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Abstract

In this technical note we present technical details on various aspects of the framework
introduced in [1] aimed at extracting effective Higgs couplings in the h → 4` ‘golden
channel’. Since it is the primary feature of the framework, we focus in particular on
the convolution integral which takes us from ‘truth’ level to ‘detector’ level and the
numerical and analytic techniques used to obtain it. We also briefly discuss other
aspects of the framework.

1 Introduction

It is well known that the h→ 4` (4` = 2e2µ, 4e, 4µ) ‘golden channel’ is a powerful means of study-
ing the Higgs couplings to neutral electroweak gauge bosons and various methods have long been
proposed for studying it [2–6] and more recently [7–36]. Though ‘truth’ level (or generator) studies
of the golden channel give a good approximate estimate of the expected sensitivity to the Higgs
ZZ, Zγ, and γγ couplings [36], when analyzing data obtained at the LHC (or future colliders) a
detector level likelihood which accounts for the various detector effects is necessary. Since generally
detector level likelihoods are obtained via the use of Monte Carlo methods, it becomes difficult
to obtain the full multi-dimensional likelihood for the 4` final state. Typically one needs to fill
large multi-dimensional templates that require an impractical amount of computing time. There
are also potential collateral binning and ‘smoothing’ side-effects often associated with these meth-
ods. In the case of the golden channel this necessitates the use of kinematic discriminants which
‘collapse’ the fully multi-dimensional likelihood into two or perhaps three detector level observ-
ables [31]. This approach is normally taken to facilitate the inclusion of detector effects, but is not
optimal when fitting to a large number of parameters simultaneously [16,37]. This is unfortunate
in the case of the golden channel where in principle there are twelve observables which can be
used to extract a large number of parameters at once, including their correlations. It would be
satisfying and useful to have a framework which is free of these issues and capable of utilizing all
available information in the four lepton final state at detector level.

This is accomplished in our framework [1] by performing an explicit convolution of the gen-
erator (‘truth’) level probability density, formed out of analytic expressions for the signal and
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background differential cross sections, with a transfer function which encapsulates the relevant
detector effects. This can be represented schematically as follows,

P ( ~XR| ~A) =

∫
P ( ~XG| ~A)T ( ~XR| ~XG)d ~XG. (1)

Here we take ~X to represent the full set of center of mass variables, of which there are twelve in
the golden channel, to be discussed more below, and ~A represents some set of lagrangian parame-
ters [1]. The transfer function T ( ~XR| ~XG) takes us from generator (G) level to reconstructed (R)
(or detector) level observables and represents the probability of reconstructing the observables
~XR given the generator level observable ~XG. It is treated as a function of ~XR which takes ~XG as
input. As will be described more below, once the integration in Eq.(1) is performed we must then
normalize over all twelve reconstructed level observables to obtain the detector level probability
density function (pdf ). After performing this 12-dimensional integration and normalizing, we are
left with a pdf from which we construct an un-binned twelve-dimensional detector level likelihood
which is a continuous function of the effective couplings (or Lagrangian parameters) and takes as its
input, up to twelve reconstructed, detector-level center of mass observables. In the current imple-
mentation [1] we average over the four production variables to reduce the systematic uncertainties,
thus obtaining an eight-dimensional likelihood in terms of just decay observables. However, this
step is in principle not necessary.

We have performed the integration in Eq.(1) for both the h→ 4` signal as well as the dominant
qq̄ → 4` background (computed in [18, 34, 38]) and emphasize that it has not been done via
Monte Carlo methods, but instead by a combination of numerical and analytical techniques to
be discussed in detail below. With these detector level pdfs in hand we can go on to perform
fast and accurate multi-parameter extractions on data obtained at colliders in the 4` channel as
demonstrated in [1] as well as in recent CMS studies [39]. In this technical note we present details
on various aspects of how the convolution integral is performed and briefly discuss other aspects
of the framework. Further details can be found in accompanying studies [1,18,34,36,38,40] as well
as [39].

2 From ‘Truth’ Level to ‘Detector’ Level

We now describe in more detail how the convolution integral in Eq.(1) is performed. We first
review the twelve center of mass variables present in the 4` system before describing the various
numerical and analytic techniques used in the integration which takes us from ‘truth’ level to
detector level.

2.1 Center of Mass Observables

The twelve variables are discussed in more detail in [1, 17, 18, 34, 36], but are listed here for
convenience as they will be used extensively in what follows. The invariant masses are defined as:

•
√
ŝ ≡ M4` ≡ mh – The invariant mass of the four lepton system or the Higgs mass in case

of signal.

• M1 – The invariant mass of the lepton pair system which reconstructs closest to the Z mass.

• M2 – The invariant mass of the other lepton pair system and interpreted as M2 < M1. This
condition holds as long as

√
ŝ . 2MZ .
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These invariant masses are all independent subject to the constraint (M1 +M2) ≤
√
ŝ and serve

as the most strongly discriminating observables between different signal hypothesis as well as
between signal and background. Note also that the 4e/4µ final state can be reconstructed in two
different ways due to the identical final state interference. This is a quantum mechanical effect
that occurs at the amplitude level and thus both reconstructions are valid. The definitions M1

and M2 remain unchanged however. The angular variables are defined as:

• Θ – The production angle between the momentum vectors of the lepton pair which recon-
structs to M1 and the total 4` system momentum.

• θ1,2 – Polar angle of the momentum vectors of e−, µ− in the lepton pair rest frame.

• Φ1 – The angle between the plane formed by the M1 lepton pair and the ‘production plane’
formed out of the momenta of the incoming partons and the momenta of the two lepton pair
systems.

• Φ – The angle between the decay planes of the final state lepton pairs in the rest frame of
the 4` system.

We group the angular variables as follows ~Ω = (Θ, cos θ1, cos θ2,Φ1,Φ). These angular variables
are useful in aiding to distinguish different signal hypothesis and in particular between those
with different CP properties, as well as in discriminating signal from background. Lastly, we have
production variables associated with the initial partonic state four momentum:

• ~pT ≡ (pT cosφ4`, pT sinφ4`) – The momentum in the transverse direction of the 4` system.

• Y – Defined as the motion of the 4` system along the longitudinal direction.

• φ – Defines a global rotation of the event in the 4` rest frame.

2.2 Changing Variables for Background pdf

Beginning from Eq.(1) we first discuss the construction of the background detector level pdf. The
construction of the signal will be discussed separately as there is a subtle, but important, difference
in performing the convolution. Since there are no undetermined parameters in the background
the generator and detector-level (un-normalized) differential cross sections are given simply by
PB( ~XG) and PB( ~XR) respectively and the convolution can be written as,

PB( ~XR) =

∫
PB( ~XG)T ( ~XR| ~XG)d ~XG. (2)

The set of variables ~X ≡ (~pT , Y, φ, ŝ,M1,M2, ~Ω) exhausts the twelve degrees of freedom (note
that ~pT has 2 components and ~Ω contains 5 angles) available to the four (massless) final state
leptons. The differential volume element is given by d ~X = dŝdM2

1dM
2
2d
~Ω · d~pTdY dφ.

To perform this convolution with the transfer function we must first transform to the basis in
which the detector smearing of the lepton momenta is parameterized. This requires that we first
transform from the basis of the twelve center of mass variables defined in Sec. 2.1 to the three
momentum basis for the four final state leptons. This can be represented as follows,

PB( ~XR) =

∫
PB( ~XG)T ( ~XR| ~XG)d ~XG

=

∫
PB( ~XG)T (~PR|~PG)

|J~P
G|
|J~P

R|
d~PG, (3)
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where the differential volume element is now given by,

d~PG =
4∏

i=1

d~p G
i , (4)

and ~p G
i is the generator level three momentum of the i’th lepton. The |J~P

G| is the Jacobian

associated with the twelve dimensional change of variables from ~XG → ~PG in the differential

volume element. The |J~P
R| arises from the change of variables ~XR → ~PR in the transfer function

(remembering T ( ~XR| ~XG) is treated as a function of ~XR) which we loosely also refer to as a
Jacobian, as we will do for all subsequent change of variables to follow. Ideally to find these
Jacobian factors one should construct the 12 × 12 matrix associated with these transformations
and then calculate the determinant. However, since these transformations are highly non-linear
and must be performed for each point in phase space, this is untenable analytically. We therefore
implement a numerical algorithm to calculate these factors for each phase space point which will
be discussed in more detail in Sec. 2.4.

Since we make the assumption that detector smearing will only affect the component of the
lepton momentum parallel to the direction (pi||) of motion and not the two components perpen-
dicular to the direction of motion (~pi⊥) (which are zero at generator level) we find it convenient
to decompose the lepton three momenta ~pi in terms of pi|| and ~pi⊥. Note that this assumption is
equivalent to assuming angular resolution effects due to detector smearing can be neglected, which
is an excellent approximation for the LHC detectors [41,42]. In the (pi||, ~pi⊥) basis only the trans-
fer function associated with pi|| is non-trivial while the one associated with the perpendicular
components can be represented simply as a delta function for each perpendicular direction, thus
allowing for trivial integration over the eight ~pi⊥ variables.

The differential volume element can now be written as,

d~PG =

4∏
i=1

d~p G
i =

4∏
i=1

d~pi
G
⊥dpi

G
|| . (5)

We then use the property of the transfer function that it is explicitly parametrized in terms of the
ratio of reconstructed and generator level momentum components along the direction of motion
to again change variables as follows,

PB( ~XR) =

∫
PB( ~XG)T (~PR|~PG)

|J~P
G|
|J~P

R|

4∏
i=1

d~pi
G
⊥dpi

G
||

=

∫
PB( ~XG)T (~c |~PG)

|J~P
G|
|J~P

R|
|J~cG|
|J~cR|

4∏
i=1

dcid~pi
G
⊥, (6)

where we have defined ci = pi
R
|| /pi

G
|| and ~c = (c1, c2, c3, c4). The components of the Jacobians |J~cR|

and |J~cG| which take us from pi
R
|| → ci and pi

G
|| → ci variables are obtained trivially as |1/piG|| | and

|ci/piG|| | for the transfer function (which is now a function of ~c) and the differential volume element

respectively. Finally, we use the fact that c1c2 = (MR
1 /M

G
1 )2 and c3c4 = (MR

2 /M
G
2 )2 to eliminate

c2 and c4 and make a final change of variables to the basis in which we perform the explicit four
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dimensional integration,

PB( ~XR) =

∫
PB( ~XG)T (~c |~PG)

|J~P
G|
|J~P

R|
|J~cG|
|J~cR|

4∏
i=1

dci (7)

=

∫
PB( ~XG)T (~c |~PG)×

|J~P
G|
|J~P

R|
|J~cG|
|J~cR|
|J ~M

B | · dc1dc3dM2
1
G
dM2

2
G
,

where in the first line in Eq.(7) we have implicitly used the delta functions in the transfer function

to perform the eight dimensional integration over ~pi
G
⊥. The Jacobian |J ~M

B | is obtained analytically

from the change of variables c2, c4 →MG
1

2
MG

2
2

by observing that,

(pG1 + pG2 )2 = MG
1

2
,

(pG3 + pG4 )2 = MG
2

2
,

(pR1 + pR2 )2 = (c1p
G
1 + c2p

G
2 )2 = MR

1
2
,

(pR3 + pR4 )2 = (c3p
G
3 + c4p

G
4 )2 = MR

2
2
. (8)

Assuming that the leptons are massless (an excellent approximation for muons and electrons) and
expanding out the equations we arrive at,

MR
1

2
= 2c1c2p

G
1 p

G
2 = c1c2M

G
1

2
,

MR
2

2
= 2c3c4p

G
3 p

G
4 = c3c4M

G
2

2
, (9)

From here we solve for the smearing factors c2 and c4,

c2 =
1

c1

MR
1

2

MG
1

2 ≡
1

c1
R12

c4 =
1

c3

MR
2

2

MG
2

2 ≡
1

c3
R34. (10)

from which the Jacobian elements are easily computed as,

dc2 = − 1

c1

MR
1

2

MG
1

4dM
G
1

2

dc4 = − 1

c3

MR
2

2

MG
2

4dM
G
2

2
. (11)

This gives finally for |J ~M
B |,

|J ~M
B | =

1

c1

MR
1

2

MG
1

4

1

c3

MR
2

2

MG
2

4 . (12)

We thus see in Eq.(7) that what started out as a twelve dimensional integral has been reduced to
a much more manageable integration over four variables. The details and validation of this four
dimensional integration will be presented in Sec. 3, but first we discuss the change of variables in
signal case.
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2.3 Changing Variables for Signal pdf

To construct the detector level signal pdf, which is now a function of the effective couplings ~A, we
follow the same procedure as for the background through the second line in Eq.(6) to obtain,

PS( ~XR| ~A) =

∫
PS( ~XG| ~A)T (~c |~PG)×

|J~P
G|
|J~P

R|
|J~cG|
|J~cR|

4∏
i=1

dcid~pi
G
⊥. (13)

In contrast to the background however, we now perform the following change of variables,

PS( ~XR| ~A) =

∫
PS( ~XG| ~A)T (~c |~PG)×

|J~P
G|
|J~P

R|
|J~cG|
|J~cR|
|J ~M

S | · dŝGdc1dM2
1
G
dM2

2
G
,

where again we have implicitly used the delta functions in the transfer function to perform the

eight dimensional integration over ~pi
G
⊥. Here |J ~M

S | is the Jacobian obtained analytically in the

change of variables c2, c3, c4 → ŝG,M2
1
G
,M2

2
G

by using Eq.(10) and the following relation for ŝG,

ŝG =
∑
i>j

c−1i c−1j MR
ij

2
. (14)

This allows us to write down the transformation matrix as,

M̂ =



∂MG
1

2

∂c2

∂ŝG

∂c2
0

0
∂ŝG

∂c3

∂MG
2

2

∂c3

0
∂ŝG

∂c4

∂MG
2

2

∂c4


, (15)

from which the Jacobian can be obtained by,

|J ~M
S | =

1

|det(M̂)|
. (16)

As discussed in more detail in [1], the ‘truth’ level ŝG spectrum for the signal is given by a delta
function1 ∝ δ(ŝG − m2

h) (where mh is the generated Higgs mass), enabling us to perform the
integration over dŝG. Thus, we have for the final signal detector level pdf,

PS( ~XR| ~A) =

∫
PS( ~XG| ~A)T (~c |~PG)×

|J~P
G|
|J~P

R|
|J~cG|
|J~cR|
|J ~M

S | · dc1dM2
1
G
dM2

2
G
∣∣∣
ŝG=m2

h

. (17)

We note that the delta function in ŝG introduced additional complications which are computa-
tionally non-trivial when including detector resolution effects. This is because the delta function
in ŝG places an additional constraint when performing the M2

1
G

, M2
2
G

integration which must be
properly taken into account. We discuss these issues in more detail in Sec. 3.7, but first we show

how the 12× 12 jacobians J
~P
G and J

~P
R are computed numerically.

1Note that the delta function approximation is taken for the recently discovered ∼ 125 GeV Higgs boson, but
need not be imposed if a new heavy scalar with a large width is discovered in the future. In this case, the ŝ spectrum
can be treated similarly to the background case.
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2.4 Calculation of the J
~P
G and J

~P
R Jacobian Factors

We now turn to the 12 × 12 Jacobians J
~P
G and J

~P
R which take us from the center of mass basis

to the ‘lepton-smearing basis’. More explicitly these Jacobians define the twelve-dimensional (for
known lepton masses) transformation,

~X ≡ (~pT , Y, φ, ŝ,M1,M2, ~Ω) =⇒ ~P ≡ (p1||, p2||, p3||, p4||, ~p1⊥, ~p2⊥, ~p3⊥, ~p4⊥). (18)

Ideally one should simply work out the 12 × 12 matrix and calculate the discriminant. However,
since it involves many boosts and trigonometric functions to perform this non-linear transforma-
tion, it is not possible to obtain analytically. Furthermore, since the components of ~P in principle
depend on the particular point in ~X this transformation must be obtained for each point in phase
space. Therefore we take another approach and calculate the factor numerically.

The Jacobian factors have a simple geometrical interpretation; they can be interpreted as
the ratio of infinitesimal volume elements before and after the change of basis. This is illustrated
schematically in Fig. 1 where V and V ′ represent the infinitesimal volume elements around a given
point in the two different coordinate systems ~X and ~P respectively. Note that even though the
lepton momentum basis is dependent on the particular point in ~X, this does not affect the final
calculation of the Jacobian since:

• As we scan through the different ~X and transform them to the basis ~P , the parallel com-
ponent directions in ~P line up during the integration. Thus, we can use the same basis for
each point in ~X during the integration over pi||.

• The freedom of choice in the perpendicular components is irrelevant since the delta function
in ~pi⊥ constrains these directions to be fixed. Without this constraint, one would need to
carefully line up the perpendicular directions during the convolution integral.

• The lepton vector basis ~P between different points in the ~X basis are related by simple
rotations which leave the volume, and thus the Jacobian, invariant.

These are the key features which make the integration possible and allow us to, point by point
in the phase space, numerically build an infinitesimal 12-dimensional cube with volume V in
the basis ~X and then transform it to the basis ~P where the volume V ′ of the resulting hyper-
parallelepiped is calculated. Calculating the volume of this 12-dimensional parallelepiped can be
done using various readily available algorithms [43] allowing us to obtain the volume V ′. We
implement a simple algorithm where the hyper-parallelepiped is transformed into a hyper-cube
with equal volume V ′ as follows:

• Choose any vector and pair it with a second vector.

• Subtract out the parallel component of the first vector from the second vector.

• Take a third vector, subtract out the parallel components of the first vector,
as well as that of the modified second vector.

• Repeat the process for all remaining sides of the parallelepiped until a hyper-‘cube’
can be constructed.

• Product of length of all the edges now gives the volume V ′.

7



V

V’

J = V’ / V

Figure 1: The Jacobian factor can be thought as the ratio of an infinitesimal volume around the
given point of interest in the two different bases ~X and ~P labeled by V and V ′ respectively. Lines
on the left in the ~X basis correspond to lines on the right in the ~P basis. The volume V is
translated into the volume V ′ on the right. The Jacobian factor the particular point is therefore
J = V ′/V .

This is equivalent to calculating the determinant of the 12× 12 transformation matrix, but con-
ceptually easier to visualize.

This calculation of this Jacobian factor can be validated with toy distributions. For any given
test distribution f( ~X), we can generate events in two different bases and compare the distribution
with one weighted by the Jacobian factor. To see this consider,

f( ~X)d ~X = f( ~X)|JP̃|d~P , (19)

where JP̃ represents either J
~P
G or J

~P
R . Starting from Eq.(19) one can generate events from the

left hand side and right hand side separately and then compare the two datasets. They should be
identical if the Jacobian has been calculated correctly. Since the Jacobians arise from the change
of variable and do not depend on other details of the integration, one has the freedom to choose
different toy integrands to validate the calculation of this Jacobian factor. The toy function used
is as follows:

f( ~X) =


1, if 100 GeV <

√
ŝ < 140 GeV,

4 GeV < M1,2 < 100 GeV, |~pi| < 100 GeV

|Y | < 4, |~pT | < 100 GeV

0, otherwise

(20)

The result of the validation is shown in Fig. 2 where we have decomposed the four lepton system
transverse momentum into its components as ~pT = (pT cosφ4`, pT sinφ4`). We see excellent agree-
ment between events generated in the two different basis for all twelve variables, indicating that
the calculation is performed correctly.
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Figure 2: Validation of the 12-dimensional Jacobian using the ‘toy’ function in Eq.(19). Events
are generated uniformly in both bases, and compared to each other by weighting those from the
lepton basis ~P by their respective 12 × 12 Jacobian factor. We see excellent agreement for all
variables of interest with any differences due to statistical fluctuations.
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3 Integration Over Lepton Momenta

We now turn to how the integration over the lepton momenta is performed in Eq.(7) and Eq.(17).
The integral is performed by numerical methods based on Gaussian quadrature [43]. We proceed
by first scanning over a grid in the two di-lepton mass directions (M2

1 and M2
2 )2 and at each grid

point integrating over the remaining ci smearing factors. Over the grid of mass directions, it is
natural that contributions to the final integral are concentrated around certain generator (‘truth’)
level configurations. A strategy is developed to maximize the precision of this procedure during
the convolution integration which we now discuss.

3.1 Scan Directions

We observe that in the background case the two mass directions are not correlated. Variation
in one mass direction is not dependent on the other mass direction. Therefore a scan in the two
mass directions (along M1 and M2) is a sufficiently good choice. In the signal case, however,
the correlation becomes much stronger due to the narrow width of the resonance and scanning
along these directions is no longer optimal. By constraining the mass of the four lepton system,
a negative correlation is introduced to the two di-lepton masses. It is thus advantageous to pick
a “diagonal direction” as the direction of scanning over the grid. This is done by defining ‘mass
scan variables’ as follow,

m2
+ = M2

1 +M2
2 +RmM1M2,

m2
− = (M1 −M2)

2, (21)

where Rm is formed using reconstructed level di-lepton masses as,

Rm ≡
mR

13
2

+mR
14

2
+mR

23
2

+mR
24

2

mR
12m

R
34

, (22)

and mR
ij are the invariant masses formed by reconstructed lepton i and lepton j. Reconstructed

masses are fixed and taken as input in the integration process. By doing the scan in these directions,
we obtain an additional Jacobian factor which is easily calculated to be,

Jm = (Rm + 2)(M2
1 +M2

2 ). (23)

An example of grid lines along this modified direction is shown in Fig. 3.

3.2 Non-Uniform Grid Spacing

In addition to using the mass scan directions discussed above, we also use a non-uniform grid for
further optimization. Due to the nature of the contributions concentrated around a certain ‘truth
level’ parameter point, we choose the grid to be more dense in the center. For a uniform grid, one
can write the location x̄i of each grid point as,

x̄i = xo + δxi,

δxi ≡
∆x

Ngrid

(
i− 1

2
Ngrid

)
, (24)

2In what follows we will no longer explicitly write the superscript G for generator level observables which serve
as our variables of integration. We will however continue explicitly write the superscript R for reconstructed level
variables which are fixed quantities in the integration procedure.
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Figure 3: Contour of m+ (left) and m− (right) for one example event as a function of M1 and
M2. The contour for m+ changes from event to event, but is always roughly diagonal.

where xo is the center point of the scan within the grid (which we attempt to place near the ‘true’
point), ∆x is the distance between the leftmost point and rightmost point of the grid, and Ngrid

is the number of grid points.
When allowing for non-uniform grid spacing, Eq.(24) for the location of the grid point must

be modified. The grid spacing can be characterized by an “attractor” parameter AS . With this
attractor we now define the new modified grid point locations x̃i as,

x̃i = xo +
δxi(|ASδxi|+ 1)

|AS∆x|/2 + 1
. (25)

The linear spacing is now modified to be quadratic, with center point and end points the same
as before. Larger |AS | values result in denser grid spacing near the center with linear spacing
recovered when AS = 0 giving x̃→ x̄. This behavior is illustrated in Fig. 4. How the central point
xo is chosen will be discussed in Sec. 3.4.

3.3 Modified 2nd Order Newton-Cotes Formula

With the modification of grid spacing, it is necessary to derive the equivalent of Newton-Cotes
formula [43] for a non-uniform grid. We work with 2nd order closed integration where to each
interval we assign three points to which we fit a second-order polynomial and then obtain the
integral (area). Furthermore, the area can be written as a weighted sum of the points used in the
fit. This can be seen by considering three points located at −δ, 0, and +δ with height f(−δ), f(0)
and f(+δ) respectively. In the case of uniform gird spacing the area (of the function f(x)) estimator
can then be written as the following [43],

I(−δ,+δ) = 2δ
f(−δ) + 4f(0) + f(δ)

6
. (26)

For non-uniform grid spacings, Eq.(26) needs to be re-derived. Since the integral does not depend
on the absolute value of the x-axis coordinates, we can take the liberty to pick the center point
at zero, and the other two located at x = −δ− and x = δ+ for the left and right endpoints of the

11
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Figure 4: Demonstration of the mass grid attractor. Different sets of grid points are plotted in
each line with varying mass grid attractor strength. With attractor strength set to zero, we recover
uniform spacing (bottom), while large values of attractor strength causes points to be concentrated
near the center (top).

interval respectively. Integrands at the different points can be written as f(−δ−), f(0), f(δ+). For
non-uniform spacing the integral estimator is modified to,

I(−δ−, δ+) =
1

3
A(δ3+ + δ3−) +

1

2
B(δ2+ − δ2−) + C(δ+ + δ−), (27)

where A,B and C are the coefficients of the 2’nd order polynomial which is used in the fit to the
points in a given interval and defined as,

y(x) = Ax2 +Bx+ C. (28)

In terms of the three points in the interval the coefficients are obtained via the matrix equation, A
B
C

 =
1

δ+δ−(δ+ + δ−)

 δ− −δ+ − δ− δ+
δ2− δ2+ − δ2− −δ2+
0 δ+δ−(δ+ + δ−) 0

 f(δ+)
f(0)
f(δ−)

 . (29)

Together Eq.(27) and Eq.(29) define the final reweighing coefficients to use for the non-uniform
gird integration. When δ− = δ+ they reduce to the linear formula in Eq.(26). The analogous
two-dimensional formula can be trivially obtained by using Eq.(27) and Eq.(29) multiplicatively
on the two dimensions.

3.4 Central Grid Point Optimization

During the mass scan, we do not know a priori where the location of the maximum contribution to
the final integral will be. If we do not center our mass grid scan close to the maximum contribution
point, there is a chance part of the contributions will be missed. It is especially crucial when we
consider non-uniform grid spacings to increase efficiency in mass integration.

We therefore employ a simple numerical algorithm to find where the maximum contribution
point is. It is outlined as follows:

12



• For the background we start from a best-guess value of reconstructed masses MR
1 and MR

2

while choosing a reasonable window size.

• For signal we choose the best-guess value to be (
√
ŝ/ŝR)MR

1 and (
√
ŝ/ŝR)MR

2 again choosing
a reasonable window size.

• We put a coarse grid in this window centered at the current best guess value and evaluate
the integrand (integrals of c1 and c3) at each point.

• The integration is carried out repeatedly with the central point updated each time to the
point which gives the largest contribution.

• We then reduce the window size by a fraction and repeat the process.

• The process terminates when the point with the largest contribution lies within the 5% most
central grid points after which we adjust the grid window.

• The final best guess value is used as the center point for constructing the mass grid.

During the integration we also keep track of the RMS of the integral contribution in units of
number of grid points. If the RMS is found to be less than four grid points in either direction, the
integration is repeated with a reduced window. This ensures us of a grid center that is sufficiently
close to the ‘truth level’ point with maximum contribution.

A demonstration of the whole process on one example signal event is shown in Fig. 5. Each
bin in the plot is one grid point which has been scanned over and the color indicates the inner
integral from that given bin. On the left we have the usual scanning directions (along M1 and M2)
and on the right we show the scan along the modified diagonal directions (along m+ and m−) as
explained in Sec. 3.1. In the top two panels the scanning is done without implementing the mass
grid attractor and without the central grid point optimization. In the middle two panels the mass
grid attractor is turned on, but without central grid point optimization. In the bottom panels both
the mass grid attractor and central grid point optimizations are turned on. With all optimizations
‘turned on’ the amount of grid points with significant contributions is greatly enhanced with
decreasing correlation between the two scanning directions. This provides us increasing precision
and stability during the integration.

3.5 Differential Cross Section Expansion for Background

We now turn to the integration over the smearing factors (ci) in Eq.(7) and Eq.(17). As will be
discussed in more detail in the next section, we wish to further control precision by applying an
adaptive integration method for the integrals over these variables. In the background case, at
each grid point for the masses, there is a two-dimensional integral over c1 and c3 which must be
performed. Since a brute force recursive integration method in two dimensions would take too
much computing resources, we start by making a few observations.

We first note that in the final integration expression for the background (Eq.(7)), the transfer
function can be factorized into terms for the first lepton pair and terms for second lepton pair. This
assumes the transfer function is a product of functions for each lepton individually which is
a very good approximation for the CMS and ATLAS detectors [41, 42] once standard lepton
selection criteria are imposed3. Furthermore, the range of smearing factors is considered to be

3If the approximation of sufficiently separated leptons does not hold, the integration procedure can not be carried
out as formulated and must be altered. We do not explore these complications associated with leptons with very
small separations and can avoid them by simply imposing a minimum m`` cut between any two leptons.
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Figure 5: Demonstration of mass grid attractor and scan directions during the integration. Each
bin is one grid point, where the color indicates the value of the inner integral. In the top two plots
the attractor strength is set to zero. In the middle plots we have chosen a moderate attractor
strength while in the bottom plots the center grid point optimization is turned on. Plots on the
left are along the scanning directions M1,M2 while on the right we show the modified directions
m+, m−. 14



narrow since the probability that the lepton momentum is smeared far from its ‘true’ value is very
small [40–42]. This allows us to write the rest of the integrand, apart from the transfer function,
as a series expansion in smearing parameters (about the ‘true’ value of one) as follows,

FB( ~XR) ≡ PB( ~XG)|J~P
G|
|J~cG|
|J~cR|
|J ~M

B |

≈ FB

∣∣
c1=c3=1

+
∂FB

∂c1

∣∣∣∣
c1=c3=1

(c1 − 1) + ...

≡ B0 +B1(c1 − 1) +B3(c3 − 1) +B11(c1 − 1)2

+ B13(c1 − 1)(c3 − 1) +B33(c3 − 1)2 + ..., (30)

where ci = 1 corresponds to the ‘truth level’ value for the smearing factors and the differential
cross sections are implicitly absorbed into the Bij coefficients. We can then factorize the inner
integral into a sum of products of single integrals. Thus we have,

PB( ~XR) =
1

|J~P
R|

∫
PB( ~XG)T (~c|~PG)|J~P

G|
|J~cG|
|J~cR|
|J ~M

B |dc1dc3dM2
1dM

2
2

=
1

|J~P
R|

∫ (
PB( ~XG)T (~c|~PG)|J~P

G|
|J~cG|
|J~cR|
|J ~M

B |dc1dc3
)
dM2

1dM
2
2 ,

where the inner integral can now be expanded as,∫
PB( ~XG)T (~c|~PG)|J~P

G|
|J~cG|
|J~cR|
|J ~M

B |dc1dc3

≈ B0

∫
T12(~c|~PG)(c1 − 1)0dc1

∫
T34(~c|~PG)(c3 − 1)0dc3

+ B1

∫
T12(~c|~PG)(c1 − 1)1dc1

∫
T34(~c|~PG)(c3 − 1)0dc3

+ B3

∫
T12(~c|~PG)(c1 − 1)0dc1

∫
T34(~c|~PG)(c3 − 1)1dc3

+ B11

∫
T12(~c|~PG)(c1 − 1)2dc1

∫
T34(~c|~PG)(c3 − 1)0dc3

+ B13

∫
T12(~c|~PG)(c1 − 1)1dc1

∫
T34(~c|~PG)(c3 − 1)1dc3

+ B33

∫
T12(~c|~PG)(c1 − 1)0dc1

∫
T34(~c|~PG)(c3 − 1)2dc3 + ...

≡ B0F
(0)
12 F

(0)
34 +B1F

(1)
12 F

(0)
34 +B3F

(0)
12 F

(1)
34

+ B11F
(2)
12 F

(0)
34 +B13F

(1)
12 F

(1)
34 +B33F

(0)
12 F

(2)
34 + ... , (31)

and we have defined the integrals,

F
(n)
ij ≡

∫
Tij(~c|~PG)(ci − 1)ndci. (32)

The transfer functions for the first and second lepton pairs are denoted as T12(~c|~PG) and T34(~c|~PG)
respectively. Thus we see that the two-dimensional integral over the smearing parameters has been
reduced to a product of single integrals which are computationally easier to control. With this
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procedure one can increase the expansion order if higher precision is required. The Bij coefficients

in front of each F
(n)
ij term can be obtained by finding an approximate two-dimensional polynomial

to the target function over the whole integration range. In the current implementation it is done
by picking a few points as representative and finding a polynomial that goes through all the points.

3.6 Recursive Integration

The integration over smearing factors c1 and c3 is done by a recursive algorithm [43] which provides
a handle on precision. The algorithm begins by first splitting the integration range into multiple
segments and then applying the recursive algorithm to each segment with some pre-specified
tolerance level ε. More explicitly the recursive algorithm proceeds as follows:

• Apply second order Newton-Cotes quadrature to the whole range to obtain a first order
approximation for the integral which we label I0.

• We then split the segment in half and apply the approximation on each of the half-segments
to obtain a second estimate I1 + I2.

• Next we estimate integration error δI by comparing I0 and I1 + I2.

• If |δI| < ε, we terminate the algorithm and use I1 + I2 as the integral.

• Otherwise, we repeat the procedure on each of the two half-segments and require that each
satisfy a tolerance level of ε/2.

This procedure ensures that the overall error is at most ε, assuming that the error estimation is
reasonable, which when the function does not vary too rapidly is a good approximation. This is
aided by the fact that the integral is split into smaller intervals where the function varies less and
then a sum is taken over all the intervals.

To assess whether the estimate of the error on the integration is reasonable, we first suppose
the step size is small enough that there is not a drastic change of landscape inside each integration
segment. Since the estimator we use is a fourth order method, the difference between the actual
integral and the estimator can be written as [43],∫

segment

f(x)dx = I0 + kh4 +O(h5), (33)

where h is the size of segment and k is a constant characteristic of the method and independent
of h. Applying the same formula to the total of the two half-segments, we arrive at the following,∫

segment

f(x)dx = I1 + I2 + 2k

(
h

2

)4

+O(h5). (34)

Assuming that the term inside O(h5) is negligible, by comparing the two formulae we obtain an
estimate of integration error to be,

δI ≡ 2k

(
h

2

)4

=
1

7
(I1 + I2 − I0) . (35)

In Fig. 6 we show an example of the integration using the adaptive method on two test functions. In
the left panel we perform integration on a second-order polynomial f(x) = 1

75x
2, where the method

is exact. In this case the grid spacings are always the same. In the right panel the integrand is
modified to be f(x) = 1

75x
2+e−

1
2
x2

. We can see that in places where functions are rapidly varying,
a greater number of points are used.
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Figure 6: Illustration of recursive integration. On each plot, the line shows true function, and dots
are points evaluated for the integration. In the left panel we perform integration on a second-order
polynomial f(x) = 1

75x
2, where the method is exact and therefore, the grid spacings are always

the same. In the right panel the integrand is modified to be f(x) = 1
75x

2 + e−
1
2
x2

. We can see that
in places where the function is rapidly varying, more points are used.

3.7 Signal Case Complications

As discussed in previous sections, in the signal case an anti-correlation between the two lepton
pairs is induced due to the presence of the narrow-width resonance. We can see the effect on the
di-lepton mass due to the narrow-width approximation in Fig. 7. In both plots the inner integral
is plotted for the exact same event as a function of M1 and M2. On the left we do not enforce
narrow-width approximation while on the right we require that

√
ŝ = 125 GeV. We see the shape

is strongly elongated for the case with narrow-width approximation.
By using a delta function to model width of resonance, there is one less dimension to integrate

over as compared to the background case. While this makes it easier computationally in one
respect, an additional complication arises since we have to integrate along a trajectory in which ŝ
is kept constant. Specifically, for a given value of c1 we have to calculate the corresponding value
of the other smearing parameter such that M1, M2, and ŝ are held constant. It is easy to keep the
di-lepton masses constant since the integral over c1 is the innermost integral and,

c1c2M
2
1 = mR

12
2
, (36)

which allows us to simply choose c2 = mR
12

2
/M2

1 c1 in order to satisfy the necessary conditions
(and similarly for the second lepton pair). Satisfying the last condition where ŝ is kept constant
involves a less trivial calculation. We begin from the equation,∑

i>j

c−1i c−1j mR
ij
2

= ŝ2, (37)

from which we obtain a quadratic equation for c3 given by,(
R34m

R
14

2
+ c21R34R12m

R
24

2
)
c23 − (m2

h −M2
1 −M2

2 )c1c3 −
(
mR

13
2

+ c21R12m
R
23

2
)

= 0, (38)
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Figure 7: Demonstration of the effect on di-lepton masses due to narrow-width approximation. In
both plots the inner integral as a function of M1 and M2 is plotted for the exact same event. On
the left we do not enforce narrow-width approximation while on the right we require that

√
ŝ =

125 GeV. We see shape is strongly elongated for the case with narrow-width approximation.

where R12 = M2
1 /m

R
12

2
and R34 = M2

2 /m
R
34

2
. One condition where a solution exists for c3 given

c1 value is as follows,[(
m2

h −M2
1 −M2

2

)2 − 4R34R12m
R
14

2
mR

23
2 − 4R12R34m

R
13

2
mR

23
2
]
c21

−4R34m
R
14

2
mR

13
2 − 4R2

12R34m
R
24

2
mR

23
2
c41 ≥ 0, (39)

which is a quadratic function of c21. We first make a few observations based of Eq.(39). First of
all, the quadratic coefficient is negative definite, indicating that the parabola is curving down-
wards. The constant term is also negative definite. If there exists a positive solution for c21, both
solutions are positive. We also require that the linear coefficient is positive which ensures that
if there is a solution, there exists a positive solution. To summarize, the two conditions that
need to be met in order for solutions of the smearing parameters to exist that will meet all mass
requirements are given by,(

m2
h −M2

1 −M2
2

)2 − 4R34R12m
R
14

2
mR

23
2 − 4R12R34m

R
13

2
mR

23
2

> 8R12R34m
R
13m

R
14m

R
23m

R
24 (> 0). (40)

The first equality is the necessary condition for Eq.(39) to be true combined with the condition
that the linear coefficient is to be positive. If these conditions are met, all allowed solutions form
an ellipsoidal contour in the positive quadrant of the c1 − c3 plane. Some example ellipses are
shown in Fig. 8.

Due to the shape, we need to integrate different regions of the ellipse separately. To do this
we “slice” this ellipse into four regions. First, two points are picked by calculating the average
value of c1 between the leftmost point of the ellipse and the smaller of two points where dc3/dc1 =
0. Similarly we can also define another point using the rightmost point and the larger of two
points where dc3/dc1 = 0. The four regions are thus defined by the two horizontal segments
between the two aforementioned points and two vertical segments on the two sides. An example is
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Figure 8: Examples of c1 − c3 ellipses for a few mass grid points on an example event are shown
in the left panel where each contour represents one mass grid point. Dots represent possible
solutions to all mass constraints. For each grid point all possible solutions form an ellipsoidal
shape, as expected. In the right we show the slicing of ellipse while doing the integral. The four
extreme points (left, right, up, down) are calculated and the curve is divided into four regions
by the red lines going vertically between the extreme points. In order to avoid artificial infinities
during integration we integrate along the horizontal direction for the two segments in the middle
and vertically upwards along c3 for the two segments on the side shown by blue arrows.

shown in Fig. 8. We integrate the horizontal segments normally over c1. For the vertical segments
we flip the role of c1 and c3 and integrate along the c3 direction, adjusting c1 so that all mass

requirements are met. This is necessary as the signal Jacobian factor |J ~M
S | diverges at the edge of

ellipse where the direction of curve approaches vertical.
The complete validation of the full convolution procedure can be found in [1, 39,40].

4 Constructing Likelihoods and Maximization

To obtain the final likelihoods we must first normalize the detector level differential cross sections
to obtain a proper pdf. Once a pdf is obtained we can go on to construct the final likelihoods with
which multi-dimensional parameter extraction can be perfumed. In this section we describe how
the normalization is performed and sketch how parameter extraction can be done.

4.1 Normalization

As described in the previous section, it is necessary to normalize the pdf properly in order to
construct the likelihoods. The normalization can be calculated by integrating the P ( ~XR| ~A) over
reconstructed level configurations ~XR:

N( ~A) ≡
∫
P ( ~XR| ~A)d ~XR. (41)

The evaluation of the convolution integral P ( ~XR| ~A) is relatively computationally intensive and
it is not possible to repeat it many different times to get a numerical average of the overall
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normalization via Monte-Carlo methods. It is also non-trivial to calculate it via numerical methods
as there are 12 dimensions and there is no simple way to cut down the dimensions. We can, however,
evaluate the normalization differently and avoid the numerically intensive part as follows,

N( ~A) =

∫
P ( ~XR| ~A)d ~XR

=

∫ (∫
P ( ~XG| ~A)T ( ~XR| ~XG)d ~XG

)
d ~XR

=

∫
P ( ~XG| ~A)

(∫
T ( ~XR| ~XG)d ~XR

)
d ~XG

≡
∫
P ( ~XG| ~A)ε̄( ~XG)d ~XG, (42)

where in the last step we define the “average efficiency” given a certain generator level configuration
as ε̄( ~XG). It is the average efficiency a certain generator-level event will survive all analysis cuts.
This way we avoid the computationally difficult parts and a straightforward Monte-Carlo algorithm
is sufficiently precise. In Fig. 9 we show an example of convergence of the normalization calculation
as a function of sample count and CPU time. We can reach a precision of 0.1% in a few CPU-hours
of run time for all components.

4.2 Signal Likelihood for Arbitrary Model Point

Due to the simple (polynomial) dependance of the signal differential cross section on the lagrangian
parameters, it is possible to pre-calculate different pieces of the detector level likelihood separately,
and later combine them in a trivial way to get the final detector-level likelihood. The polynomial
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dependence (quadratic in the simplest case [1]) allows us to write the generator-level differential
cross section in the form

PS( ~XG| ~A) =
∑
i

fi( ~A)P i
S( ~XG), (43)

where the index i runs over different terms in the expression (see [1] for description of the different
terms) and fi( ~A) is some polynomial function of the lagrangian parameters. The convolution
integral can then be done on pieces P i

S( ~XG) which are independent of ~A and later combined
together:

P ( ~XR| ~A) =

∫
P ( ~XG| ~A)T ( ~XR| ~XG)d ~XG

=

∫ ∑
i

fi( ~A)P i
S( ~XG)T ( ~XR| ~XG)d ~XG

=
∑
i

(∫
P i
S( ~XG)T ( ~XR| ~XG)d ~XG

)
fi( ~A). (44)

In the case of current analysis where we have calculated up to leading order in these couplings,
the differential cross section is a second-order polynomial. The same structure applies to the pdf
normalization, which is also a polynomial of parameters we want to measure:

N( ~A) =

∫
P ( ~XG| ~A)ε̄( ~XG)d ~XG

=
∑
i

(∫
P i
S( ~XG)ε̄( ~XG)d ~XG

)
fi( ~A). (45)

Once we have the coefficients pre-calculated, it’s straightforward and fast to combine into final
likelihood for arbitrary values of parameters of interest. We can obtain the background likelihood
in a similar manner except the overall normalization does not depend on any undetermined pa-
rameters which simples the procedure. The final signal plus background can then be constructed
as described in [1, 39,40].

4.3 Maximization of Likelihood and Parameter Extraction

There are various ways one can go on to perform parameter extraction once the likelihood is
constructed. One can for example simply scan the likelihood for each parameter point as done
in [39]. We instead implement a maximization procedure based on the MINUIT [44] function
minimization code which is incorporated into our framework in order to find the maximum of
the likelihood. More specifically, once the likelihood L( ~A) for a particular dataset is obtained, the
maximization procedure is utilized in order to obtain the value of the parameters which maximizes
the likelihood, which we label Â. Thus Â represents the most likely value of ~A for a given dataset
which is schematically represented as,

∂L( ~A)

∂ ~A

∣∣∣
~A=Â

= 0. (46)

One important feature of the procedure is that the computationally intensive component of eval-
uating the likelihood only needs to be done for the events in the final dataset used in the fit
for a given experiment. Therefore the computationally expensive pieces can be calculated on the
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Figure 10: ‘Arrow plots’ showing the convergence to the point which maximizes the likelihood
starting from a random initial point. In these the tail of the arrow is at the initial point while the
head is at the end point to which the fit converges. On the left we see that only one end point is
found for all initial values. On the right we see the appearance of two endpoints which depend on
the initial value indicating the appearance of multiple maxima.

computing grid prior to the analysis of the data, and the fits for the parameter extraction itself
is then completed within a few seconds. This allows for a great deal of flexibility when fitting the
undetermined parameters.

In practice the maximization in Eq.(46) is done by starting from some random initial point
in the parameter space and utilizing the built in algorithm in the MINUIT minimization code to
efficiently find the maximum. Of particular importance in this step is ensuring that the point in
parameter space that this procedure converges to is actually the global maximum and not simply
a local maximum, as the statistical fluctuations of a particular dataset can lead to the appearance
of multiple local maxima in the likelihood. This can lead to biases or imprecise estimations of the
undetermined parameters.

We illustrate this effect in Fig. 10 where we show ‘arrow plots’ for an example two-dimensional
fit to two different datasets containing the same number of events and same ‘true’ value for the
undetermined parameters. We show a large number of arrows whose tails begin at some initial
point in a two dimensional parameter space and whose heads point to the final point reached in the
maximization scan. On the left we see the same endpoint is reached regardless of the initial starting
point indicating there is a clear global maximum. On the right we see two separate accumulations
to which the arrow heads point indicating two local maxima. We have carefully accounted for this
effect in our maximization procedure and find a very high convergence rate in general (& 99%)
to the global maximum of the likelihood. Various demonstrations of the parameter extraction can
be found in [34,36] at generator level and inin [39,40] for detector level.

To quantify the uncertainty on the extracted value Â we perform a large number of pseudo-
experimentsN each containingN events and perform the maximization for each pseudo-experiment.
A distribution for Â is obtained with a spread σ and average value Ā. The true value Ao will sit
within some interval of the extracted value Â for a given pseudo experiment and as the number
of pseudo experiments is taken to infinity the average value of Â will converge to the true value;
i.e. Ā → Ao as N →∞. Further discussion of the statistical methods used can be found in [39,40].
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5 Summary

We have described various technical details of a novel analysis framework introduced in [1] to
measure properties of the newly-discovered bosonic state at ∼ 125 GeV. This analysis method
allows us to fully utilize the power of the golden channel by constructing a continuous likelihood
function in all observables, which is also a continuous function of the parameters of interest. We
have emphasized in particular the details involved in performing the convolution integral which
takes one from ‘truth’ level observables to detector level observables. We have also briefly discussed
other aspects of the framework.

This framework is distinctively different compared to other established methods which utilize
templates of discriminants. These template methods offer many advantages such as simplicity and
faster analysis set up time, but are more dependent on availability of Monte-Carlo samples and
the choice of discriminant. Our framework on the other hand, though more complex and requiring
(arguably) more computing resources prior to analyzing data, offers great speed, flexibility, and a
more complete picture on the extracted results when actually performing the parameter extraction
on data. Complete validations of the framework can be found in [39,40]. With this framework one
can then go on to perform a variety of multi-parameter extractions in the h → 4` channel with
data obtained at the LHC and other future colliders.
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