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Abstract

Precision measurements of the Higgs boson properties at the LHC provide relevant constraints

on possible weak-scale extensions of the Standard Model (SM). In the context of the Minimal Su-

persymmetric Standard Model (MSSM) these constraints seem to suggest that all the additional,

non-SM-like Higgs bosons should be heavy, with masses larger than about 400 GeV. This article

shows that such results do not hold when the theory approaches the conditions for “alignment

independent of decoupling”, where the lightest CP-even Higgs boson has SM-like tree-level cou-

plings to fermions and gauge bosons, independently of the non-standard Higgs boson masses. The

combination of current bounds from direct Higgs boson searches at the LHC, along with the align-

ment conditions, have a significant impact on the allowed MSSM parameter space yielding light

additional Higgs bosons. In particular, after ensuring the correct mass for the lightest CP-even

Higgs boson, we find that precision measurements and direct searches are complementary, and may

soon be able to probe the region of non-SM-like Higgs boson with masses below the top quark pair

mass threshold of 350 GeV and low to moderate values of tan β.
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I. INTRODUCTION

The recent discovery of a scalar resonance at the LHC, with a mass of about 125 GeV

and properties resembling that of the Higgs boson of the Standard Model (SM) [1, 2], has

revived interest in particle physics models in which a SM-like Higgs boson arises in a natural

way. The Minimal Supersymmetric extension of the SM (MSSM) is an example of such a

model [3–6]. The Higgs sector of the MSSM consists of two Higgs doublets with tree-level

quartic couplings which are related to the squares of the weak gauge couplings. The tree-

level Higgs boson mass spectrum consists of two neutral CP-even Higgs scalars, h and H

(with mh ≤ mH), a CP-odd scalar, A, and a charged Higgs pair, H±. The quartic scalar

couplings receive quantum corrections whose leading contributions are proportional to the

fourth power of the top-quark Yukawa coupling [7]. For top squark masses below a few TeV,

an upper bound on the lightest CP-even Higgs boson mass of about 135 GeV is obtained [8].1

The observed Higgs boson mass is comfortably below this predicted upper bound.

For large values of the supersymmetric particle masses, the properties of h are determined

by mA and the third generation supersymmetric spectrum that governs the size of the

quantum corrections to the quartic couplings. When mA ≫ mh, one finds that mH ∼ mA ∼
mH± , with corresponding squared-mass differences of O(m2

Z). Hence, all non-standard Higgs

bosons are heavy and decouple from the low-energy effective theory at the weak scale, which

then naturally consists of the light CP-even Higgs boson, h, with SM-like couplings, as

suggested by current measurements. This is the well known decoupling limit of the MSSM

Higgs sector.

In contrast, for values of mA ∼ O(mh), the coupling of h to bottom-quark pairs tends to

be enhanced with respect to the SM value. Since the coupling to bottom-quarks controls the

width of the Higgs boson, such an enhancement leads to an increase of the Higgs width and

therefore a reduction of the branching ratios of the Higgs decay into neutral and charged

gauge bosons. Such a reduction can become significant for values of mA below 300 GeV.

Hence, precision studies of the lightest CP-even Higgs boson properties can lead to significant

1 The same upper bound is obtained in the presence of explicit CP-violating phases in the supersymmetry

breaking mass parameters, which affect the Higgs sector via radiative corrections. In this paper, we will

simplify our analysis by neglecting these CP-violating phases, in which case the neutral Higgs bosons of

the MSSM are CP eigenstates [9].
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constraints on the allowed parameter space of the theory. The large increase of the Higgs

boson width may be avoided if the properties of h are SM-like, which can occur either via

the decoupling limit [10–12] or the so-called alignment limit [11–14].

The alignment limit arises when one of the CP-even Higgs bosons, when expressed as a

linear combination of the real parts of the two neutral Higgs fields, lies in the same direction

in the two Higgs doublet field space as the two neutral Higgs vacuum expectation values.

This alignment does not in general depend on the masses of the non-standard Higgs bosons.

In the MSSM the alignment limit arises due to an accidental cancellation, i.e. not due to

any of the usual symmetries of the MSSM, between tree-level and loop-corrected effects

resulting from new structures in the potential that are absent at tree-level [14]. However,

this cancellation occurs quite generically for some value of the ratio of neutral Higgs vacuum

expectation values, tan β, which depends critically on µ, the supersymmetric Higgs mass in

the potential, and At, the stop mixing parameter. In particular, alignment at lower values

of tanβ typically requires µ and At to be larger than the characteristic mass scale for the

top squarks [14, 15], leading to important phenomenological constraints in the MSSM.

One can also search directly for the heavier Higgs bosons of the MSSM at the LHC.

The most sensitive search channel is associated with the neutral Higgs boson decays into

τ+τ−, produced in gluon fusion processes or in association with b-quarks. This channels

becomes particularly sensitive for low values of the heavier Higgs boson masses and large

values of tan β, and allows one to set a bound on mA that extends from 200 GeV at values of

tan β ∼ 10, up to 900 GeV for tanβ ∼ 50. Lower values of tan β in the range 3 <∼ tan β <∼ 10,

still consistent with the observed mass of the lightest CP-even Higgs mass for stop masses

below a few TeV, remain mostly unconstrained by these searches, due to a suppression of the

production cross-section times the Higgs decay branching ratio into τ+τ−. This branching

ratio depends on possible decays into both non-supersymetric and supersymmetric final

states (e.g. neutralino and chargino pairs). The latter are suppressed for large values of µ,

for which alignment is obtained. Therefore there is an interesting correlation between the

properties of the lightest CP-even Higgs boson and the rate of non-standard Higgs boson

decays into the τ+τ− channel.

In this paper we shall discuss the complementarity of precision studies of the lightest

CP-even Higgs boson and the search for heavier neutral Higgs bosons in the τ+τ− channel.

In particular, since we assume the lightest CP-even Higgs is the one discovered at around
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125 GeV, we will design our benchmarks in such a way that the correct mass is obtained for

h over the entire mA–tanβ plane, in contrast to previously established benchmarks. This

is an especially important point when considering properties of h where its mass plays an

essential role. The lightest CP-even Higgs mass is also relevant in the determination of the

decay branching fractions of H and A, since the decay modes H → hh and A → hZ become

important at low values of tanβ and their rates depend crucially on mh.

This paper is organized as follows. In Section II we present an overview of the two Higgs

doublet model (2HDM)2 and its application to the Higgs sector of the MSSM, with emphasis

on the behavior of the down-type quark couplings to the lightest CP-even Higgs boson and

the associated condition of alignment at large values of µ and At. In Section III we discuss

the constraints on mA that come from the precision study of the lightest CP-even Higgs

boson properties for different values of µ. In Section IV we analyze the sensitivity of the

non-standard Higgs searches on the value of the µ parameter, and compare it with the results

obtained in Section III. We reserve Section V for our conclusions. A detailed description of

our interpretation of the experimental limits presented by CMS for the direct searches of H

and A is presented in Appendix A. Finally, the comparison of the hV V (V V = W+W− or

ZZ) and hγγ couplings is provided in Appendix B.

II. OVERVIEW OF THE MSSM HIGGS SECTOR

A. The Two Higgs Doublet Model (2HDM): Theoretical Background

The scalar potential of the most general two-Higgs-doublet extension of the SM may be

written in terms of two Higgs doublet fields, Φi (i = 1, 2), each carrying the same hypercharge

quantum number, YH = 1

2
[18]:

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 + h.c.) + 1

2
λ1(Φ

†
1Φ1)

2 + 1

2
λ2(Φ

†
2Φ2)

2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
{

1

2
λ5(Φ

†
1Φ2)

2 + [λ6(Φ
†
1Φ1) + λ7(Φ

†
2Φ2)]Φ

†
1Φ2 + h.c.

}
, (1)

where m2
11, m

2
22 and λ1, . . . , λ4 are real parameters and m2

12, λ5, λ6 and λ7 are potentially

complex. For simplicity, we shall assume that the scalar potential is explicitly CP conserving,

2 For a review of the two Higgs doublet model see, e.g., Refs. [16] and [17].
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in which case we can assume, without loss of generality, that all scalar potential parameters

are real.

We parameterize the scalar doublets in terms of a complex charged field and two neutral

real fields,

Φi =


 φ+

i

1√
2
(vi + φ0

i + ia0i )


 , (2)

where the minimum of the scalar potential is at

〈Φi〉 =
1√
2


 0

vi


 , (3)

and

v ≡
√

|v1|2 + |v2|2 ≃ 246 GeV . (4)

Since the scalar potential and the vacuum preserve CP, there exists a basis of scalar fields

where all scalar potential parameters, as well as v1 and v2, are real and non-negative. There-

fore, one can define

tβ ≡ tanβ =
v2
v1

, (5)

where 0 ≤ β ≤ 1

2
π.

The squared-mass matrix for the CP-even scalars can be expressed as [10]

M2 =


M2

11 M2
12

M2
12 M2

22


 ≡ m2

A


 s2β −sβcβ

−sβcβ c2β


+ v2


 L11 L12

L12 L22


 , (6)

where sβ ≡ sin β = v2/v, cβ ≡ cos β = v1/v,

m2
A = m2

12 − 1

2
v2(2λ5 + λ6t

−1

β + λ7tβ) , (7)

is the squared-mass of the CP-odd Higgs boson and

L11 = λ1c
2
β + 2λ6sβcβ + λ5s

2
β , (8)

L12 = (λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β , (9)

L22 = λ2s
2
β + 2λ7sβcβ + λ5c

2
β . (10)

Diagonalizing the squared-mass matrix, M2, given in Eq. (6) yields two CP-even Higgs

mass eigenstates, h and H , with squared-masses

m2
H,h = 1

2

[
M2

11 +M2
22 ±∆

]
, (11)
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where mh ≤ mH and the non-negative quantity ∆ is defined by

∆ ≡
√

(M2
11 −M2

22)
2 + 4(M2

12)
2 . (12)

In particular, m2
h ≤ M2

ii ≤ m2
H , i = 1, 2. We also note that the two equations,

Tr M2 = m2
H +m2

h , det M2 = m2
Hm

2
h , (13)

yield the following result:

|M2
12| =

√
(m2

H −M2
11)(M2

11 −m2
h) =

√
(M2

22 −m2
h)(M2

11 −m2
h) . (14)

The CP-even Higgs mass-eigenstate fields can be expressed in terms of the neutral scalar

fields, φ0
1 and φ0

2, defined in Eq. (2),


 H

h


 =


 cα sα

−sα cα




 φ0

1

φ0
2


 , (15)

where the mixing angle α is defined modulo π, cα ≡ cosα and sα ≡ sinα. It is often

convenient to restrict the range of the mixing angle to |α| ≤ 1

2
π. In this case, cα is non-

negative and is given by

cα =

√
∆+M2

11 −M2
22

2∆
, (16)

and the sign of sα is given by the sign of M2
12. Explicitly, we have

sα =

√
2M2

12√
∆(∆+M2

11 −M2
22)

. (17)

Using Eqs. (11) and (14), one can derive alternative forms for Eqs. (16) and (17),

cα =

√
M2

11 −m2
h

m2
H −m2

h

, sα = sgn(M2
12)

√
m2

H −M2
11

m2
H −m2

h

. (18)

For completeness, we also record the squared mass of the charged Higgs boson, H±,

m2
H± = m2

A + 1

2
v2(λ5 − λ4) , (19)

where m2
A is given by Eq. (7).

The recently discovered Higgs boson, exhibits couplings to gauge bosons and fermions

that are consistent (within experimental errors) with SM expectations. If the 2HDM is

realized in nature, it is tempting to identify the observed Higgs boson with the lightest
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CP-even scalar, h, which is a linear combination of φ0
1 and φ0

2 as indicated in Eq. (15). If

h is SM-like, then it follows that in the φ0
1–φ

0
2 field space, h points roughly in a direction

parallel to the direction of the scalar field vacuum expectation values. The implications of

this observation will now be examined in more detail.

Since the Higgs couplings to gauge bosons are more accurately measured, we first focus

on these. The tree-level coupling of h to V V (where V V = W+W− or ZZ), normalized to

the corresponding SM coupling, is given by

ghV V = gSM
hV V

sβ−α . (20)

Thus, if the hV V coupling is SM-like, it follows that

|cβ−α| ≪ 1 , (21)

where cβ−α ≡ cos(β−α) and sβ−α ≡ sin(β−α). It is therefore instructive to consider under

what conditions Eq. (21) can be achieved.

At this stage, there is nothing that distinguishes the Higgs doublets, since one is free to

construct new doublet fields that are linear combinations of Φ1 and Φ2 [19]. Consequently,

the parameters α and β are not physical, although the quantity (β−α) is physical (modulo π)

since it is related to an observable coupling. To derive an explicit formula for cβ−α, it is

convenient to define the so-called Higgs basis of scalar doublet fields [20, 21],

H1 =


H+

1

H0
1


 ≡ v1Φ1 + v2Φ2

v
, H2 =


H+

2

H0
2


 ≡ −v2Φ1 + v1Φ2

v
, (22)

so that 〈H0
1 〉 = v/

√
2 and 〈H0

2〉 = 0. From this one can immediately identify that the scalar

doublet H1 is the one that will have SM tree-level couplings to all the SM particles. It

follows that if one of the CP-even neutral Higgs mass eigenstates is SM-like, then it must

be approximately aligned with the real part of the neutral field H0
1 .

The scalar potential, when expressed in terms of the doublet fields, H1 and H2, has the

same form as Eq. (1), but now with coefficients λi → Zi. Indeed, one can translate all

the formulae obtained previously in the original basis of the scalar fields, {Φ1 , Φ2}, into
the Higgs basis by taking β → 0 and α → (α − β). Hence, in the limit of cβ−α → 0 we

have h ≃ [
√
2Re (H0

1 )− v], which means that h is aligned with the real part of the neutral

component of the Higgs basis field that possesses the non-zero vacuum expectation value.
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The existence of a neutral scalar mass-eigenstate with the properties of the SM Higgs boson

is equivalent to demanding that cβ−α = 0.

The scalar potential in the Higgs basis is given by,

V ⊃ . . .+ 1

2
Z1(H

†
1H1)

2 + . . .+
[
Z5(H

†
1H2)

2 + Z6(H
†
1H1)H

†
1H2 + h.c.

]
+ . . . , (23)

where [10, 19]

Z1 ≡ λ1c
4
β + λ2s

4
β +

1

2
(λ3 + λ4 + λ5)s

2
2β + 2s2β

[
c2βλ6 + s2βλ7

]
, (24)

Z5 ≡ 1

4
s22β
[
λ1 + λ2 − 2(λ3 + λ4 + λ5)

]
+ λ5 − s2βc2β(λ6 − λ7) , (25)

Z6 ≡ −1

2
s2β
[
λ1c

2
β − λ2s

2
β − (λ3 + λ4 + λ5)c2β

]
+ cβc3βλ6 + sβs3βλ7 , (26)

and the shorthand notation, s2β ≡ sin 2β, c2β ≡ cos 2β, etc., has been employed.

It is straightforward to compute the CP-even Higgs squared-mass matrix in the Higgs

basis,

M2
H =



Z1v
2 Z6v

2

Z6v
2 m2

A + Z5v
2



 . (27)

The significance of Z1 and Z6 can now be immediately discerned. The upper diagonal element

of the squared-mass matrix in the Higgs basis, M2
H11 = Z1v

2, implies that m2
h ≤ Z1v

2,

whereas the off-diagonal element, M2
H12 = Z6v

2, governs the mixing between the Higgs

basis fields H0
1 and H0

2 . The presence of this mixing yields a non-alignment of the mass

eigenstates, h and H , from the neutral Higgs basis states, H0
1 and H0

2 . Moreover, if |Z6| ≪ 1,

then the mass eigenstate approximately aligned with Re (H0
1 ) behaves like the SM Higgs

boson. Alternatively, if m2
A ≫ Ziv

2 (i = 1, 5, 6), then Z1 and Z6 can be treated as small

perturbations in the diagonalization of the CP-even Higgs squared-mass matrix, h is again

SM-like, since it is approximately aligned with Re (H0
1 ).

The mixing angle in the Higgs basis can be obtained simply by using the relations written

down for the original basis of the scalar fields. Translating our previous results into the Higgs

basis by taking α → α− β, M2
11 → Z1v

2 and M2
12 → Z6v

2, Eq. (14) implies that

|Z6|v2 =
√
(Z1v2 −m2

h)(m
2
H − Z1v2) , (28)

and Eq. (18) yields,

cβ−α =

√
Z1v2 −m2

h

m2
H −m2

h

, sβ−α = −sgn(Z6)

√
m2

H − Z1v2

m2
H −m2

h

, (29)
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in a convention where |β − α| ≤ 1

2
π. Actually, it is somewhat more convenient to adopt a

different sign convention in which sβ−α is non-negative and the sign of cβ−α is fixed by Z6,

since in this convention the sign of the hV V coupling is the same as in the SM [cf. Eq. (20)].

In particular, if we assume that 0 ≤ β − α ≤ π, then we can use Eqs. (28) and (29) rewrite

cβ−α in the more useful form,

cβ−α =
−Z6v

2

√
(m2

H −m2
h)(m

2
H − Z1v2)

. (30)

Tree-level unitarity (or perturbativity) constraints yield upper limits on the quartic scalar

coupling parameters that are roughly of the form λi/(4π) <∼ 1, with similar limits applying

to Z1 and Z6. In light of these constraints, there are two ways to achieve |cβ−α| ≪ 1,

corresponding to alignment and hence to a SM-like h.

First, if m2
H ≫ m2

h, Z1v
2, Z6v

2, then it follows that

cβ−α ∼ O
(
Z6v

2

m2
H

)
, Z1v

2 −m2
h ∼ O

(
Z2

6v
4

m2
H

)
. (31)

This is the well-known decoupling limit [10], in which alignment is achieved when mH , mA,

mH± ≫ mh. Integrating out the heavy scalars yields an effective theory with one CP-even

scalar, h, with SM couplings.

In contrast, suppose that |Z6| ≪ 1. This is the only case that can result in exact alignment

(corresponding to Z6 = 0), and we will henceforth refer to this case as the alignment limit,

which exists independently of the decoupling limit. Indeed, Eqs. (28) and (30) imply that

if |Z6| ≪ 1 and m2
h ≃ Z1v

2 then,

cβ−α ∼ O(Z6) , Z1v
2 −m2

h ∼ O(Z2
6v

2) , (32)

in which case h is SM-like.3 Note that the alignment limit can be achieved even in a case

where mH ∼ O(v).

To make contact with the results of Ref. [14], one can compute cβ−α = (cβcα + sβsα)

using Eqs. (14) and (18). Additional simplification can be implemented by noting that

M2
11 +M2

22 = ∆+ 2m2
h, which allows us to remove ∆ in favor of m2

h. The end result is

cβ−α =
(M2

11 −m2
h)cβ +M2

12sβ√
(m2

H −m2
h)(M2

11 −m2
h)

. (33)

3 If |Z6| ≪ 1 and mH ≃ Z1v
2, then sβ−α ≪ 1, and we would identify the SM-like Higgs boson with H .

This possibility cannot be completely ruled out for a general 2HDM but is very unlikely in the MSSM

Higgs sector.
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The exact alignment condition corresponds to the vanishing of the numerator in Eq. (33),

which yields

tβM2
12 = m2

h −M2
11 . (34)

Dividing Eq. (34) by M4
12 and using Eq. (14) then gives

t−1

β M2
12 = m2

h −M2
22 . (35)

Eliminating m2
h from Eqs. (34) and (35),

c2βM2
12 = sβcβ(M2

11 −M2
22) . (36)

Using Eqs. (6)–(10), one can check that Eq. (36) is equivalent to the condition Z6 = 0,

where Z6 is given by Eq. (26). In addition, one can use either Eq. (34) or (35) to obtain

m2
h = Z1v

2, where Z1 is given by Eq. (24), as expected in light of Eq. (32).

In the 2HDM, the exact alignment limit of Z6 = 0 can be achieved in four possible ways:

(i) as a consequence of an exact symmetry of the theory; (ii) as a consequence of an exact

symmetry of the scalar potential, which is broken by the Higgs-Yukawa interactions; (iii) as

a consequence of an accidental global symmetry of the scalar potential, which is broken by

the gauge interactions and Higgs-fermion Yukawa interactions; or (iv) accidentally due to

a choice of scalar potential parameters that is not governed by any symmetry. We exhibit

these four possibilities in turn.

An example of case (i) is the inert 2HDM [22]. In this model, the theory possesses an

exact Z2 symmetry in the Higgs basis, under which the Higgs basis field H2 is odd and all

other fields (H1, fermions and gauge bosons) are even. In this case Z6 = 0 as a consequence

of the Z2 symmetry [11], which remains unbroken in the vacuum since 〈H0
2 〉 = 0.

An example of case (ii) is the 2HDM with the scalar potential parameters of Eq. (1) given

by [23, 24]

m2
11 = m2

22 , λ1 = λ2 = λ3 + λ4 + λ5 , m2
12 = λ6 = λ7 = 0 . (37)

These conditions on the λi yield Z6 = 0 [cf. Eq. (26)]. Eq. (37) is satisfied by 2HDM scalar

potentials with a generalized CP3 symmetry or with an SO(3) Higgs flavor symmetry (the

latter if λ5 = 0 also holds), as shown in Ref. [23]. In general these two symmetries will not

be respected by the Higgs-fermion Yukawa interactions [25].
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Custodial symmetric scalar potentials provide examples of case (iii). Indeed, custodial

symmetries [26] are broken by the hypercharge gauge interactions as well as by the Higgs-

fermion Yukawa interactions. The maximally symmetric 2HDM of Ref. [24] with an SO(5)

global symmetry, which yields Eq. (37) with λ4 = λ5 = 0, provides an example of this case.

In particular, Ref. [24] has stressed the role of the symmetries that lead to Eq. (37), which

yields exact alignment at tree-level. Deviations from alignment are generated due to loop

effects, since these are not exact symmetries of the full theory.

Finally, as we shall see in the next subsection, Eq. (37) does not hold for the MSSM

Higgs sector. Thus, alignment can only arise for a special choice of parameters and is not a

consequence of any symmetry.

For completeness, we record the Yukawa couplings of the two Higgs doublets to a single

generation of up and down-type quarks. Employing the notation of the third generation,

− LYuk = Y1
b bRΦ

i ∗
1 Qi

L + Y2
b bRΦ

i ∗
2 Qi

L + ǫij
[
Y1

t tRQ
i
LΦ

j
1 + Y2

t tRQ
i
LΦ

j
2

]
+ h.c. , (38)

where ǫ12 = −ǫ21 = 1, ǫ11 = ǫ22 = 0, QL = (tL , bL) are the doublet left handed quark fields

and tR, bR are the singlet right-handed quark fields. Inserting 〈Φ0
i 〉 = vi/

√
2 yields the quark

masses,

mb = (v1Y1
b + v2Y2

b )/
√
2 , mt = (v1Y1

t + v2Y2
t )/

√
2 . (39)

B. The MSSM Higgs Sector

The Higgs sector of the MSSM is a 2HDM whose dimension-four couplings are constrained

by supersymmetry. In particular, at tree-level,

λ1 = λ2 = −(λ3 + λ4) =
1

4
(g2 + g′ 2) = m2

Z/v
2 , (40)

λ4 = −1

2
g2 = −2m2

W/v2 , (41)

λ5 = λ6 = λ7 = 0 . (42)

These results yield the well-known formulae for the tree-level MSSM CP-even Higgs masses.

At tree-level, (m2
h)max

= m2
Zc

2
2β, which is not consistent with experimental data. However,

radiative corrections can have large contributions to the tree-level Higgs mass, and regions

of MSSM parameter space can be found where mh ≃ 125 GeV, as required by the data.
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The mixing angle, which governs the Higgs couplings, is easily written down using the

Higgs basis. Using Eqs. (24) and (26),4

Z1v
2 = m2

Zc
2
2β , Z6v

2 = −m2
Zs2βc2β . (43)

Inserting the above results into Eq. (30) yields the tree-level result,

cβ−α =
m2

Z s2βc2β√
(m2

H −m2
h)(m

2
H −m2

Zc
2
2β)

. (44)

In the decoupling limit, one recovers Eq. (31) as expected. In addition, radiative corrections

that are required to yield a phenomenologically acceptable value of mh, do not significantly

modify the decoupling behavior exhibited above. In contrast, alignment cannot be achieved

without decoupling at tree-level (except at the endpoints where either sβ = 0 or cβ = 0, for

which no tree-level mass is obtained for the up-type and down-type quarks, respectively, and

at the midpoint tβ = 1, which leads to a vanishing lightest CP-even Higgs mass at tree-level.

None of these scenarios are experimentally viable.). We shall see in the next subsection that

including radiative corrections, alignment independent of decoupling can be achieved in the

MSSM at values of β away from the endpoints, resulting in important phenomenological

consequences.

Supersymmetry also imposes constraints on the Higgs-fermion interactions. In the su-

persymmetric literature, it is common to define:

H i
D ≡ ǫijΦ

j ∗
1 , H i

U = Φi
2 . (45)

In terms of HU and HD, the Yukawa couplings given in Eq. (38) must be holomorphic, which

implies that Y1
t = Y2

b = 0. This yields the so-called Type-II Higgs–quark couplings,5

− LYuk = ǫij
[
hbbRH

i
DQ

j
L + httRQ

i
LH

j
U

]
+ h.c. , (46)

where we have resorted to the more common notation hb = Y1
b and ht = Y2

t . Eq. (39) then

yields:

mb = hbvcβ/
√
2 , mt = htvsβ/

√
2 . (47)

4 Note that β has been promoted to a physical parameter, since the tree-level coupling relations given in

Eqs. (40)–(42) are a consequence of supersymmetry, which establishes a preferred basis choice for the

scalar Higgs fields.
5 As in the previous subsection, we neglect the full generation structure of the Yukawa couplings and focus

on the couplings of the Higgs bosons to the third generation quarks.
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The corresponding tree-level Yukawa couplings of the lightest CP-even Higgs boson to down-

type and up-type quark pairs are given by

ghbb̄ = −mb

v

sα
cβ

=
mb

v

(
sβ−α − cβ−αtβ

)
, (48)

ghtt̄ =
mt

v

cα
sβ

=
mt

v

(
sβ−α + cβ−αt

−1

β

)
. (49)

Eqs. (48) and (49) exhibit the expected behavior in the decoupling/alignment limits. That

is, when cβ−α = 0, we recover the SM result, ghff̄ = mf/v. However, note that in the

absence of exact alignment, the deviation from SM couplings of the down-type Yukawa

coupling, is tβ enhanced. Therefore, it is not enough to demand |cβ−α| ≪ 1. Rather, proper

SM-like behavior of the coupling of h to down-type quarks is recovered if |cβ−α| ≪ 1/tβ.

This phenomenon has been called delayed decoupling in Refs. [10, 15, 27, 28].

In the MSSM, the coupling of the Higgs bosons to squarks and sleptons are governed

by both supersymmetry-conserving and supersymmetry-breaking parameters. The relevant

couplings can be found in Ref. [4]. For later use, we shall focus here on the couplings of

HU and HD to the third generation squarks that are proportional to the Higgs–top quark

Yukawa coupling, ht. The corresponding terms in the interaction Lagrangian are

Lint ⊃ ht

[
µ∗(H†

DQ̃)Ũ + AtǫijH
i
UQ̃

jŨ + h.c.
]
− h2

t

[
H†

UHU(Q̃
†Q̃+ Ũ∗Ũ)− |Q̃†HU |2

]
, (50)

with an implicit sum over the weak SU(2) indices i, j = 1, 2, where in the notation of Ref. [4],

Q̃ =


t̃L

b̃L


 , Ũ ≡ t̃∗R , (51)

and in general the supersymmetric Higgsino mass parameter, µ, and the supersymmetry-

breaking parameter, At, are complex.

It is convenient to rewrite Eq. (50) in terms of the Higgs basis fields. Using Eqs. (22)

and (45), it follows that

Lint ⊃ htǫij
[
(sβXtH

i
1 + cβYtH

i
2)Q̃

jŨ + h.c.
]

−h2
t

{[
s2β|H1|2 + c2β |H2|2 + sβcβ(H

†
1H2 + h.c.)

]
(Q̃†Q̃ + Ũ∗Ũ)

−s2β |Q̃†H1|2 − c2β|Q̃†H2|2 − sβcβ
[
(Q̃†H1)(H

†
2Q̃) + h.c.

]}
, (52)
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where

Xt ≡ At − µ∗/tβ , Yt ≡ At + µ∗tβ . (53)

Note that the terms proportional to Xt in Eq. (52) are responsible for the mixing of t̃L

and t̃R in the top-squark squared-mass matrix; the corresponding off-diagonal element is

(M2

t̃
)LR = mtXt, after setting 〈H0

1 〉 = v/
√
2 and using Eq. (47). For simplicity, we shall

henceforth assume that µ and At are real, thereby neglecting possible CP-violating effects

that can be introduced into the MSSM Higgs sector via radiative corrections.

Radiative corrections play a critical role in the MSSM Higgs sector. Three important mass

scales are relevant—the scale of the squark masses, denoted byMS, the mass of h or Z (which

represents the electroweak scale) and the mass scale of the non-standard Higgs bosons, H ,

A and H±, which we will usually take to be mA. We shall assume that MS ≫ mA. In this

case, we can formally integrate out the squarks to obtain a low-energy effective theory below

the scale MS, which is a general 2HDM with quartic and fermion couplings determined by

their Type-II tree-level values plus radiative corrections induced by supersymmetry breaking

effects. Since the lightest CP-even Higgs boson couplings have been measured to be close to

the the SM values, we infer that either we are in the decoupling limit, mh ≪ mA ≪ MS ,or

the alignment limit independent of decoupling, mh <∼ mA ≪ MS. In practice, the alignment

limit independent of decoupling is most relevant for mA , mH < 2mt. For heavier values of

mA, the behavior of the Higgs sector approaches that of the decoupling regime.

After integrating out the squarks, the supersymmetric relations that govern the scalar

potential parameters [given in Eqs. (40)–(42)] are modified. At one loop, the leading loga-

rithmic corrections, which only appear for λ1 . . . , λ4, can be found in Ref. [18]. In addition,

threshold corrections proportional to the MSSM parameters, At, Ab and µ, can also con-

tribute significant corrections to all the scalar potential parameters, λ1 . . . , λ7. The relevant

expressions are rather lengthy. To get a sense of the corrections, we note that the largest

contributions are proportional to the fourth power of the top-quark Yukawa coupling, ht.

Using the results given in Ref. [18] (the corresponding leading two-loop corrections to the

quartic couplings can be found in Ref. [29]), we obtain the following expressions for Z1,

Z5 and Z6 [cf. Eqs. (24)–(26)] in the limit of mZ , mA ≪ MS, which include all one-loop

14



radiative corrections proportional to h4
t ,

Z1v
2 = m2

Zc
2
2β +

3v2s4βh
4
t

8π2

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
, (54)

Z5v
2 = s22β

{
m2

Z +
3v2h4

t

32π2

[
ln

(
m2

S

m2
t

)
+

XtYt

m2
S

(
1− XtYt

12m2
S

)]}
, (55)

Z6v
2 = −s2β

{
m2

Zc2β −
3v2s2βh

4
t

16π2

[
ln

(
M2

S

m2
t

)
+

Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]}
, (56)

where Xt and Yt are given by Eq. (53). The upper bound for the squared-mass of the lightest

CP-even Higgs boson is given by (m2
h)max = Z1v

2. Indeed, Eq. (54) exhibits the well-known

leading one-loop approximation for the upper bound on m2
h in the MSSM.

The structure of the threshold corrections [proportional to either Xt or Yt in Eqs. (54),

(56) and (55)] is easy to understand. For example, in Fig. 1, we exhibit the leading one-loop

corrections to Z6, which corresponds to the coefficient of the operator [(H†
1H1)(H

†
1H2)+h.c.]

[cf. Eq. (23)] in the Higgs basis. Using the interaction Lagrangian given by Eq. (52), one can

immediately ascertain the parametric dependence of the diagrams shown in Fig. 1. Each

diagram has a s3βcβh
4
t dependence, and there is a factor of Xt [Yt] for each H1Q̃Ũ [H2Q̃Ũ ]

vertex, respectively. In this way, we explain the parametric dependence of the threshold

corrections to Z6 exhibited in Eq. (56). Likewise, by replacing the external H2 [H1] line with

an H1 [H2] line in Fig. 1 and deleting graphs (e) and (f), which are now identical to graphs

(c) and (d), we can understand the parametric dependence of the threshold corrections to

Z1 [Z5].

It is instructive to obtain an approximate one-loop formula for cβ−α, keeping only the

leading O(h4
t ) corrections. We can also simplify the result by considering the large tβ limit.

Indeed, the resulting expressions will provide good approximations for tβ >∼ 5 (a region of

considerable interest in our analysis). In the large tβ limit, we may approximate sβ ≃ 1 and

c2β ≃ −1. Moreover, in this approximation the radiatively corrected value of the squared-

mass of the light CP-even Higgs boson at one-loop is

m2
h ≃ Z1v

2 ≃ m2
Z +

3m4
t

2π2v2

[
ln

(
M2

S

m2
t

)
+

X2
t

M2
S

(
1− X2

t

12M2
S

)]
, (57)

where we have used Eq. (47) to write v2s4βh
4
t = 4m4

t/v
2. Using Eqs. (56) and (57) in the

evaluation of Eq. (30) yields

tβ cβ−α ≃ −1

m2
H −m2

h

[
m2

h +m2
Z +

3m4
tXt(Yt −Xt)

4π2v2M2
S

(
1− X2

t

6M2
S

)]
. (58)
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Ũ
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Ũ
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Ũ
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FIG. 1: One-loop diagrams contributing to the the coefficient, Z6, of the Higgs basis operator,

(H†
1H1)(H

†
1H2). Using the interaction Lagrangian given in Eq. (52), one sees that the parametric

dependence for the six diagrams are: h4t s
3
βcβX

3
t Yt for (a) and (b); h4t s

3
βcβX

2
t for (c) and (d); and

h4t s
3
βcβXtYt for (e) and (f).

At large tβ we have Xt(Yt−Xt) ≃ µ(Attβ −µ) and X3
t (Yt−Xt) ≃ µA2

t (Attβ − 3µ), in which

case, Eq. (58) can be rewritten in the following approximate form,

tβ cβ−α ≃ −1

m2
H −m2

h

[
m2

h +m2
Z +

3m4
t

4π2v2M2
S

{
Atµtβ

(
1− A2

t

6M2
S

)
− µ2

(
1− A2

t

2M2
S

)}]
.

(59)

The significance of the product tβ cβ−α has already been noted below Eq. (49). Namely, the

condition that guarantees that the coupling of h to down-type quarks and leptons is close

to its SM value is tβ|cβ−α| ≪ 1. In contrast, all other h couplings approach their SM values
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for |cβ−α| ≪ 1, independently of the value of tβ.

The Higgs-fermion Yukawa couplings are also modified below the scale MS. Having

integrated out the squarks, the low-energy effective Yukawa couplings are no longer of Type-

II (which had been previously enforced by supersymmetry). The Yukawa couplings below

the scale MS have the form given in Eq. (38),

−LYuk = ǫij
[
(hb+ δhb)bRH

i
DQ

j
L+(ht+ δht)tRQ

i
LH

j
U

]
+∆hbbRQ

i
LH

i ∗
U +∆httRQ

i
LH

i ∗
D +h.c. ,

(60)

where δht,b and ∆ht,b represent one-loop corrections from squark/gaugino loops. Eq. (60)

yields a modification of the tree-level relations between ht, hb and mt, mb as follows [30]:

mb =
hbv√
2
cβ

(
1 +

δhb

hb

+
∆hbtβ
hb

)
≡ hbv√

2
cβ(1 + ∆b) , (61)

mt =
htv√
2
sβ

(
1 +

δht

ht

+
∆ht cot β

ht

)
≡ htv√

2
sβ(1 + ∆t) , (62)

which define the quantities ∆b and ∆t.
6 Diagonalizing the CP-even Higgs squared-mass

matrix, Eqs. (60)–(62) then yield the physical couplings of h to the up-type and down-type

quarks. After resummation of the dominant corrections [5, 31, 32], the resulting expressions

can be written in the following forms:

ghbb̄ =
mb

v

[
sβ−α − cβ−αtβ −

1

1 + ∆b

(
δhb

hb

−∆b

)(
cβ−αtβ
s2β

)]
, (63)

ghtt̄ =
mt

v

[
sβ−α + cβ−αt

−1

β − 1

1 + ∆t

∆ht

ht

(
cβ−α

s2β

)]
. (64)

Note that the radiative corrections to the couplings of h to the up-type and down-type

quarks vanish in the limit of exact alignment where cβ−α = 0. However, the phenomenon of

delayed decoupling at large tβ , discussed below Eq. (49), persists. That is, at large values

of tβ, the hbb̄ coupling approaches the corresponding SM value in the limit of tβ |cβ−α| ≪ 1.

6 The dominant contributions to ∆b are tβ-enhanced, with ∆b ≃ (∆hb/hb)tβ ; for tβ ≫ 1, δhb/hb provides a

small correction to ∆b. In the same limit, ∆t ≃ δht/ht, with the additional contribution of (∆ht/ht) cotβ

providing a small correction. In practical applications, it is often sufficient to keep only ∆b, which provides

the dominant contributions to the radiatively-corrected Yukawa couplings.
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C. Alignment Independent of Decoupling in the MSSM Higgs Sector

In the previous section, we noted that alignment independent of decoupling is not possible

for the tree-level MSSM Higgs sector, since Z6v
2 = −m2

Zs2βc2β 6= 0, except at phenomeno-

logically unacceptable values of β. Once radiative corrections are included, alignment in-

dependent of decoupling can occur quite generically, due to the appearance of a branch of

solutions that are absent at tree level [14].

To exhibit explicitly the cancellation that yields alignment, we make use of the fact that

exact alignment is attained when Z6 = 0. Assuming that s2β 6= 0, it then follows from

Eq. (56) that exact alignment at one-loop order is achieved when

m2
Zc2β =

3v2s2βh
4
t

16π2

[
ln

(
M2

S

m2
t

)
+

Xt(Xt + Yt)

2M2
S

− X3
t Yt

12M4
S

]
, (65)

where Xt and Yt are defined in Eq. (53). Eq. (65) yields a non-linear polynomial equation

for tβ. If a solution exists for positive tβ (recall that 0 ≤ β ≤ 1

2
π by convention) for fixed

values of the other MSSM parameters, then the alignment limit can be realized. To exhibit

that a solution is possible, we shall assume that tβ ≫ 1 (in practice, moderate to large

values of tβ >∼ 5 are sufficient). We then perform a Taylor expansion of Eq. (65) keeping

only constant terms and terms linear in t−1

β . We can then easily solve for tβ,

tβ =

m2
Z +

3v2h4
t

16π2

[
ln

(
M2

S

m2
t

)
+

2A2
t − µ2

2M2
S

− A2
t (A

2
t − 3µ2)

12M4
S

]

3v2h4
tµAt

32π2M2
S

(
A2

t

6M2
S

− 1

) . (66)

Since we have assumed that tβ ≫ 1 in deriving Eq. (66), we can rewrite this result in

terms of m2
h [cf. Eq. (57)] and m4

t (after taking sβ ≃ 1),7

tβ =

m2
h +m2

Z +
3m4

tµ
2

4π2v2M2
S

(
A2

t

2M2
S

− 1

)

3m4
tµAt

4π2v2M2
S

(
A2

t

6M2
S

− 1

) . (67)

For values of µ, At ∼ O(MS), the term ofO(m4
t ) in the numerator of Eq. (67) is subdominant.

Since tβ is positive, it follows that a viable solution exists if µAt(At −
√
6MS) > 0. In the

7 As a check of Eq. (67), one can verify that the same result is obtained by setting the approximate expression

of cβ−α obtained in Eq. (59) to zero.
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approximations employed in obtaining Eq. (57), the so-called maximal mixing condition, that

yields the largest radiatively-corrected Higgs mass, corresponds to At =
√
6MS. Moreover,

one obtains tβ ≫ 1 if µAt > 0 [µAt < 0] with values of At not too far above [below] the

maximal mixing condition, which is consistent with the assumption used in the derivation

of Eq. (67).

To make contact again with the results of Ref. [14], we observe that the exact alignment

condition, Z6 = 0, is achieved when [cf. Eq. (26)]:

(λ1 − λ345)c
2
β − (λ2 − λ345)s

2
β = (c2β − 3s2β)t

−1

β λ6 + (3c2β − s2β)tβλ7 , (68)

where λ345 ≡ (λ3 + λ4 + λ5). For tβ ≫ 1, we can approximate cβ ∼ t−1

β ≃ 0 and sβ ≃ 1. We

then obtain Eq. (103) of Ref. [14],

tβ ≃ λ2 − λ345

λ7

. (69)

The value of tβ at which alignment takes place is inversely proportional to λ7, which vanishes

in the MSSM at tree-level and arises only radiatively.8 As can be seen from Eq. (69),

alignment at smaller tβ requires a larger λ7, unless there is a tuning between λ2 and λ345 in

the numerator. In the end, it was found in Ref. [14], that for generic choices of parameters in

the MSSM, alignment independent of decoupling typically occurs at some value of tβ & 10,

with smaller tβ requiring larger values of At/MS and µ/MS [cf. Eq. (66].

For top squark masses of the order of a few TeV, the requirement of obtaining the proper

value of mh constrains the values of At
<∼ 3MS. In Ref. [14] it was demonstrated that

alignment independent of decoupling may be obtained for tβ of order 10 for large values of

µ >∼ 2MS and for either positive values of At of about 3MS or negative values ofAt ≃ −1.5MS.

Alignment values of tβ < 10 are not easily realized in the MSSM.9

III. SEARCHES FOR HEAVY HIGGS BOSONS

Our purpose is to study the interplay of direct searches and precision Higgs measurements

in scenarios where alignment occurs at very large versus moderate tβ. In order to analyze

8 Using the radiatively corrected expressions for the couplings in Eq. (69) given in Ref. [18], keeping only

terms proportional to h4
t , we recover the expression given in Eq. (66).

9 Alignment independent of decoupling for smaller values of tβ may be obtained in the NMSSM [14] or in

triplet extensions of the MSSM [33].
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malt
h mmod+

h

At/mQ 2.45 1.5

M2 = 2 M1 200 GeV 200 GeV

M3 1.5 TeV 1.5 TeV

m
ℓ̃
= mq̃ mQ mQ

Aℓ = Aq At At

TABLE I: Parameters in the on-shell scheme defining the mmod+
h and malt

h scenarios. We leave

mQ and µ as floating parameters.

the bounds on the non-standard Higgs masses, we choose benchmark scenarios close to

the ones proposed in Ref. [34], which are used by the LHC experimental collaborations in

their analyses of searches for non-standard Higgs bosons (see, for example, Refs. [35, 36]).

Specifically, in Table I we define two classes of benchmarks, mmod+

h and malt
h , where the main

difference with the mmod+

h and the tau-phobic scenarios defined in Ref. [34] is that we take

µ and mQ as floating parameters.

These two classes of scenarios differ in the choice of the ratio At/mQ, which results in no

alignment or alignment at very large values of tβ for mmod+

h and alignment at tβ . 50 for

malt
h [14]. Although these benchmarks are inspired by those proposed in Ref. [34], the fact

that we allow the µ parameter and the overall soft scale, mQ, to vary allows us to obtain the

correct mass for the lightest CP-even Higgs boson at small tβ . 6, and to study the impact

of alignment at different values of tβ . Both have a crucial impact on the properties of the

lightest CP-even Higgs boson and on the decays of the heavy CP-even and CP-odd Higgs

bosons. Observe also that we fix the value of At instead of Xt, as was done in Ref. [34],

which makes a difference only at large values of µ and small values of tβ <∼ 10. In particular

our mmod+

h scenario with µ = 200 GeV has the same properties as the mmod+

h scenario

in Ref. [34] and we have therefore adapted the notation from that reference. All of our

numerical results are obtained from FeynHiggs [37], which allows for a computation of all

the relevant production cross sections and branching ratios.10

10 It should be noted that there are relevant difference between the results obtained by FeynHiggs and other

higher order computations [38–40], but the analysis of the origin of these differences is beyond the scope

of this article.
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Before discussing the details of the Higgs phenomenology, recall the approximate analyti-

cal expressions given in the previous section governing the behavior of the various couplings,

for example, cβ−α obtained in Eq. (59). In our benchmark scenarios, mQ denotes the common

squark/slepton mass, hence one can identify MS = mQ. It should be noted that Eq. (59)

does not include two-loop corrections, which can be significant. These two loop corrections

approximately preserve the parametric dependence of our analytic expressions on At/mQ

in the MS and DR schemes. This is not true in the on-shell scheme, which is employed in

FeynHiggs. Therefore, in comparing our analytic expressions with our numerical results,

one should use the values of At/mQ in the MS or DR schemes, that are approximately 20%

larger than the ones in the on-shell scheme [8].

A. Getting the Correct mh Everywhere

In scenarios defined previously in Ref. [34], stop masses are fixed at the order of 1 TeV,

which fails to reproduce the proper lightest CP-even Higgs mass, mh ≃ 125 GeV, at values

of tβ ≤ 6 (the precise value of tβ at which this occurs depends on the specific scenario). In

our benchmarks we vary the overall stop mass scale, mQ, so that the lightest CP-even Higgs

mass is in the experimentally observed range within theoretical uncertainties, which we take

to be of the order of 3 GeV, mh = 125 ± 3 GeV. More specifically, for a given value of tβ,

µ/mQ and At/mQ, we fix the value of mQ for small values of mA ≃ 200 GeV in such a way

that the lightest CP-even Higgs mass is about 123 GeV. This is enough to keep the value

of mh in the acceptable range for all values of mA.
11 The small variation of the lightest

CP-even Higgs mass for larger values of mA has only a minor impact on the heavy Higgs

phenomenology and does not affect the signal strength of the lightest CP-even Higgs in any

significant way. In contrast, fixing the value of mQ at around 1 TeV, as currently done by

the experimental collaborations, leads to artificially low values of mh at low values of tβ that

can have a large impact on the Higgs boson phenomenology.

The corresponding values of the stop soft breaking mass parameters, mQ, are displayed

in Fig. 2. Observe that for the malt
h scenario (apart for the case of µ = 3mQ), larger values

11 In the malt
h scenario for µ = 3mQ, mA ∼ 200 GeV and tβ & 40, the Higgs mass is somewhat lower than

123 GeV due to sbottom effects. However, this region of parameter space is excluded regardless of the

light Higgs mass, therefore we do not tune the value of mQ in this region.
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FIG. 2: Values of mQ necessary to accommodate the proper value of the lightest CP-even Higgs

mass, for different values of µ in the malt
h and mmod+

h scenarios.

of mQ are necessary for smaller values of µ, while in the mmod+

h scenario, larger values of

mQ are obtained for larger values of µ. The reason for this behavior is that generally in the

malt
h scenario, larger values of µ approach the stop mixing for which the light CP-even Higgs

mass is maximized, Xt = At − µ/tβ ≃ 2mQ, in the on-shell scheme. This implies the need

for smaller logarithmic corrections, and therefore smaller values of mQ. The exception is the

case of µ = 3mQ, where µ is so large that at small values of tβ, Xt is already smaller than the

maximal value for the Higgs mass. As tβ increases, Xt increases, approaching the maximal

value from the other side. This explains the different dependence on mQ for this case. In the

mmod+

h scenario, larger values of µ imply values of Xt further away from maximal mixing,

which in turn require larger values of mQ to obtain the correct mh.

B. Decay Branching Ratios of Heavy Higgs Bosons

In Fig. 3 we show the variation in the decay branching ratios of the heavy neutral Higgs

bosons, H and A, in the malt
h scenario for small values of µ, and for moderate values of

tβ = 10 and small values of tβ = 4; the results in the mmod+

h scenario for the same values of
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µ are very similar and will not be shown here. At larger values of µ, the distinction between

the two scenarios becomes more prominent as shown in Figs. 4 and 5.

We first examine the case of small µ. For tβ = 10, the decays into bottom-quarks represent

the dominant decay mode of the heavy Higgs bosons at small values of mA,H . At the largest

values of the non-standard Higgs boson masses shown in Fig. 3, the decays of the heavy

Higgs bosons into charginos and neutralinos become prominent, suppressing the branching

ratio of the decays of the non-standard Higgs bosons into bb̄ and τ+τ−.

For tβ = 4, one interesting feature is that the decay of H into pairs of lightest CP-

even Higgs becomes significant at masses above the corresponding kinematic threshold, a

property that persists even when the value of µ is changed, as shown in Fig. 5. Another

important feature is that the H/A decay into pairs of neutralinos and charginos becomes

prominent throughout the mass range we consider, thereby suppressing the decay branching

ratios into the canonical search channels, bb̄ and τ+τ−. In particular, the branching ratio of

the heavy Higgs bosons into tau-lepton pairs, which is the main focus of present searches,

never exceeds 5% and is quite suppressed for mA,H
>∼ 300 GeV.

Next we compare the decay branching ratios in the mmod+

h and malt
h scenarios for large

values of µ. Fig. 4 shows the comparison at tβ = 10 while Fig. 5 is for tβ = 4. One important

consequence of raising µ is that the Higgsinos become heavy, resulting in small couplings

of the light gaugino-like charginos and neutralinos to the neutral Higgs bosons. Therefore,

the decays into electroweakinos are always suppressed, never exceeding a few percent. At

tβ = 10 the decays into bottom-quark and tau-lepton pairs become prominent for all values

of the heavy Higgs boson masses.

For tβ = 4, the branching ratio of the decay of the heavy neutral Higgs bosons into

bottom quarks and tau leptons is suppressed due to the decrease of the couplings of down-

type fermions to these Higgs bosons. Hence, for tβ = 4, the H → hh decay becomes the

dominant mode for mH larger than the kinematic threshold of 2mh, until the top channel

opens up and becomes the main decay mode. Even below the 2mh threshold, the decay

width of the heavy CP-even Higgs boson into weak gauge bosons is large enough to suppress

the BR(H → τ+τ−) to values of order of 5% in both scenarios. As for the CP-odd Higgs

boson, as can be seen in the right panels of Fig. 5, due to the absence of any relevant

contribution to the total decay width beyond the bottom-quark and tau-lepton final states,

the BR(A → τ+τ−) remains of the order of 10% up to the top quark pair decay threshold.
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FIG. 3: Branching Ratios of the heavy CP-even (left panels) and CP-odd (right panels) Higgs

bosons as a function of their respective masses in the malt
h

scenario, for tβ = 10 (top panels) and

tβ = 4 (bottom panels), for small values of the Higgsino mass parameter, µ = 200 GeV.
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FIG. 4: Branching Ratios of the heavy CP-even (left panels) and CP-odd (right panels) Higgs

bosons as a function of their respective masses for tβ = 10 in the malt
h

scenario (top panels) and

mmod+

h scenario (bottom panels), for large values of the Higgsino mass parameter, µ = mQ.
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FIG. 5: Branching Ratios of the heavy CP-even (left panels) and CP-odd (right panels) Higgs

bosons as a function of their respective masses for tβ = 4 in the malt
h

scenario (top panels) and

mmod+

h scenario (bottom panels), for large values of the Higgsino mass parameter, µ = mQ.
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It is worth noting that although the hZ channel becomes significant when the kinematics

allow, for the same masses of the heavy Higgs bosons, BR(A → hZ) is always significantly

lower than BR(H → hh). These differences between the CP-even and CP-odd Higgs bosons

have important phenomenological consequences that will be discussed below.

C. Inclusive Production Rates of Heavy Higgs Bosons in the τ+τ− Channel

At the LHC we only measure the total rate, i.e. the production cross-section times the

branching fraction into some specific final state. In particular, the strongest constraints in

the MSSM on the mA−tβ plane are derived using searches in the τ+τ− final states, which we

focus on in this subsection. The main production modes for the heavy neutral Higgs bosons,

A and H , are the gluon fusion channel and, at moderate or large values of tβ, associated

production with bottom quarks. At large tβ, the main contribution to the gluon fusion

cross section comes from bottom quark loops, since the heavy Higgs couplings to b-quarks

are enhanced by tβ . Then the total production cross section is proportional to the square

of the bottom Yukawa coupling. However, as tβ decreases, the bottom coupling decreases

while the top coupling to the non-standard Higgs bosons increases with 1/tβ. Therefore,

at values of tβ . 6, the dominant contribution to the gluon fusion production cross section

is proportional to the square of the top coupling to the heavy neutral Higgs bosons and

becomes significant.

The left panel of Fig. 6 shows the dependence of the inclusive production cross-section

times the branching ratio of the decay of each neutral heavy Higgs boson into τ+τ−, for

mA = 300 GeV, in the malt
h and the mmod+

h scenarios for different values of µ. The solid

lines display the behavior of the heavy CP-even Higgs boson and the dashed lines exhibit

the corresponding CP-odd Higgs boson cross sections. The behavior of the Higgs-induced

τ+τ− production may be described using the properties of the production cross section and

branching ratios discussed above. At large values of µ, the CP-odd Higgs boson decay

branching ratio into τ+τ− remains large and approximately constant for all values of tβ , and

hence the total production rate into τ+τ− closely follows the CP-odd Higgs production cross

section. The increase of the production rate for the CP-odd Higgs boson into τ+τ− at low

values of tβ and large µ is clearly seen in Fig. 6. Also visible is the fact that as tβ decreases,

the CP-even Higgs contribution to the τ+τ− production rate is suppressed. This happens
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FIG. 6: Inclusive production cross-section times branching ratio in the τ+τ− mode for mA =

300 GeV. Black dashed line in right panel denotes extracted upper limit from CMS bounds presented

in Ref. [35].

due to a decrease of the corresponding branching ratio, compensating for the increase in the

gluon fusion production cross-section. The same happens for the CP-odd Higgs boson at

low values of µ.

The reach of the LHC in this channel at low values of tβ and mA = 300 GeV becomes

very different as one varies the µ parameter. For high values of µ, the total production rate

into τ+τ− reaches a minimum at tβ ≃ 6 and then increases for lower values of tβ , as shown

in the right panel of Fig. 6. This is due to the CP-odd Higgs contribution as discussed above

and shown in the left panel Fig. 6. However, at low values of µ, the inclusive production

rate into τ+τ− keeps decreasing for decreasing values of tβ , as also shown in the right panel

of Fig. 6. The horizontal dashed line in the right panel of Fig. 6 denotes an upper bound

on the inclusive τ+τ− production rate extracted from the CMS analysis in Ref. [35] (the

derivation and validity of this extracted limit is detailed in App. A). The value of tβ where

the horizontal dashed line meets the predicted cross-section, denotes the largest value of tβ

consistent with experimental observation. Values of tβ above this should be considered ruled

out because the inclusive production rate would be larger than the extracted upper bound.
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As more data is collected in Run II of the LHC, the bound on the τ+τ− channel will become

stronger and therefore the horizontal dashed line will be pushed towards smaller values if

no scalar resonances are seen. If for a particular value of the mass of the heavy CP-even

and CP-odd Higgs bosons the limit were pushed below the minimum of the inclusive τ+τ−

production rate in the large µ case, that particular value of the Higgs boson mass would be

excluded by the data for all values tβ. This is not possible for the low µ scenarios, for which

no minimum of the production cross section is present.

At lower values ofmA ≃ 200 GeV the difference between low and high values of µ becomes

less dramatic. Still, as can be seen from Figs. 4 and 5, at tβ = 4, BR(A → τ+τ−) remains of

order 10% for large values of µ and becomes about half of that value for low values of µ. In

contrast, BR(H → τ+τ−) is always somewhat suppressed due to the presence of the decay

of the heavy CP-even Higgs into V V , suffering an additional suppression at low values of µ.

In this particular example at tβ = 4, BR(H → τ+τ−) is of order 6% for high values of µ and

is reduced to about 3% for low values of µ. Hence, in this case the largest τ+τ− production

contribution comes from the CP-odd Higgs boson.

D. Rescaling Current LHC limits

We use the procedure discussed in App. A to convert the mA–tβ limits presented by the

experimental collaborations for a specific scenario, into limits on the inclusive production

rate into τ+τ− for a given value of mA. We then demand that any other scenario we are

considering leads to an inclusive production rate which is smaller than this extracted limit.

In this way, we are able to obtain a simple rescaling algorithm for the values of tβ excluded

in any given scenario. The outcome of such a procedure is presented in Fig. 7, which shows

the exclusion limits on the mA–tβ plane in our malt
h scenario for two different choices of

the µ parameter. As stressed in the last section, an important distinction in going from

small to large values of µ is that the Higgsinos become heavy and therefore the decays of

the heavy Higgs bosons into neutralino and/or chargino pairs are suppressed, resulting in

a larger branching fraction into τ+τ− channels. It is clear that, due to the increase in the

τ+τ− production rate for larger values of µ (see Fig. 6), the exclusion limit may be extended

to smaller values of tβ .

As previously noted, the existence of a minimum in the inclusive production rate for
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FIG. 7: Direct search bounds from the inclusive τ+τ− mode in our benchmarks at LHC8. The solid

line displays the current CMS bounds in the mmod+

h
scenario with µ = 200 GeV [35].

the τ+τ− channel as a function of tβ for large values of µ (cf. Fig. 6), means that if this

minimum falls below the experimental upper bound in the future, one would exclude all tβ

for a particular value of mA in the scenario under consideration. Indeed, in Ref. [41] it was

shown that for heavy supersymmetric particles, the LHC has the capability of probing the

wedge region by means of the H,A → τ+τ− channel in the 14 TeV run. However, since this

minimum does not exist for the low µ scenarios, even at 14 TeV, it is unlikely that the LHC

would be able to completely probe the low mA–tβ region for these cases.

In Fig. 8 we show the projected limits in the mmod+

h scenario, with µ = 200 GeV, that

are required to exclude all values of tβ in scenarios with large µ for mA < 350 GeV. More
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FIG. 8: The dashed and dotted line exhibit the projected bounds at
√
s = 14 TeV in the mmod+

h

scenario with µ = 200 GeV, such that all values of tβ are excluded in the malt
h

scenario for large

values of µ. The solid line displays the current CMS bounds in the mmod+

h
scenario with µ =

200 GeV [35].

explicitly, if in the future the exclusion limit in the mmod+

h scenario, with µ = 200 GeV,

reaches the dashed [dotted] lines, the malt
h benchmark, with µ = mQ [mQ/2], would be

completely ruled out, respectively. The situation for all our benchmarks with other choices

of µ is similar, as long as µ ∼ O(mQ) or larger. For comparison, the solid line in Fig. 8

represents the current bound from the LHC8 in Ref. [35] .

Note that in this article we have assumed that all squark masses are of the order of the stop

masses, and hence the next-to-lightest neutralinos and the lightest charginos would mostly
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decay into the lightest neutralino and Z, h and W±, respectively. Under these conditions,

the values of µ, M2 and M1 associated with the low µ scenario here are at the edge of the

current region of parameters probed by the ATLAS and CMS experiments [42, 43]. Since

the heavier Higgs bosons decay prominently into these particles, it would be interesting to

perform a search for these Higgs bosons decaying into charginos and neutralinos. These

will lead to final states already present in the decays of the heavier Higgs bosons into SM

particles, namely hh, V V and Zh, that are being studied at present (see, e.g., Refs. [44, 45]),

but will be characterized by large amounts of missing energy.

IV. PRECISION h MEASUREMENTS VERSUS H AND A DIRECT SEARCHES.

After analyzing the direct search constraints in the two classes of benchmarks with a

varying µ parameter, we now study the interplay between direct searches and measurements

of properties of the lightest CP-even Higgs boson at 125 GeV. The value of µ/mQ plays

an important role in determining the value of tβ at which alignment occurs, as can be

seen in Eq. (66). We shall show that the low tβ and low mA region, which is difficult to

probe in direct searches at low values of µ, results in deviations in the properties of the 125

GeV Higgs boson that are quite significant. Therefore, direct searches and precision Higgs

measurements are complementary to each other.

In studying properties of the lightest CP-even Higgs boson, we will focus on its couplings

to massive gauge bosons h → V V , which are measured quite well experimentally. Another

possibility is to use loop-induced couplings such as the diphoton coupling. Indeed, the

different values of At and µ chosen in the mmod+

h and malt
h scenarios lead to deviations in

the loop-induced couplings. However, as is demonstrated in App. B, the constraining power

between these two couplings does not differ significantly.

It is worth emphasizing again that in order to study the complementarity between pre-

cision measurements and direct searches, it is important to obtain the correct mass for the

lightest CP-even Higgs boson, which has a major impact on the properties of the 125 GeV

Higgs boson and on the decays of the heavy Higgs bosons. As we showed in Section IIIA, in

the region of interests where both tβ and mA are small, the value of mQ should be raised to

values larger than 1 TeV in order to obtain the proper lightest CP-even Higgs mass values.
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Under the assumption of |cβ−α| ≪ 1, it follows from the results of Section II that

ghV V ≃ gSMhV V , ghtt ≃ gSMhtt , (70)

whereas

ghbb ≃ gSMhbb (1− cβ−αtβ) , (71)

where for simplicity we have neglected the ∆b and δhb effects in Eq. (63). This implies that,

apart from small corrections coming from the squark loops contributing to the gluon-gluon

fusion production, the lightest CP-even Higgs production cross section is SM-like. Moreover,

the decay branching ratios of the lightest CP-even Higgs boson are mostly affected by the

modification of the bottom and τ couplings. Inspection of Eq. (59) reveals that the down-

type quark (and lepton) Yukawa couplings can significantly deviate from their corresponding

SM values at low mA and moderate values of tβ. Moreover, for small values of µ these

modifications are only weakly dependent on tβ, while for large values of µ, a dependence on

tβ appears that may lead to alignment for the specific value of tβ at which cβ−α = 0.

In Fig. 9, we summarize our results on the comparison of direct searches for non-standard

Higgs bosons and the precision studies of the lightest CP-even Higgs boson at the 8 TeV

LHC. The dashed contours correspond to various assumptions on the precision of the signal

strength σ(gg → h)× BR(h → V V ). For example, the 0.8 contour corresponds to a signal

strength that is 80% of the predicted SM value, etc. The four panels represent four different

values for the µ parameter, and in each panel we depict both the mmod+

h and the malt
h

scenarios. At low values of µ, in light of the weak dependence of the light CP-even Higgs

decay branching ratios on tβ, precision studies of the decay branching ratios of the lightest

CP-even Higgs lead to a lower bound on the value of mA, which is roughly independent of

tβ. Indeed, the dashed contours in Fig. 9 (a) are nearly vertical, ruling out the parameter

space to the left of the corresponding contours. The ATLAS experiment has performed such

an analysis and found a bound on mA of order 400 GeV. Let us remark in passing that the

signal strength of the h → V V modes observed at ATLAS is 1.3± 0.2 and hence according

to the results of Fig. 9 (a) the bound on mA would be larger than the corresponding one

using CMS data, for which the signal strength is 1.0± 0.2.

As the value of µ is increased we see two effects. On one hand, the contours of constant

h-induced V V production cross section are drastically modified in the malt
h scenario, due

to a relevant dependence on tβ of the bottom quark and tau lepton Yukawa couplings
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FIG. 9: Dashed contours show deviations of the signal strength into massive gauge bosons for the

lightest CP-even Higgs boson with respect to the SM values in the mmod+

h (blue) and malt
h (red)

scenarios in the mA–tβ plane for different values of µ. Shaded regions denote parameters excluded

by direct searches for heavy CP-even and CP-odd Higgs bosons decaying into pairs of τ leptons.
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[cf. Eqs. (59) and (71)]. These contours bend to the left in relation with the ones in the

mmod+

h scenario, becoming almost independent of mA at values of tβ close to the alignment

limit. Therefore, for tβ close to the value where the alignment condition is satisfied, precision

measurements alone are not able to place any bound on mA. The smallest value of tβ where

the alignment condition is satisfied takes place for the largest value of µ = 3mQ considered,

shown in Fig. 9 (d).12 Indeed it is difficult to obtain smaller values of tβ at alignment in

the MSSM without taking extreme values of the MSSM parameters. Large values of At/mQ

and µ/mQ can lead to charge and color breaking vacua which would bring the stability of

the electroweak vacuum into question [46].

The complementarity of the precision h(125) data with direct searches for non-standard

Higgs bosons is now clear. At the large values of tβ where the alignment condition is

satisfied, searches for non-standard Higgs bosons become effective and, as discussed in the

previous section, they become more effective for larger values of µ. This is shown by the

shaded regions of Fig. 9, which denote the CMS limits in the mmod+

h and malt
h scenarios.

The combination of direct and indirect searches allow us to constrain values of mA lower

than 250 GeV in the malt
h scenario with µ <∼ 3mQ, independently of tβ. Moreover, due to

the increase in sensitivity of the search for non-standard Higgs bosons at large values of µ,

the whole region of parameters for mA < 350 GeV is expected to be probed by the LHC

in the near future, showing again the strong complementarity between precision studies of

the lightest CP-even Higgs boson, which become a weaker probe in this scenario, and direct

searches for non-standard Higgs bosons.

In summary, at low values of µ, precision measurements of the lightest CP-even Higgs

bosons are able to probe low values of mA, independently of tβ . In contrast, in the presence

of alignment which occurs for large values of µ, precision measurement studies alone will

not be able to put a model independent bound on mA. However, in this case direct searches

for non-standard Higgs bosons will be able to probe all values of tβ for values of mA below

the top-quark decay threshold in the near future.

12 In Fig. 9 (d), we have suppressed additional dashed red contour lines that reappear in the malt
h scenario

with µ = 3mQ in the large tβ , lowmA parameter regime. In this regime, the magnitude of the hbb̄ coupling

is once again SM-like, but its sign is flipped relative to that of the hV V coupling. This wrong-sign hbb̄

coupling regime, discussed in detail in Ref. [28], cannot be ruled out by the present h(125) data alone,

but is completely incompatible with the limits on the H and A direct searches via the τ+τ− channel.
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V. CONCLUSIONS

In this article, we have analyzed the complementarity between precision measurements

of the lightest CP-even Higgs boson and direct searches for non-standard Higgs bosons in

the MSSM. We have stressed that in the alignment limit, one can significantly relax the

bounds on the heavy Higgs bosons that arise from the measurements of the V V decays of

the lightest CP-even Higgs boson. Such alignment conditions, however, are associated with

large values of the µ parameter and the stop mixing parameter, At, and tend to be restricted

to values of tβ of order 10 or larger within the MSSM.

Direct searches for non-standard neutral Higgs bosons provide strong constraints on the

Higgs spectrum. Currently, the most sensitive search channel is associated with the τ+τ−

final state, with the main production mode being either through the gluon fusion process or

in association with bottom quarks. The ATLAS and CMS experiments have placed lower

bounds on mA that range from values of order 200 GeV for tβ ≃ 10 up to values of order

of a TeV for tβ ≃ 50. The lower values of mA and tβ may be consistent with the observed

lightest CP-even Higgs properties, provided one is not far from the alignment condition. The

large values of µ associated with the alignment limit reduce the decay rate into charginos

and neutralinos and therefore increase the BR(H,A → τ+τ−), making direct searches more

efficient. This property provides an interesting complementarity between direct searches and

precision measurements which will allow one to probe the region of mA < 350 GeV for all

values of tβ in future running of the LHC.
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Appendix A: Interpreting Current Bounds from LHC8

In Ref. [35] where CMS presented bounds on the heavy Higgs bosons in the MSSM, the

limits were derived in particular benchmarks that differ from the two classes of scenarios we

are considering in this work. As such, these limits cannot be applied in a straightforward

manner. However, Ref. [35] also provided model-independent limits that could be translated

into limits in benchmarks considered in this study. The model-independent limits are pro-

vided as two-dimensional contours in the plane of the production cross-sections via gluon

fusion and associated production with bottom quarks. These limits are derived from search-

ing for a heavy scalar resonance in the τ+τ− final state, independently of any specific model,

and show very little contamination from a 125 GeV Higgs boson once the postulated heavy

resonance is heavier than 200 GeV.

Unlike the model-independent bounds, the limits in the MSSM benchmarks in Ref. [35]

are given in terms of mA and tβ, instead of direct upper bounds on the τ+τ− production

rates. We will specifically use the exclusions presented for the mmod+

h scenario, compare

them to the limits presented in the model independent analysis and formulate an algorithm

to apply these to any other MSSM model. To that end, we first derive the upper limit on the

production rates in the mmod+

h scenario, with µ = 200 GeV, by computing the corresponding

branching ratios and relevant cross-sections along the exclusion curve in the mA–tβ plane

using the package FeynHiggs [37]. For each value of mA there exists an upper limit on the

allowed inclusive production rate into τ+τ−. We will refer to this upper limit as the inclusive

interpretation of the heavy Higgs boson search bounds.

In Fig. 10 we show the production rates into τ+τ− resulting from the production of heavy

Higgs bosons in the two relevant production channels, ggφ and bbφ, as a function of tβ. The

production rates in the malt
h scenario, for µ = mQ, are displayed as a solid red curve, while
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FIG. 10: Comparison of exclusion limits obtained via the model independent analysis and our

inclusive interpretation of the limits for the mmod+

h scenario, with µ = 200 GeV. The dots represent

values of tβ in units of 1, where values are labeled in blue or red corresponding to the mmod+
h

scenario, with µ = 200 GeV, and malt
h scenario, with µ = mQ, respectively.

the corresponding values in the mmod+

h scenario, for µ = 200 GeV, are displayed as a solid

blue curve. We show results for mA = 200 GeV and mA = 300 GeV in the left and right

panels of Fig. 10, respectively. The corresponding values of tβ are displayed as solid dots

on these curves. These show that, while in the mmod+

h scenario, with µ = 200 GeV, the

rates due to both production cross sections decrease with tβ, the rate originating from the

production via gluon fusion reaches a minimum in the malt
h scenario, increasing at low values

of tβ in agreement with our discussion in Sec. III C.

Our inclusive interpretation of the heavy Higgs boson search is denoted by dashed black

lines in Fig. 10. We also show the model-independent 95% C.L. upper bounds, provided ex-

plicitly in Ref. [35], as black solid lines. Observe that the slopes of the solid and dashed lines

are very similar, implying that the model independent bounds correspond approximately to

the same inclusive production rate in both scenarios. Note the bound on tβ we obtain in

the mmod+

h scenario, with µ = 200 GeV, from the model-independent bounds is within one

unit of the bound presented by CMS by a more sophisticated likelihood method.
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The tβ limit for a given mA in a different MSSM model corresponds roughly to the value

where the inclusive production rate exceeds the upper limit in the mmod+
h scenario, with µ =

200 GeV. Since the sensitivity of the LHC in the gluon fusion and bbφ channels is similar, we

expect this to be a good approximation. Explicitly, in Fig. 10 we show the comparison of the

bound in the malt
h scenario, with µ = mQ, using the inclusive production rate at the limiting

value of tβ presented by CMS in the mmod
h scenario, with µ = 200 GeV, compared to the

limit on the value of tβ that could be interpreted from the model independent bound. Again,

the difference using the two methods results in a difference for the tβ limit of approximately

one unit.

Using our inclusive interpretation, we can scale the limits from the mmod+

h scenario, with

µ = 200 GeV, to any other scenario in a simple way in the region where mA=200–350

GeV. We then use the bounds from our inclusive interpretation to map out the direct search

constraints on the mA–tβ plane in each of our benchmarks, which in turn are compared

against the constraints from precision measurements of the properties of the 125 GeV Higgs

boson. We also use the inclusive production rate to analyze the future searches at the 14 TeV

run of the LHC.

Appendix B: Comparison of hV V and hγγ Couplings

At low values of µ the charginos become light and therefore can lead to a modified

diphoton coupling of the lightest CP-even Higgs boson. The contribution of stops and

charginos to the amplitude in the diphoton channel is proportional to [16, 47–50]

Ahγγ ≃ ASM
hγγ + bχ̃+

1

2
g2v2 sin 2β

M2µ− 1

4
g2v2 sin 2β

− bt̃ m
2
t

m2

t̃1
+m2

t̃2
−X2

t

m2

t̃1
m2

t̃2

, (B1)

where in this normalization ASM
hγγ = 6.5 represents the SM contribution, bχ̃+ = 4/3, bt̃ = 4/9,

and mt̃1,2
are the stop mass eigenvalues. The parameters mt and Xt are running mass

parameters at the scale of the stop masses in the MS scheme. For the large values of Xt

present in the malt
h scenario, the stop contribution is small and positive. The chargino

contribution is also small, and becomes only relevant for small values of µ and of tβ . In the

mmod+

h scenario, for µ = 200 GeV, the stop contribution is even smaller, since X2
t is close to

the sum of the squares of the stop masses. In general, the supersymmetric loop corrections

lead to a contribution of the order of a few percent of the SM one. Hence, the main deviation
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FIG. 11: Deviation of the signal strengths with respect to the SM values for the lightest Higgs boson

decaying into two photons and two massive gauge bosons.

of the BR(h → γγ) and BR(h → V V ) in this region of parameters is mostly governed by

the increase of the width of the lightest CP-even Higgs decay into bottom quarks and tau

leptons at low values of mA.

Note that the contribution from stops to gluon fusion is approximately a factor of 3

larger than their contribution to the diphoton coupling [49–51]. However, the leading SM

contribution has the opposite sign in this case, and hence, the gluon fusion rate is reduced

from the SM expectation in the scenarios we consider, again at the few percent level.

In order to quantify these effects, in Fig. 11 (a) we show contour plots of σ× BR(h → γγ)

and σ× BR(h → V V ) normalized the the SM values in the mmod+

h and malt
h scenarios for

low values of µ, for which no alignment condition is present. This choice of µ maximizes the

differences between these channels. As can be seen, the overall behavior of these channels is

the same, although the precise value of tβ for which a particular deviation with respect to

the SM value takes place is shifted by a few tens of GeV for mA < 350 GeV for low values of

µ. No significant difference is present for larger values of µ, as can be seen from Fig. 11 (b).

The peculiar behavior of the contour lines at low values of tβ in the malt
h scenario is induced
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by the variation of the gluon fusion cross section, which becomes more suppressed as the

stops become heavier.

In this article, in order to study the properties of the lightest CP-even Higgs bosons we

shall concentrate on the BR(h → V V ), but as shown in Fig. 11, similar conclusions would

be obtained by the study of BR(h → γγ) in this region of parameters.
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