spectrum P (k, z)
from cosmological parameters using a Boltzmann code.

• From this, compute the non-linear PNL(k, z) with
Halofit [26] or another model.

• Use bias parameters to calculate a bias model b(k, z)
for the galaxy sample.

• Compute the galaxy power spectrum as Pg(k, z) =
b2(k, z)PNL(k, z).

• Integrate over survey window functions to compute
predictions to compare with measurements.

• Compare the predicted to observed measurements to
give a likelihood.

This process is illustrated in Figure 1.

3.1. Benefits

There are many benefits to splitting a likelihood calcu-
lation into separate modules as shown in Figure 1:

Replacement. For many problems, including the first
three modules shown in Figure 1, analysts have a choice
of models with different parameterizations, each of which
can be used to describe the particular physical process at
each step. Making it easy to run different models with-
out re-writing and recompiling code each time is easy in a
modular architecture. In CosmoSIS a simple change to a

1A modular design is the norm in many areas of software engi-
neering; your web browser and operating system almost certainly
take this approach.

Figure 1: A schematic of the modular calculations for a galaxy power
spectrum likelihood.

configuration file (or even a command line option) suffices
to switch between models.

Verifiability. It is far easier to test individual parts of
a long pipeline than to regression-test the whole calcula-
tion. In CosmoSIS modules have their limitations and
assumptions clearly specified, allowing analysts to create
consistent pipelines that can be easily regenerated at a
later date.

Debugging. Incorrect inputs and outputs or lack of
clarity about the way pieces of code are supposed to con-
nect accounts for a large fraction of software bugs. With
the CosmoSIS architecture the inputs to a module are
absolutely explicit and the connection between modules is
clear.

Consistency. A treatment of shared physics and sys-
tematics that is consistent across probes is essential in
order to obtain accurate constraints on cosmological pa-
rameters. Writing modules that read in the values they
need from the shared CosmoSIS datablock rather than
assuming them makes this problem explicit.

Languages. The CosmoSIS plug-in approach to adding
modules makes it easy to switch between languages for dif-
ferent parts of the code. Complicated but fast portions can
be written in python so they are easier to understand, and
computationally intensive portions can be in a compiled
language.

Legacy. A wide body of disorganized but powerful code
already exists in cosmology. Wrapping parts of it as Cos-
moSIS modules allows the user to include it without hav-
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ing to structure her own code around it.
Publishing. Modifications to a monolithic parameter

estimation code such as cosmomc, for example, are very
unlikely to be compatible with each other or combine eas-
ily. For example, if one group creates a new data set with
nuisance parameters while another makes a change to im-
plement a theory of modified gravity, then combining those
two alterations consistently is straightforward in the Cos-
moSIS structure.

Samplers. Splitting likelihood calculations into mod-
ules means we can create our entire CosmoSIS pipeline as
a more easily reusable object. With a pipeline decoupled
somewhat from the sampler, switching between samplers
– and therefore studying which is optimal for a particular
problem – becomes a far easier proposition. This is an
important consideration as some samplers are ineffective
at fully exploring multimodal distributions or parameter
degeneracies.

3.2. Costs

A modular structure is not free; it imposes certain costs
during both the design and execution of calculations.

Overheads. There is an overhead of code that must be
written and run to connect each module to the system.
For simpler modules this can be short, but for more com-
plex modules with multiple options it can become more
difficult. Being another layer of separation between parts
of the pipeline it is also another place bugs can enter.

Interpolation. In a monolithic CPE architecture, func-
tions in other parts of the code can be called freely; in
this modular structure data must be explicitly saved by
one module to be useable by another. This can mean that
data is not sampled at the points that a module is ex-
pecting, and therefore require interpolation. This can be
a source of inaccuracy. One mitigation is to define sample
spacing in initialization files and check explicitly that the
required accuracy is achieved, but this does place some
burden on the user to perform validation tests.

Speed. The connections between modules can be (and
are, in CosmoSIS) fast enough that they do not slow down
cosmological likelihoods significantly. But short-cuts and
efficiencies available in a tightly-coupled code may not be
available in a modular context.

Consistency. Although a modular approach can help
with consistency compared to a gradually accumulated
codebase it is more vunerable to misuse compared to a
rigid monolithic code that is designed from the start with
consistency in mind. This can be particularly true in
complex cases such as those where errors are cosmology-
dependent. A key feature of CosmoSIS is that any pipeline
output contains the runtime options and assumptions for
each module used. This makes all the parameter val-
ues and cosmological model choices explicit and allows
pipelines to be regenerated easily at a later date for ver-
ifiability or comparsion with collaborators. This feature
limits the losses in moving away from a monolithic code

and removes any ambiguity in the settings and assump-
tions used for a particular pipeline.

Temptation. As it becomes easier to specify and design
a pipeline the temptation to over-complicate and build
large and complex pipeline grows. The more parame-
ters and steps a process has the more prone to error it
is, and the more difficult the associated sampling prob-
lem becomes - larger spaces require more samples, longer
burn-in, and make it harder to diagnose convergence. Hav-
ing powerful pipeline tools must not become an excuse to
avoid thinking about how to simplify a likelihood as much
as possible.

Legacy. Most existing code is not written with modu-
larity in mind. Much of it needs to be modified to fit into
the CosmoSIS framework2.

4. CosmoSIS structure

In this section we provide an overview of the structure
of CosmoSIS and modules that link to it, and discuss
the various samplers available in it in Section 4.4. More
architectural details are available in Appendiex Appendix
D.

4.1. Overview

In CosmoSIS a parameter estimation problem is rep-
resented by various components:

pipeline a sequence of calculations that computes a joint
likelihood from a series of parameters.

modules the individual “pipes” in the pipeline, each of
which performs a separate step in the calculation.
Some do physics calculations, others interpolation,
and at the end some generate likelihoods. Many
modules are shipped with CosmoSIS as part of a
standard library and users can easily write and in-
clude more.

datablock the object passed down the pipeline. For a
given set of parameters all module inputs are read
from the datablock and all module outputs are writ-
ten to it.

sampler (generically) anything that generates sets of cos-
mological and other parameters to analyze. It puts
the initial values for each parameter into the dat-
ablock.

runtime the code layer that connects the above compo-
nents together, coordinates execution, and provides
an output system that saves relevant results and con-
figuration.

2See the CosmoSIS wiki for notes on importing legacy code.
https://bitbucket.org/joezuntz/cosmosis/wiki/modules
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The core CosmoSIS datablock is written in C++ and
the runtime, samplers, and user interface are written in
python. The latter was a clear choice: parsing user input
and handling complex pipeline configuration and diverse
other features is a field in which python excels. The choice
of writing the core in C++ was driven first by speed re-
quirements - we never want the runtime to be dominated
by read/write - and second by the flexibility that modern
C++ offers - it is easy to extend the datablock to include
new data types. We also wanted a core that could be easily
called all off Fortran, C, and Python, and this configura-
tion offered an easy way to do that.

Modules can be written in C, C++, Fortran, or Python3.
There are a number of technologies designed to connect

C/C++ to python that we could have used to load and
run modules, such as cython, boost-python, and swig, but
we opted for a much simpler solution, the built-in ctypes
modules, a very low-level interface into shared library func-
tions. This was done for simplicity, clarity, and speed:
ctypes is a very thin layer of abstraction, and so has mini-
mal overhead and functions are called directly as defined.
It places a little extra burden on the cosmosis developers
when writing wrapper code, since undefined behavior can
occur if mistakes are made, but the reduction in compile
and thinking time is large.

In ctypes shared libraries are opened by name, and
functions in them are extracted by name and manually
assigned argument and return types. Once these assign-
ments are made type checking is performed by python.
This means the end user does not need to know anything
about functions exposed by ctypes in order to use them.

4.2. Modules & Pipelines

The modularity that we advocate above is embodied
in the splitting of the CosmoSIS likelihood function into
a sequence of separate modules, each responsible for only
a part of the calculation.

A module has two parts. The main part of the mod-
ule code performs one or more calculations that go from
physical input to output. The interface connects this to
CosmoSIS by loading inputs from the datablock (see be-
low) and saving outputs back to it. The interface is im-
plemented either as a shared library or a python module.

Some modules exist to generate quantities for later
modules to use - we refer to these as physics modules. Oth-
ers use these values to produce data likelihoods - these are
likelihood modules. Some can do both, and there is no
structural difference between them. A sequence of mod-
ules connected together is referred to as a pipeline, and
objects in the CosmoSIS runtime manage the creation
and running of pipelines and modules.

3Generally the interface to modules could be easily extended to
any language that can call and be called from C.

4.2.1. Examples

Camb [4] has been packaged as a CosmoSIS physics
module. It loads cosmological parameters (and optionally
a w(z) vector) from the datablock, and saves cosmic dis-
tance measurements and various linear power spectra. The
Planck likelihood code [27] has been packaged as a likeli-
hood module - it reads CMB spectra from the datablock,
and saves likelihoods. A very simple CosmoSIS pipeline
could just combine these two modules. We could substi-
tute another Boltzmann code for camb, such as class [8],
with no changes at all to the Planck module, and compare
the two just by changing a single line in a configuration
file, with no recompiling.

4.3. DataBlocks

We enforce modularity in CosmoSIS by requiring that
all information to be used by later modules is stored in a
single place, which we call a DataBlock. Storing all the
cosmology information in one places makes it easier to se-
rialize blocks. It also makes debugging easier because all
the inputs that a given module receive are explicitly clear.

The datablock is a CosmoSIS object that stores scalar,
vector, and n-dimensional integer, double, or complex data,
as well as strings. It is the object that is passed through
the pipeline and contains all the physical cosmological in-
formation that is needed by the pipeline, such as cosmic
distances, power spectra, correlation functions, or finally
likelihoods.

DataBlocks explicitly cannot store arbitrary structured
information; wanting to do so would suggest that modular-
ity is broken, since genuinely physical information is typ-
ically fairly unstructured. If complicated data structures
are passed among code it would imply that code should be
a single module. A good guideline is that data stored in
blocks should have physical meaning independently of the
particular code that generates or uses it.

More details may be found in Appendix Appendix D.

4.4. Samplers

We think of a “sampler” in very abstract terms, and
do not limit ourselves to a Markov chain Monte Carlo
(MCMC). A sampler is anything that produces one or
more sets of input parameters, in any way, runs the pipeline
on them, and then does something with the results. Some
samplers then iterate this process. MCMC and maximum-
likelihood samplers, for example, use previous parame-
ter values to choose more samples, unlike a grid sampler,
which decides them all in advance.

The most trivial possible sampler is implemented as
the test sampler in CosmoSIS: it generates a single set
of input parameters and runs the pipeline on that one set,
saving the results.

For samplers that can work in parallel, like grid sam-
pling or emcee, we provide a parallel “Pool” sampler ar-
chitecture implemented with process-level parallelism us-
ing Message-Passing Interface (MPI). Thread parallelism
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at the sampler level is not possible becase many key cos-
mology codes (like camb) are not thread-safe. Thread
parallelism within modules is supported; for example us-
ing OpenMP.

The following samplers are available in CosmoSIS.
The details of how to call each sampler in a pipeline are
given in section Appendix A.5.

1. The test sampler evaluates the CosmoSIS pipeline
at a single point in parameter space and is useful for
ensuring that the pipeline has been properly config-
ured. The test sampler is particularly useful for
generating predictions for theoretical models, out-
side the context of parameter estimation.

2. The grid sampler is used to sample the CosmoSIS
parameters in a regularly spaced set of points, or
grid. This is an efficient way to explore the likeli-
hood functions and gather basic statistics, particu-
larly when only a few parameters are varied. When
the number of parameters is large, the number of
sampled points in each dimension must necessarily
be kept small. This can be mitigated somewhat if
the grid is restricted to parameter ranges of interest.

3. The maxlike sampler is a wrapper around the SciPy
minimize optimization routine, which is by default
an implementation of the Neader-Mead downhill sim-
plex algorithm.

4. The metropolis sampler implements a straightfor-
ward Metropolis-Hastings algorithm with a proposal
similar to the one in cosmomc, using a multivariate
Gaussian. Multiple chains can be run with MPI.

5. The emcee [28] sampler4 (Daniel Foreman-Mackey,
David W. Hogg, Dustin Lang, Jonathan Goodman)
is a python implementation of an affine invariant
MCMC ensemble sampler [29]. The emcee sampler
simultaneously evolves an ensemble of “walkers” where
the proposal distribution of one walker is updated
based on the position of all other walkers in a com-
plementary ensemble. The number of walkers speci-
fied in the CosmoSIS ini file must be even to allow
a parallel stretch move where the ensemble is split
into two sets (see [28]). The output will be (walkers
× samples) number of steps for each parameter.

6. The multinest [30] sampler5, a multi-modal nested
sampler that integrates the likelihood throughout
the prior range of the space using a collection of live
points and a sophisticated proposal to sample in an
ellipsoid containing them. It produces the Bayesian
evidence in addition to samples from the posterior.

A discussion of the comparative advantanges of nested,
emcee, and metropolis sampling can be found in [31].

4http://dan.iel.fm/emcee/current/
5http://ccpforge.cse.rl.ac.uk/gf/project/multinest/

4.5. User Interface

The primary user interface in CosmoSIS is configura-
tion files in the “ini” format, extended slightly beyond the
standard to allow the inclusion of other files. The ini file
is converted into a DataBlock object to initialize modules.
For convenience all ini file parameters can be overridden
at the command line.

5. Examples

CosmoSIS ships with a selection of demos that illus-
trate its features. In this section we briefly overview them.

5.1. Example One: basic cosmology functions

The first CosmoSIS demo is a simple illustration of
a very basic pipeline, which produces no likelihoods and
just saves some cosmological results. The code can be
run with the command cosmosis demos/demo1.txt and
analyzed with postprocess demos/demo1.txt to produce
plots like Figure 2.

The pipeline run has just two modules - camb and
halofit, and the results, which are saved into a newly
created directory, illustrate the outputs that we extract
from the two of them.

Figure 2: CosmoSIS demo one output plot, showing CMB spectra
output from camb. CMB spectra and a host of other cosmology
theory values are saved from the camb CosmoSIS module for later
pipeline modules to use.

5.2. Example Two: Planck & BICEP2 likelihoods

In demo two we modify demo one by adding real like-
lihoods to the end - for Planck and BICEP2 [32]. Our
pipeline is now: camb-planck-bicep2, and the code can
be run with cosmosis demos/demo2.txt. The Planck
data files are required for this demo to work.

This time our single-sample test sampler reports some
output likelihood values for the pipeline.
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5.3. Example Three: BICEP2 likelihood slice

In demo three we use our first non-trivial sampler: we
take a line sample through the BICEP2 likelihood in the
primordial tensor to scalar ratio r. All we must do to
switch to the grid sampler is change the sampler setting in
the configuration file to grid and tell it how many sample
points to use.

Run this example with cosmosis demos/demo3.txt

and the results in Figure 3 are produced with postprocess

demos/demo3.txt, along with constraints on the r param-
eter.

Figure 3: CosmoSIS demo 3 output plot, showing the constraints
on the primordial tensor fraction r from BICEP2 B-mode data. The
y-axis is the normalized likelihood and the vertical lines show 68%
and 95% contours.

5.4. Example Four: Maximum-likelihood Planck

The fourth CosmoSIS demo uses a numerical opti-
mizer to find the maximum likelihood parameter set for a
set of Planck likelihoods. Run it with cosmosis demos/demo4.txt.

The sampler uses the Nelder-Mead method [33] to find
the peak (though various other methods can be chosen in
the ini file).

The best-fitting parameters are reported at the end,
and since we often use max-like samplers to find a start-
ing point for Monte-Carlo samplers, the CosmoSIS max-
like sampler also outputs an ini file you can use for this
purpose. In fact demo five below starts using an ini file
generated like this.

5.5. Example Five: mcmc’ing JLA supernovae

Demo number five brings us to geniune MCMC sam-
pling, using the emcee sampler. In this pipeline we con-
figure camb to run only background quantities like DA(z),
and then use a JLA likelihood module [34] to sample with.
We include supernova light-curve nuisance parameters.

The post-process plotting code with CosmoSIS gen-
erates plots from MCMCs like the one in Figure 4 using

kernel density estimation to smooth the samples, with a
correction to ensure the right number of samples are under
the 68% and 95% contours (see appendix Appendix F).

Figure 4: An example CosmoSIS constraint on the JLA supernova
data set - all the 1D and 2D constraint plots are generated by Cos-
moSIS; this example (CosmoSIS demo 5) shows constraints from the
JLA SDSS supernova sample on the Hubble parameter h and the su-
pernova magnitude parameter ∆M made using the emcee sampler.

5.6. Example Six: CFHTLenS; a longer pipeline

CFHTLenS is an example of a more complex likelihood
pipeline of the type that will be the norm in the coming
decade. This pipeline is discussed in depth in Appendix
Appendix C; briefly, it has six different modules: camb -
halofit - number-density - shear-spectra - shear-
correlations - likelihood.

Since this is quite a slow process we just run the test
sampler for this demo, and produce (among other results)
the plot in Figure 5. For sampling, the parallel capabilities
of the emcee and multinest samplers are invaluable for
reasonable run times.

5.7. Example Seven: 2D grid sampling BOSS DR9

The grid sampler from example three can grid in arbi-
trary dimensions6, and in parallel if required. In that ex-
ample we used just a single dimension for a slice sample; in
this example we run a 2D grid over BOSS [35] constraints
on the growth rate and σ8, wrapping a CosmoSIS stan-
dard library module that can calculate the linear growth
rate as a function of redshift and for dynamical dark en-
ergy, w(z), cosmologies.

The CosmoSIS post-process program reads the same
ini file used to run the sampling, and thus knows automat-
ically that our output files are grids and that grid plots
rather than MCMC constraint plots should be made. The
2D plot for this example is shown in Figure 6. If we had
sampled over other parameters they would be automati-
cally marginalized over.

6though above about 4 dimensions this becomes unfeasible, since
the number of samples = (ngrid)ndim

7



Figure 5: The CosmoSIS test sampler produces and saves all the cosmological outputs for a set of parameters, and they can immediately be
plotted with the postprocess program. This example from CosmoSIS demo six shows the cosmic shear spectra generated for the CFHTLenS
redshift bins.
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Figure 6: For smaller parameter spaces a grid sampler like the one
shown here may be more suitable than an MCMC. Grid constraints
can also be immediately plotted by the CosmoSIS postprocessor.
This example (from demo seven) shows contraints on Ωm and σ8
from BOSS measurements of fσ8.

6. Sharing CosmoSIS modules

CosmoSIS comes with a collection of generally use-
ful modules for common cosmological inference problems.
We refer to this as the CosmoSIS standard library (CSL),
and it includes the Boltzmann code camb; likelihoods like
Planck and CFHTLenS; some common mass functions
from the Komatsu Cosmology Routine Library7 adapted
into modules; bias parameterizations; source count num-
ber densities; and various other calculations.

Collaborations, projects, and individuals can easily cre-
ate their own libraries of CosmoSIS modules to be used
alongside or in place of the CSL. These might be used to
perform calculations specific to a particular theory or ex-
periment, or for a particular paper. They might augment
the behaviour of CSL pipelines, for example by implement-
ing a new systematic error effect, or replace standard be-
haviour, such as using a new improved mass function in-
stead of a standard one. CSL is a sub-directory of the
CosmoSIS main directory, as are any other libraries used
by collaborations and individuals.

There is exactly one sensible way to organize collec-
tions of modules: in version-controlled repositories. The
repositories used in CosmoSIS are described in this sec-
tion and depicted in Fig. 7.

6.1. Module repositories

The CSL is stored in a publically accessible version
control repository8. Such repositories store the code and
a record of all the changes and additions made to it; a

7http://www.mpa-garching.mpg.de/~komatsu/crl/
8https://bitbucket.org/joezuntz/

cosmosis-standard-library

Figure 7: The structure of CosmoSIS. Purple boxes are repositories,
in bold if they are part of the CosmoSIS package; the others are
per-user. Green boxes contain (collections of) modules.

directory tree on disc corresponds to a remotely stored
repository, and can be kept in sync with it.

Repositories are a convenient way of storing, manag-
ing, and sharing code, and have features for reviewing and
accepting third-party contributions. A typical work pat-
tern is to keep a repository private initially until a paper
is released, and then make the module public alongside it.

Repositories can be written by and made accessible to
individual collaborators, wider teams, or the community
at large.

6.1.1. Creating a new module repository

CosmoSIS comes with a script to automate the pro-
cess of creating new repositories for (groups of) modules
that you want to manage or share. Run the script us-
ing cosmosis/tools/create-repository.py --help for
information on using it.

6.2. Contributing to the standard library

The CSL is not immutable and we very strongly wel-
come contributions of modules of any sort so that the cos-
mology community can make use of code from different
groups and experiments more easily.

We will gladly distribute any module with the CSL as
long as:

• the code authors will give permission for us to dis-
tribute and if necessary modify it.

• any data included with it can be released publically.

• it will be of general use to the community.
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• it meets accuracy, quality, and documentation stan-
dards.

Since most cosmologists are not trained programmers
we do not enforce any specific coding standard or technol-
ogy such as unit testing, but we strongly encourage con-
tributors to write tests along with their code to ensure its
functionality, and provide a mechanism within CosmoSIS
to run all those tests on all modules.

Modules can be documented using the human- and
machine-readable YAML format; a short YAML file in-
cluded with each module describes its name, authorship,
purpose, assumptions, inputs, and outputs.

7. Discussion

The core claim we make in this paper is that a mod-
ular approach is useful and perhaps vital if cosmological
parameter estimation is to remain accessible across the
cosmology community. We have presented CosmoSIS, a
code that embodies a modular architecture. It is a freely
available, flexible and extendable tool for the use of ob-
servers, analysts, and theorists alike.

While the CosmoSIS standard library contains a range
of pre-existing and new modules for parameter estimation
problems, its true value is its extensibility. We strongly
encourage and welcome contributions of existing or new
code wrapped as a module9 and are happy to assist in any
way10.

To take your next steps with CosmoSIS, you can down-
load and install the code and try the examples. After this
there are further instructions in Appendices Appendix A
and Appendix B on going further as a CosmoSIS user and
developer.
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Appendix A. CosmoSIS user’s guide

To run CosmoSIS you:

1. Choose a sequence of modules to form the pipeline.

2. Create a parameter file describing that pipeline.

3. Create a values file describing the numerical inputs
for the parameters or their sampling ranges.

4. Check that your pipeline can run using CosmoSIS
with the test sampler.

5. Choose and configure a sampler, such as grid, maxlike,
multinest, or emcee.

6. Run CosmoSIS with that sampler

7. Run the postprocess command on the output to
generate constraint plots and statistics.

In this section we describe each of these steps in more
detail.

Appendix A.1. Choosing the pipeline

Choosing a pipeline means deciding what cosmological
analysis you wish to perform, and then selecting (or writ-
ing) a sequence of modules that realize that analysis. This
means asking the questions: what data do I want to use
for my constraints? What theory predictions do I need
to compare to that data? What calculations and param-
eters do I need to get that theory calculation? And what
modules do these calculations and likelihood comparisons?

If you are using only one likelihood these questions are
usually quite easy, but if there is more than one some more
thought is required. For example, if you are using only
weak lensing data then you can sample directly over the
σ8 parameter, whereas if you wish to combine with CMB
data you need to start with As and derive σ8 from it.

Typically, the pipeline will produce a likelihood, but
one use of CosmoSIS is to generate the theory predictions
for observables for a discrete set of parameters. Working
within the framework of CosmoSIS enables the user to
exploit tools such as camb to generate predictions.

Every module has a set of inputs and outputs, and
for a pipeline to be valid every input that a module re-
quires must be provided, either by an earlier module in
the pipeline, or by the initial settings of the sampler. Two
modules must also not try to provide the same output, un-
less one is explicity over-writing the other, since this would
imply two different and probably inconsistent methods for
calculating the same thing.

Often you can write a prototypical pipeline without
including various systematic errors or other steps, and then
add these as new modules in the middle of the pipeline as
your analysis develops. For example, in weak lensing we
must include the effect of error in our shape measurement
by scaling the predicted spectra. For an initial analysis,
though, this can be left out. A module performing the
scaling can be inserted later.

Appendix A.2. Defining the pipeline

Once you have done the hard part and decided on a
pipeline then you tell CosmoSIS what you have chosen.
A CosmoSIS pipeline is described in the main parameter
configuration file. Some example demos are included with
CosmoSIS, and modifying one of those is a good place to
start.

A section in the ini file tells CosmoSIS what modules
make up your pipeline, where to find values to use as inputs
to it, and what likelihoods to expect at the end. Here is
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an example from demo six, which analyzes tomographic
CFHTLenS data [36]:

[pipeline]

modules = camb halofit load_nz shear_shear 2pt

cfhtlens

values = demos/values6.ini

likelihoods = cfhtlens

The modules parameter gives an ordered list of the
modules to be run. The values parameter points to a file
discussed in the next section. And the likelihoods tells
CosmoSIS what likelihoods the pipeline should produce
- because cfhtlens is listed in this case a module in the
pipeline is expected to produce a scalar double value in
the likelihood section called cfhtlens-like (actually
the log-likelihood). Other values in the likelihood section
created by the pipeline will not automatically be included
in the likelihood value for the acceptance criterion - this
can be useful for importance sampling, for example.

Each entry in the modules list refers to another section
in the same ini file, which tells CosmoSIS where to find
the module and how to configure it. For example, here is
the section in demo six for the first module in the pipeline,
camb:

[camb]

file = cosmosis-standard-library/boltzmann/camb/camb.

so

mode=all

lmax=2500

feedback=0

The file parameter is mandatory for all modules, and
describes the shared library or python module interface
code. The other parameters are specific to camb, and are
passed to it when the module is initialized. For example,
the lmax parameter defines the maximum ` value to which
the CMB should be calculated11.

Parameter files can be “nested”: the ini file that you
run CosmoSIS on can use the syntax %include other params.ini

to mean that all the parameters defined in other params.ini

should also be used. This is particularly useful for running
a number of similar chains with minor differences.

Appendix A.3. Defining parameters and ranges

In the last section we defined the pipeline and its ex-
pected outputs; in this section we define the inputs. An
entry in the [pipeline] section of the main ini file de-
scribed above was values = demos/values6.ini. This
file specifies the parameter values and ranges that will be
sampled. For example, in CosmoSIS demo four, which
runs a maximum-likelihood sampler on Planck data [27],
this file starts with:

11The parameters used by modules in the standard library
of CosmoSIS are described at https://bitbucket.org/joezuntz/

cosmosis/wiki/default_modules

[cosmological_parameters]

omega_m = 0.2 0.3 0.4

h0 = 0.6 0.7 0.8

omega_b = 0.02 0.04 0.06

A_s = 2.0e-9 2.1e-9 2.3e-9

n_s = 0.92 0.96 1.0

tau = 0.08

omega_k = 0.0

w = -1.0

wa = 0.0

[planck]

A_ps_100 = 152

A_ps_143 = 63.3

A_ps_217 = 117.0

A_cib_143 = 5.0

; ...

The values file is divided into sections, in this case two
of them, cosmological parameters and planck, reflect-
ing different types of information that are stored in the
datablock. Any module can access parameters from any
section. There is no pre-defined list or number of inputs;
if more are required by some modules they can be freely
added.

Some of the values in the file are given a single value,
such as the Planck parameters and Ωk. That indicates
that for this analysis the sampler should not vary these
parameters, but leave them as fixed values. Others, like
Ωm, have a lower limit, starting value, and upper limit
specified. These specifies the range of permitted values for
the parameter and specifies an implicit flat prior.

Different samplers use the starting and limit values dif-
ferently. The test sampler ignores the limits and just uses
the starting value to generate a single sample. MCMC
samplers reject proposed samples outside the range and
initalize the chains at the starting value. And the grid

sampler uses them to specify the range of points that
should be gridded.

Appendix A.4. Test the pipeline

As noted in Section 4.4, the simplest sampler is one
that provides just a single sample. After building a pipeline
the next step is to test it with this trivial sampler. In the
[runtime] section of the parameter file we set the sampler
to [test], and then in the [test] section we configure it:

[runtime]

sampler = test

[test]

save_dir=demo_output_1

fatal_errors=T

In this example we have asked the sampler to save all
the data generated by all the modules in a directory struc-
ture. This is an excellent way to check whether a pipeline
is working - all the important data in the pipeline can be
compared to what is expected.
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Most pipelines, like all codes, will not work the first
time they are run! The test sampler also includes options
to track down causes of errors, and to time code. For con-
venience we also supply a simple (and easily extensible)
program to plot many of the standard cosmological ob-
servables that are saved by the pipeline, to aid debugging.
An example of one such plot from CosmoSIS demo six,
which generates CFHTLenS likelihoods [36], is shown in
Figure 5.

Appendix A.5. Choosing a sampler

Different samplers produce results that are useful in
different regimes.

The grid sampler has a number of advantages - it is
straightforward to post-process, and there is no question
of convergence. It is not however, feasible to use it in more
than 4 dimensions for most problems, since the number of
samples grows too large. For visualizing 1D or 2D slices
in likelihood, however, we recommend it. This can also be
useful at the start of an analysis - keeping all parameters
but one or two fixed to gain an intuition for the problem.

For most standard problems we recommend starting
with the maxlike sampler to find the peak of the prob-
ability distribution, and from there12 running the emcee

sampler.
For all samplers the command line usage is identical:

cosmosis [ini] where [ini] is the user specified ini
file. For samplers which can be run in parallel (grid
and emcee) the command line usage is mpirun cosmosis

--mpi [ini]. For technical reasons the --mpi flag should
be ommitted when running multinest. When using each
of the samplers the CosmoSIS ini file should contain the
[pipeline], [output] and [module] interface sections
together with the following sampler specific options.

When using the test sampler the CosmoSIS ini file
should contain the following

[runtime]

sampler = test

[test]

fatal-errors = [boolean T/F]

save_dir = [output directory]

After execution, output directory will contain any data
products generated during pipeline execution. If fatal-errors
is set, any exceptions will cause the sampler to exit imme-
diately. The pipeline is evaluated at the start values for
each parameter defined in values.ini.

When using the grid sampler the CosmoSIS ini file
should contain the following

[runtime]

sampler = grid

[grid]

nsample_dimension = [integer]

12The CosmoSIS max-like sampler has an option to output a val-
ues file starting from the best-fit point it finds.

where nsample dimension is the number of points sam-
pled in each parameter dimension.

When using the maxlike sampler the CosmoSIS ini
file should contain the following

[runtime]

sampler = maxlike

[maxlike]

tolerance = 1e-3

maxiter = 1000

output_ini = [output ini file]

The tolerance sets the fractional convergence criterion
for each parameter; maxiter is the maximum number of
steps to take before giving up. If output ini is set this
provides an output ini file with the best fit as the central
value. In particular the output ini option is useful to pro-
vide to other samplers that benefit from starting positions
near the global maximum.

When using the metropolis sampler the CosmoSIS
ini file should contain the following

[runtime]

sampler = metropolis

[metropolis]

covmat = covmat.txt

samples = 100000

Rconverge = 0.01

nsteps = 100

samples is the maximum number of samples which will be
generated. The run can stop earlier than this if multiple
chains are run and the Rconverge is set - this is a limit on
the Gelman Rubin statistic. The proposal is along eigen-
vectors of the covariance matrix, rotated to avoid back-
tracking. Of the covariance matrix is not specified in the
covmat argument a default one will be generated based on
the ranges specified in the values file.

When using the emcee sampler the CosmoSIS ini file
should contain the following

[runtime]

sampler = emcee

[emcee]

walkers = 200

samples = 100

start_points = start.txt

nsteps = 50

The number of walkers must be at least 2 ∗ nparam + 1,
but in general more than that usually works better (de-
fault = 2); samples is the number of steps which each
walker takes (default = 1000) and sample points are out-
put every nsteps (default = 100). The starting points
for each walker in the chain may be specified in the ini
file using start points = start.txt where start file.txt
contains (number of walkers, number of params) values. If
this start file is not given then all walkers are initialized
with uniform random numbers from the range of values in
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values.ini. For practical Monte Carlo the accuracy of the
estimator is given by the asymptotic behaviour of its vari-
ance in the limit of long chains. Forman-Mackney et al.
advocate the following: Examining the acceptance frac-
tion which should lie in the range 0.2-0.5. Increasing the
number of walkers can improve poor acceptance fractions.
Estimating the autocorrelation time which is a direct mea-
sure of the number of evaluations of the posterior probabil-
ity distribution function required to produce independent
samples of the target density.

Appendix A.6. Running CosmoSIS

Regardless of the sampler or other parameter choices,
CosmoSIS is run through a single executable invoked on
the configuration file. MPI parallelism is enabled at the
command line flag (in combination with any mpirun com-
mand required), and any parameter in the configuration
files can be over-written using another flag (this feature is
mainly useful for debugging).

Appendix A.7. Processing outputs

A post-processing program for sampler output, simply
called postprocess uses the output of chain and grid sam-
plers to generate 1D and 2D marginalized constraint plots
and numbers. You call it on the same ini file that was
used to generate the chain in the first place, so that any
type of chain (grid, mcmc, or any others that we add) are
analyzed with the same executable.

An example output of the postprocess command on
the emcee sampler is shown in Figure 4, and from the grid
sampler in Figure 6.

Appendix B. Developers’s Guide

Most users of parameter estimation codes go on to
modify and write their own code. Making this easy is
the whole point of CosmoSIS.

There are several ways you can develop within Cos-
moSIS:

• Modify modules in an existing pipeline, for example
to study new physics.

• Add modules that do different physical calculations
than what is currently available.

• Add a new likelihood to the end of a pipeline to
combine new datasets.

• Insert a module into the middle of a pipeline, for
example to model a new systematic error.

• Start from scratch creating a new pipeline using the
CosmoSIS structure and samplers.

• Add a new sampler and test it on existing problems.

Appendix B.1. Creating new modules

If no existing module does the calculation you need,
or if you wish to wrap an external piece of existing code,
then you can create a new module for it. Each new module
should live in its own directory.

Unless a module is exceedingly simple it is best for
new modules to be in two parts - the part that does the
calculation, and the part that interfaces with CosmoSIS.
In the case of wrapping existing code the former usually
exists already and only the latter needs to be created.

To write a module it suffices to write the three func-
tions described in Section 4.2. This involves thinking care-
fully what the inputs and outputs will be to this module,
and deciding which of the inputs will definitely be fixed
throughout a run (for example, a path to a data file, a red-
shift at which an observation has been made, or a choice
of which model to use), and which are those which may at
some point be varied throughout a chain (such as cosmo-
logical parameters).

Appendix Appendix C shows an example of a simple
module.

Appendix B.1.1. Module form

Modules implemented in python are connected to Cos-
moSIS using a single python file that implements the func-
tions described below. Modules implemented in a com-
piled language (C, C++, or Fortran) must be compiled
into a shared library, which can be loaded dynamically
from python. This simply involves compiling all files and
linking them together with the -shared flag. Examples
can be found in the CosmoSIS standard library.

Appendix B.1.2. setup

The setup function is called once, at the start of a
run when a pipeline is being created. It is a chance to
read options from the CosmoSIS parameter files, allocate
memory and other resources, and load any data from file.
If a distributed parallel sampler is used this may mean
being called by each processor separately.

The setup function is passed a datablock object which
contains all the information from the parameter file. In
particular, options set in the section of the ini file cor-
responding to this particular module have a specifically
named section; modules need only look at this section.
The API for accessing the data from the configuration file
is described in Appendix Appendix E.

The setup function can return any arbitrary configu-
ration information, which is then passed back to the ex-
ectue function below. This mechanism means that the
same module can be run twice with different options (for
example, the same likelihood module can be used with two
different data sets).

Appendix B.1.3. execute

The execute function is the main workhorse of a mod-
ule - it is called each time the sampler runs the pipeline
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on a new set of parameters. The execute function takes
two parameters, one containing the parameters from the
sampler and any data from modules earlier in the pipeline,
and one containing the configuration information from the
setup function.

A typical module reads some scalar parameters or vec-
tor data from the block, and then performs some calcula-
tions with it depending on the choices made in the ini file.
It then saves new scalar or vector data back to the block.
Appendix Appendix E describes the API for loading and
saving values.

Appendix B.1.4. cleanup

A cleanup function is run when the pipeline is finished,
and should free any resources loaded by the setup func-
tion. In many cases this can be completely empty. This
function is passed the configuration information from the
setup function.

Appendix B.1.5. New likelihoods

Any module can, as well as doing any other calcula-
tions, save values into the likelihoods section. This sec-
tion has a special meaning - the samplers will search in it
for any likelihoods that they are told to find in the param-
eter file. If the parameter file says, for example:

[pipeline]

likelihoods = hst planck

then the sampler will look for hst like and planck like

in the likelihoods section.

Appendix B.2. Modifying existing modules

When you want to test a new theory it is usually easiest
to take an existing module and modify it to implement the
new theory. For example, the CosmoSIS module to cal-
culate the growth function could be changed to implement
a modified gravity scenario.

Modifying an existing module to extend it by add new
calculations, rather than modifying existing ones, is usu-
ally a sub-optimal choice, since new calculations can be
better integrated with other modules if they are in a sep-
arate module. Consider writing a new module instead.

You would take these steps to modify an existing mod-
ule:

• Copy the existing module to a new location.

• Version control your new module.

• Modify the main module science code.

• Modify the interface code if any new inputs or out-
puts are required.

Appendix B.3. Inserting modules

If you want to make a modification to a quantity from a
physical effect that a pipeline does not currently consider,
then you can insert a new module in the middle of the
pipeline to implement it.

For example, it is known that baryons have a feedback
effect on the matter power spectrum which is important for
observations probing non-linear cosmic scales. One might
insert a module after e.g., the Halofit module, to modify
the non-linear matter power to account for this effect, so
that subsequent modules would use the modified power.

Inserted modules can be created as described in Section
Appendix B.1, but there is one additional consideration.
The CosmoSIS DataBlock (see Section 4.3) makes a dis-
tinction between saving new values and replacing existing
ones. Modules that modify existing data need to use the
replace operations described in Appendix Appendix E
instead of the put ones.

Appendix B.4. Adding samplers

New samplers can be easily added to CosmoSIS if they
can be called from python; this includes any sampler us-
able as a library (e.g. with a few simple functions that
can be called to run the sampler with an arbitrary likeli-
hood function) in C, C++, or Fortran, as well as python
samplers.

Interfaces to samplers are implemented by subclassing
a Sampler base class, in the cosmosis/samplers subdi-
rectory. The subclasses must implement three methods:

• config, which should read options from the ini file,
and perform any required set up. The superclass
instance has an instance of the ini file used to create
the run and the instantiated pipeline itself.

• execute, which should perform a single chunk of
sampling, and saving the result - superclass meth-
ods can be used for the latter. CosmoSIS will keep
re-running the execute function until the sampler
reports it is converged.

• is converged, which should return True if the sam-
pling should cease. A simple sampler might always
return True, but a more complex sampler can exam-
ine the chain so far and use real convergence diag-
nostics.

Parallel samplers inherit instead from the ParallelSam-
pler superclass, which as well as Sampler’s features main-
tains a pool of processes, each with their own instance of
the pipeline, and an is master method to decide if the
given process is the root one.

Appendix C. Worked example

In this appendix we show a worked example of a Cos-
moSIS pipeline, and go into detail about one of the mod-
ules in it.
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Our example will be CosmoSIS demo number six,
which calculates the likelihood of the CFHTLenS tomo-
graphic data set given some cosmological parameters.

Appendix C.1. Overview

The CFHTLenS observed data vector is a set of mea-
surements of ξ+ and ξ−, correlation functions of the cosmic
shear. We have measuremnts ξij± (θk) for each pair of red-
shift bins13 (i, j) and for a range of angular scales θk.

The steps we need to take to calculate the likelihood
from the cosmological parameters are therefore:

1. Calculate the linear matter power spectrum P (k, z)
across the desired redshifts

2. Calculate the non-linear power spectrum from the
linear

3. Calculate the redshift distribution of the survey

4. Perform the Limber integral to get the shear angular
power spectra.

5. Integrate the angular power spectra with Bessel func-
tions to get the angular correlation function.

6. Get the likelihood of the CFHTLenS measurements
given these theory correlation functions.

This pipeline is shown in Figure C.8.

Figure C.8: A schematic of the CFHTLenS pipeline. The basic
pipeline is on the left, and in the three alternatives on the right we
illustrate replacing (red), appending (purple) and inserting (green)
modules.

13Since CFHTLenS is a photometric experiment the redshifts are
approximate, so the actual redshift distribution in each bin is differ-
ent from the nominal one. We must account for this in the analysis.

Appendix C.2. Modifications

Figure C.8 also shows various changes we might wish to
make to this pipeline; making it easy to implement these
changes is a core goal of CosmoSIS.

The simplest example is replacing one module with an-
other, in this case changing the method used to calculate
non-linear power. Provided each module supplies the same
outputs, subsequent modules can be left unchanged by this
replacement.

We can also straightforwardly attach new likelihoods
to the end of the pipeline, illustrated here by adding the
Planck likelihood. This likelihood requires new nuisance
parameters, which can be supplied by the sampler simply
by adding them to the input values file.

Finally, we might insert a module into the middle of the
pipeline, in this case to test for a systematic error. If we
decided, for example, to model errors in the photometric
redshifts determined by CFHTLenS then we could modify
and replace the n(z) used in the spectra.

Appendix C.3. Pipeline implementation

Each box in Figure C.8 is a single CosmoSIS mod-
ule. Each does a single calculation and gets a relatively
small collection of inputs from the DataBlock, and puts
its outputs there once they are calculated.

The configuration file that runs this module needs to
define the sampler to be used, just the test sampler in this
case:

[runtime]

sampler = test

[test]

save_dir=demo6_output

fatal_errors=T

and also the modules to be run and the likelihoods
extracted:

[pipeline]

modules = camb halofit load_nz shear_shear 2pt

cfhtlens

values = demos/values6.ini

likelihoods = cfhtlens

The value parameter lists a file where the values and
ranges of the parameters to be sampled are specified. Each
module to be run is described elsewhere in thre configura-
tion file, in some cases with extra options:

[camb]

file = cosmosis-standard-library/boltzmann/camb/camb.

so

mode=all

lmax=2500

feedback=0

[halofit]

file = cosmosis-standard-library/boltzmann/halofit/

halofit_module.so

...
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Appendix C.4. Module implementation

The simplest module in this pipeline is the one that
performs the integration with Bessel functions to convert
angular power spectra to correlation functions. In this
section we will describe the interface that connects this
module to CosmoSIS in detail.

This particular module is implemented in python, but
similar (if slightly more complex) considerations apply to
the other supported languages.

Appendix C.4.1. Preamble

We will not delve here into the implementation of the
main workhorse of this module; we simply import it into
python. Note that we have separated the main functional-
ity of the code from the part that connects it to Cosmo-
SIS; this make it easy, for example, to use the same code
in other programs easily

import cl_to_xi

import numpy as np

from cosmosis import option_section, names as

section_names

Appendix C.4.2. Initial setup

The setup function is run once when the pipeline is
created. Options from the configuration file are passed
into it as the options object, which is a DataBlock. The
option section is a shorthand for the section that applies
to this particular module (modules can in principle find
out what other modules are to be run also).

The various required options (which concern the angu-
lar ranges at which to calculate correlations) are read here
and the range constructed.

Anything returned by this function will be passed to
the execute function laster. In this case that means a
dictionary, config, that contains the vector theta, over
which to compute the correlation functions.

def setup(options):

config = {}

n_theta = options[option_section, "n_theta"]

theta_min = options[option_section, "theta_min

"]

theta_max = options[option_section, "theta_max

"]

theta_min = cl_to_xi.arcmin_to_radians(

theta_min)

theta_max = cl_to_xi.arcmin_to_radians(

theta_max)

theta = np.logspace(np.log10(theta_min), np.

log10(theta_max), n_theta)

config["theta"] = theta

return config

Appendix C.4.3. Execution

This function is called each time the pipeline is run
with new cosmological parameters. The block input con-
tains the parameter-specific information: the values pro-
vided by the sampler itself, and the calculation results
done by previous modules. The config input contains
fixed data passed from the setup function (though this
could in principle be modified, for example to cache re-
sults).

It reads the inputs from the pipeline section shear cl,
which are the ell range ell provided by the modules that
came before it, and the bin 1 1, etc., giving the angular
power spectra. The results are saved into shear xi.

def execute(block, config):

thetas = config["theta"]

n_theta = len(thetas)

section = section_names.shear_cl

output_section = section_names.shear_xi

ell = block[section, "ell"]

nbin = block[section, "nbin"]

block[output_section, "theta"] = thetas

block.put_metadata(output_section, "theta", "

unit", "radians")

for i in xrange(1,nbin+1):

for j in xrange(1,i+1):

name = "bin_%d_%d"%(i,j)

c_ell = block[section, name]

xi_plus, xi_minus = cl_to_xi.

calculate_xi(ell, c_ell,

thetas)

block[output_section, "xiplus_%

d_%d"%(i,j)] = xi_plus

block[output_section, "ximinus_

%d_%d"%(i,j)] = xi_minus

return 0

Appendix C.4.4. Clean up

In python there is rarely any clean up to be done, since
memory is managed automatically. In C or Fortran you
might deallocate memory here.

def cleanup(config):

return 0

Appendix D. Architectural Details

Appendix D.1. DataBlocks

DataBlocks are organized into sections, named cate-
gories of information. For example, cosmological parameters,
cmb cl and intrinsic alignment parameters can all be
sections. A number of common sections are pre-defined in
CosmoSIS, but they are simple strings and new ones can
be arbitrarily created. A datablock may be thought of as a
dictionary mapping from a pair of strings (a section name
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and a specific name for data in that section) to a generic
value.

For example, the cosmological parameters section
would typically contain omega m, h0, and other scalar dou-
bles, and the cmb cl section contains an integer array ell

and double arrays TT, TE, EE, and so on.
Native APIs that act on datablocks exist for C, For-

tran, C++, and Python to read or write the data stored
in the block. The interfaces to modules (see below) call
this API, as do the samplers when they create the block
in the first place.

There are also introspection functions that work on
datablocks so that modules can peform context-dependent
calculations (for example, we might check for a galaxy bias
grid b(k, z) and if one is not found revert to a single scalar
b value).

Appendix D.2. Samplers

Samplers are connected to CosmoSIS by sub-classing
from a base class which provides access to the pipeline and
to configuration file input, and to output files. Subclasses
implement methods to config (read options from the ini
file and perform setup) execute (run a chunk of samples)
and test is converged to see if the process should stop.
Adding a new sampler is straightforward and we would
welcome contributions.

Appendix E. API

The CosmoSIS application programming interface (API)
defines a way for a module to save and load data from a
block designed to collect together all the theoretical pre-
dictions about a cosmology. The API is fully documented
on the CosmoSIS wiki14.

The API can handle the following types of data:

• 4-byte integers

• 8-byte floating-point (real) values

• 4-byte boolean (logical) values

• ASCII strings

• 8 + 8 byte complex numbers

• vectors of 4-byte integers

• vectors of 8-byte floats

• vectors of 8 + 8-byte complexes

• n-dimensional arrays of 4-byte integers

• n-dimensional arrays of 8-byte floats

• n-dimensional arrays of 8 + 8-byte complexes

14https://bitbucket.org/joezuntz/cosmosis/wiki

Any value stored in a block is referenced by two string
parameters, a section defining the group in which it is
stored, and a name of the value. For each type in each
supported programming language there are get, put and
replace functions. There are also a number of additional
utility functions to check whether values exist in the block,
and similar tasks.

In this section we show a handful of available API calls
to demonstrate their general structure.

Appendix E.1. C

Most C functions return type DATABLOCK STATUS, an
enum. For each type listed above there are function to
get, put, and replace values. For the scalar types there
are also alternative get functions where a default value can
be supplied if the value is not found. In the case of 1-d
array there are two get functions, one to use preallocated
memory and one to allocate new space, which the module
is reponsible for disposing of. For the n-d arrays there
are also functions to query the number of dimensions and
shape of the array.

The function to get an integer, for example, has this
prototype:

DATABLOCK_STATUS

c_datablock_get_int(c_datablock* s, const char*

section, const char* name, int* val);

Appendix E.2. Fortran

The Fortran functions closely follow the C ones, and
use the iso c binding intrinsic module to define types.
For example:

function datablock_get_double(block, section, name,

value) result(status)

integer(cosmosis_status) :: status

integer(cosmosis_block) :: block

character(*) :: section

character(*) :: name

real(c_double) :: value

Appendix E.3. Python

While get int and similar values are present in the
python API, the most straightforward mechanism to load
and save values is the idiomatic python get and set syntax:

block["section_name", "value_name"] = value

All the python functions are methods on a DataBlock
object.

Appendix E.4. C++

In C++ the get, put, and replace functions are all
templated methods on a DataBlock object, so the same
method is used for all data types, for example:

template <class T>

DATABLOCK_STATUS put_val(std::string section, std::

string name, T const& val);
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Appendix F. Improving 2D KDE

Kernel density estimation (KDE) is a method for smooth-
ing a collection of MCMC samples to produce a better
constraint plot. It can be applied in any number of dimen-
sions, and can be thought of as placing a smooth Gaussian
(or other) kernel atop each MCMC sample and using the
sum of all these Gaussians as the likelihood surface. The
main choice to be made is the covariance matrix (or just
width in one dimension) of the kernel, which is typically
taken as some scaling factor times the covariance matrix
of the samples.

An occasional objection to KDE is that the recovered
contours drawn on the smoothed distribution do not typ-
ically contain the correct fraction of samples (68%, 95%,
etc.) that they should do if the samples and the contours
accurately represented the same posterior surface.

The CosmoSIS post-processing code implements uses
KDE with a minor improvement when used in 2D. The 2D
likelihood surface is generated as in normal KDE. The con-
tours drawn on them, though, are not chosen with refer-
ence to the probability volume beneath the smoothed con-
tours, but rather by interpolating so that the correct num-
ber of samples from the MCMC is beneath them. That is,
the KDE provides the shape of the contours, but the sam-
ple count provides their size. We find that this procedure
improves the fidelity of the recovered contours.

Appendix G. Parameter consistency & alternate
specifications

In cosmology, as in most parameter estimation prob-
lems, there are a number of different parameterizations one
can use to specify the space. The choice affects how easy
it is to specify parameter priors, and how efficent sampling
in the space can be (for most algorithms parameters with
roughly Gaussian posteriors make for better sampling).

In some cases deducing the “derived” parameters from
the specified ones requires complex calculations (for exam-
ple, getting σ8 from As) but in other cases the relations
are relatively simple arithmetic.

CosmoSIS includes a module with an algorithm for
the latter case which allows one to specify any sufficient
combination of parameters, and deduce the rest, no matter
which combination they are in. The steps of this algorithm
are:

1. Specify a comprehensive collection of relations be-
tween parameters as strings, for example omega m =

omega c+omega b, omega c = omega m-omega b, etc.
Call the number of relations n.

2. Parse the left-hand side of the relations to get a set
of all the parameters to be calculated.

3. Initialize a dictionary of all these parameters with
the special value NaN (not-a-number) for each of
them.

4. For any parameters which are provided by the user,
initialize with the specified value.

5. Iterate at most n times:

(a) Evaluate each relation in the collection, with
the current parameters using the python eval

function with the parameter dictionary as the
namespace. There are three cases:

• If the result is NaN, do nothing - this means
at least one input to the relation was un-
specified (NaN).

• If the result is not NaN and the current
parameter value is NaN, then we have a
newly calculated parameter. Update the
dictionary with this value.

• If the result is not NaN and the current pa-
rameter value is not NaN, then we have re-
calculated the parameter. Check that this
new calculation is the same as the old one.
If not, raise an error: the model is over-
specified.

(b) If there are no NaN parameter left then we have
finished; save all the parameters.

6. If we evaluate all the relations n times without calcu-
lating all parameters then there are some we cannot
calculate - the model is under-specified and we raise
an error.
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