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Higgs boson mass in the Standard Model at two-loop order

and beyond
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We calculate the mass of the Higgs boson in the Standard Model in terms of

the underlying Lagrangian parameters at complete 2-loop order with leading

3-loop corrections. A computer program implementing the results is provided.

The program also computes and minimizes the Standard Model effective po-

tential in Landau gauge at 2-loop order with leading 3-loop corrections.
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I. INTRODUCTION

The Large Hadron Collider (LHC) has discovered [1] a Higgs scalar boson h with massMh

near 125.5 GeV [2] and properties consistent with the predictions of the minimal Standard

Model. At the present time, there are no signals or hints of other new elementary particles.

In the case of supersymmetry, the limits on strongly interacting superpartners are model

dependent, but typically extend to over an order of magnitude above Mh. It is therefore

quite possible, if not likely, that the Standard Model with a minimal Higgs sector exists

http://arxiv.org/abs/1407.4336v1
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as an effective theory below 1 TeV, with all other fundamental physics decoupled from it

to a very good approximation. Within this model, precision calculations can help to relate

observable quantities to the underlying Lagrangian parameters, as well as help to constrain

new physics models, including those for which decoupling may not hold.

One such observable quantity is the physical mass Mh itself. At tree level, Mh is directly

proportional to the square root of the Higgs field self interaction coupling, λ. One important

question has to do with the stability of the Standard Model vacuum [4–15]. The observed

value of Mh is in the range that would apparently correspond to metastability of the vacuum

[16–20], assuming that there is no new physics between the electroweak scale and the Planck

scale. It is therefore important to pin down the relationship between λ and Mh as accurately

as possible. Parametric uncertainties, notably the dependences on the top-quark mass and

the QCD coupling, are not insignificant, and will likely remain so for some time. However,

our attitude is that theoretical calculations should, to the extent possible, be pushed to the

point that all limitations of our understanding can be reliably and unambiguously blamed

on experimental error.

The purpose of this paper is to present a full 2-loop calculation of the minimal Standard

Model Higgs boson pole massMh, in terms of the MS Lagrangian parameters v, λ, yt, g, g
′, g3,

with the leading 3-loop corrections in the limit g3, yt ≫ λ, g, g′. The relations between these

parameters and other observables, such as the physical masses of the top quark and the Z and

W bosons, are left to separate calculations. The result forMh is probably too long to present

as an analytical formula in print without forfeiting the goodwill of the reader, and in any

case evaluation of it will necessarily rely on numerical work done by computer. We therefore

present most of our results in the form of an electronic file, and as a public computer code.

The computer code also performs the related task of minimizing the 2-loop effective potential

[21] of the Standard Model with leading 3-loop corrections [22], implementing the form of the

minimization condition given recently in [23, 24], which resummed Goldstone contributions

to eliminate spurious imaginary parts and potentially infrared singular contributions.

Previous work on the 2-loop contributions to the relation between λ and Mh includes the

QCD corrections [18, 19], which can be obtained from the 2-loop QCD correction [25, 26]

to the Higgs self-energy function. The non-QCD corrections have been obtained by [19] and

[20] but were given there only in the form of simple interpolating formulas.

II. HIGGS POLE MASS AT 2-LOOP ORDER

To fix our conventions and notation, we write the Higgs kinetic and self-interaction La-

grangian as

L = −∂µΦ†∂µΦ− Λ−m2Φ†Φ− λ(Φ†Φ)2, (2.1)
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where we use the metric with signature (−,+,+,+), and m2 < 0, and the complex doublet

Higgs field is

Φ(x) =




1√
2
[v + h(x) + iG0(x)]

G+(x)


 . (2.2)

Here v is the Higgs vacuum expectation value (VEV), which we take to be evaluated at the

minimum of the effective potential evaluated at 2-loop order with leading 3-loop corrections.

This means that the sum of tadpole diagrams (including the tree-level one) vanishes at that

same order, and so need not be included. Because the Landau gauge is used for the evaluation

of the effective potential in [21]-[24], our calculation also is restricted to that gauge-fixing

scheme.

The other relevant couplings in the theory are the top-quark Yukawa coupling yt and

the SU(3)c × SU(2)L × U(1)Y gauge couplings g3, g, g
′. In principle, the bottom quark

and other fermion Yukawa couplings can also be included, but they make only a very tiny

difference even at 1-loop order, where their inclusion is straightforward (see below). All of

the couplings λ, m2, yt, g3, g, g
′, and the VEV v, are running parameters in the MS scheme.

In order to obtain the Higgs boson physical massMh, we calculate the self-energy function

Π(s) =
1

16π2
Π(1)(s) +

1

(16π2)2
Π(2)(s) + . . . (2.3)

consisting of the sum of all 1-particle-irreducible 2-point Feynman diagrams, in the regulated

theory in d = 4− 2ǫ dimensions. In this paper, factors of 1/(16π2)ℓ are extracted as a way

of signifying the loop order ℓ. Rather than including counterterm diagrams separately, we

found it more efficient to do the calculation in terms of the bare quantities λB, m
2
B, ytB, g3B,

gB, g
′
B, and VEV vB, and then re-express the results in terms of the MS quantities. The

complex pole squared mass is the solution of

M2
h − iΓhMh ≡ spole = m2

B + 3λBv
2
B +

1

16π2
Π(1)(spole) +

1

(16π2)2
Π(2)(spole), (2.4)

where 3-loop order effects are consistently neglected in this section. We then apply the MS

relations between bare and renormalized parameters:

v2B = µ−2ǫv2
[
1 +

1

16π2

cφ1,1
ǫ

+
1

(16π2)2

(cφ2,2
ǫ2

+
cφ2,1
ǫ

)
+ . . .

]
, (2.5)

λB = µ2ǫ
[
λ+

1

16π2

cλ1,1
ǫ

+
1

(16π2)2

(cλ2,2
ǫ2

+
cλ2,1
ǫ

)
+ . . .

]
, (2.6)
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m2
B = m2 +

1

16π2

cm
2

1,1

ǫ
+

1

(16π2)2

(cm2

2,2

ǫ2
+

cm
2

2,1

ǫ

)
+ . . . , (2.7)

ytB = µǫ
[
yt +

1

16π2

cyt1,1
ǫ

+ . . .
]
, (2.8)

gB = µǫ
[
g +

1

16π2

cg1,1
ǫ

+ . . .
]
, (2.9)

g′B = µǫ
[
g′ +

1

16π2

cg
′

1,1

ǫ
+ . . .

]
, (2.10)

g3B = µǫ [g3 + . . .] , (2.11)

to obtain spole in terms of the renormalized parameters. Here µ is the regularization scale,

related to the MS renormalization scale Q by

Q2 = 4πe−γEµ2, (2.12)

where γE = 0.5772 . . . is the Euler-Mascheroni constant, and the counterterm coefficients

are, to the orders required for this paper:

cφ1,1 = −3y2t +
9

4
g2 +

3

4
g′2, (2.13)

cφ2,2 = 12g23y
2
t −

9

4
y4t −

27

8
y2t g

2 − 1

8
y2t g

′2 − 33

32
g4 +

27

16
g2g′2 +

91

32
g′4, (2.14)

cφ2,1 = −10g23y
2
t +

27

8
y4t −

45

16
y2t g

2 − 85

48
y2t g

′2 +
271

64
g4 − 9

32
g2g′2 − 431

192
g′4 − 3λ2, (2.15)

cλ1,1 = −3y4t + 6λy2t + 12λ2 − 9

2
λg2 − 3

2
λg′2 +

9

16
g4 +

3

8
g2g′2 +

3

16
g′4, (2.16)

cλ2,2 = 24g23y
4
t − 24g23y

2
tλ− 45

2
y6t +

27

2
y4t g

2 +
13

2
y4t g

′2 − 9

2
y4tλ+ 108y2tλ

2 − 135

4
y2tλg

2

−53

4
y2t λg

′2 +
27

16
y2t g

4 +
9

8
y2t g

2g′2 +
9

16
y2t g

′4 + 144λ3 − 81λ2g2 − 27λ2g′2

+24λg4 +
45

4
λg2g′2 − 7

4
λg′4 − 195

64
g6 − 119

64
g4g′2 +

37

64
g2g′4 +

73

64
g′6, (2.17)

cλ2,1 = −8g23y
4
t + 20g23y

2
t λ+

15

2
y6t −

2

3
y4t g

′2 − 3

4
y4t λ− 36y2tλ

2 +
45

8
y2t λg

2

+
85

24
y2t λg

′2 − 9

16
y2t g

4 +
21

8
y2t g

2g′2 − 19

16
y2t g

′4 − 78λ3 + 27λ2g2 + 9λ2g′2

−73

32
λg4 +

39

16
λg2g′2 +

629

96
λg′4 +

305

64
g6 − 289

192
g4g′2 − 559

192
g2g′4 − 379

192
g′6, (2.18)

cm
2

1,1 = m2
[
3y2t + 6λ− 9

4
g2 − 3

4
g′2

]
, (2.19)

cm
2

2,2 = m2
[
−12g23y

2
t +

9

4
y4t + 36y2tλ− 81

8
y2t g

2 − 35

8
y2t g

′2 + 54λ2 − 27λg2 − 9λg′2

+
249

32
g4 +

45

16
g2g′2 − 55

32
g′4

]
, (2.20)
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FIG. 2.1: Topologies for the one- and two-loop vacuum and self-energy scalar basis integrals used

in this paper and defined in refs. [33, 34]. The dot in the T topology stands for a derivative with

respect to the squared mass x.

cm
2

2,1 = m2
[
10g23y

2
t −

27

8
y4t − 18y2tλ+

45

16
y2t g

2 +
85

48
y2t g

′2 − 15λ2 + 18λg2 + 6λg′2

−145

64
g4 +

15

32
g2g′2 +

557

192
g′4

]
, (2.21)

cyt1,1 = yt

[
−4g23 +

9

4
y2t −

9

8
g2 − 17

24
g′2

]
, (2.22)

cg1,1 = −19g3/12, (2.23)

cg
′

1,1 = 41g′3/12. (2.24)

These counterterm coefficients can be obtained from the 2-loop beta functions and anomalous

dimension given in refs. [27–30], [21]; see for example the discussion in eqs. (4.5)-(4.14) of

ref. [22] which uses the same notations and conventions as the present paper.

The 1-loop and 2-loop integrals are reduced, using the Tarasov algorithm [31] imple-

mented in the program TARCER [32], to a set of Euclidean d-dimensional scalar basis in-

tegrals with topologies illustrated in Figure 2.1 and defined in our notation in refs. [33, 34].

The 1-loop integrals are

A(x), B(x, y), (2.25)

and the 2-loop integrals are

I(x, y, z), S(x, y, z), T(x, y, z), U(x, y, z, u), M(x, y, z, u, v), (2.26)

where the arguments are bare squared masses. The integrals B,S,T,U, and M also each

have an implicit dependence on the external momentum invariant s = −p2. The integrals

have invariances under interchanges of squared mass arguments that are obvious from the

figures.
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In terms of bare quantities, the propagators in the self-energy integrals depend on the

squared masses of the neutral and charged Goldstone bosons, the Higgs boson, the top

quark, and the W and Z bosons:

GB = m2
B + λBv

2
B, (2.27)

HB = m2
B + 3λBv

2
B, (2.28)

tB = y2tBv
2
B/2, (2.29)

WB = g2Bv
2
B/4, (2.30)

ZB = (g2B + g′2B)v
2
B/4, (2.31)

with a massless photon and ghosts. We then perform an expansion using eqs. (2.5)-(2.24),

to write these quantities in terms of the corresponding MS squared masses. For the 2-

loop integrals, this merely requires replacing the bare squared mass arguments by their MS

counterparts, because the difference is of 3-loop order. For the 1-loop integrals, the functions

A and B are expanded to first order around the MS squared-mass arguments

G = m2 + λv2, (2.32)

H = m2 + 3λv2, (2.33)

t = y2t v
2/2, (2.34)

W = g2v2/4, (2.35)

Z = (g2 + g′2)v2/4, (2.36)

using

A(X) = A(x) + (X − x)
∂

∂x
A(x) + . . . , (2.37)

B(X, Y ) = B(x, y) + (X − x)
∂

∂x
B(x, y) + (Y − y)

∂

∂y
B(x, y) + . . . , (2.38)

where the derivatives are given in the Appendix. As a further refinement, the parameter

m2 is eliminated using the minimization condition of the Landau gauge effective potential,

which takes the form

G = m2 + λv2 = − 1

16π2
∆̂1 −

1

(16π2)2
∆̂2 − . . . , (2.39)

given in eqs. (4.18)-(4.21) of ref. [23] (with equivalent results in [24]). Here the quantities
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∆̂1 and ∆̂2 depend on t, W , Z, and

h = 2λv2, (2.40)

but not on G or H or m2. The 1-loop integrals involving G as an argument are expanded us-

ing eqs. (A.7)-(A.14) of the Appendix, while those involving H as an argument are expanded

using eqs. (2.37), (2.38) again.

The loop integrals are then rewritten in terms of the basis of ǫ-independent integrals

A(x), B(x, y), I(x, y, z), S(x, y, z), T (x, y, z), T (0, x, y),

U(x, y, z, u), M(x, y, z, u, v) (2.41)

which are obtained from the corresponding integrals in eqs. (2.25), (2.26) by subtracting

appropriate sub-divergences and taking the limit ǫ → 0. Here T (x, y, z) ≡ T (x, y, z) +

B(y, z)ln(x) with

ln(x) ≡ ln(x/Q2). (2.42)

The reason for the definition of the function T (x, y, z) is that it is well defined as x → 0, while

T (x, y, z) diverges in that limit. For the precise definitions of the integrals in eq. (2.41), see

section 2 of [34]. These integrals also have an implicit dependence on the common external

momentum invariant s and on the MS renormalization scale Q. In the resulting expression

on the right-hand side of eq. (2.4), there are terms proportional to spole/ǫ and spole/ǫ
2,

corresponding to the Higgs wavefunction renormalization. These are moved to the left-hand

side to allow spole to be solved for. Finally, the regulator is removed by taking the limit

ǫ → 0.

The result for the Higgs squared pole mass is thus obtained in the form:

M2
h − iΓhMh = 2λv2 +

1

16π2
∆

(1)

M2

h

+
1

(16π2)2

[
∆

(2),QCD

M2

h

+∆
(2),non−QCD

M2

h

]
, (2.43)

where the right-hand side is a function of v, λ, yt, g, g
′, g3, Q, with propagator masses ex-

pressed as the combinations h, t,W, Z, and 0. Working to 2-loop order with bottom, tau,

and charm Yukawa couplings neglected, we can treat spole as real where it appears as the

(implicit) argument of the basis integral functions, and so replace it by M2
h . This is because

the imaginary part of spole is already of 2-loop order, and so the effect of including it would

make a difference of 3-loop electroweak order in the pole mass. If the lighter fermions are

included in the 1-loop self-energy (see below), then there is a 1-loop imaginary part to the

complex pole squared mass, but it is numerically smaller than a typical 3-loop order con-
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tribution due to the small Yukawa couplings of b, τ , c, so that it can still be safely and

consistently neglected. This feature is of course related to the very narrow Higgs width in

the Standard Model. For simplicity, we will therefore write s = M2
h below.

The complete lists of 1-loop and 2-loop basis integrals appearing on the right-hand side

are

I(1) =
{
B(t, t), B(h, h), B(W,W ), B(Z,Z), A(t), A(h), A(W ), A(Z)

}
(2.44)

and

I(2) =
{
M(h, h, h, h, h), U(h, h, h, h), S(h, h, h), M(h, Z, h, Z, Z), U(h, h, Z, Z),

M(W,W,W,W, h), U(W,W,W, h), S(h,W,W ), T (W,W, h),

M(Z,Z, Z, Z, h), U(Z,Z, Z, h), S(h, Z, Z), T (Z,Z, h),

M(W,W,W,W,Z), U(W,W,W,Z), S(W,W,Z), T (W,W,Z), T (Z,W,W ),

M(W,Z,W,Z,W ), U(Z,Z,W,W ), M(h,W, h,W,W ), U(h, h,W,W ),

M(t, t, t, t, Z), U(t, t, t, Z), S(t, t, Z), T (t, t, Z), T (Z, t, t),

M(t, t, t, t, h), U(t, t, t, h), S(h, t, t), T (t, t, h),

M(t, Z, t, Z, t), U(Z,Z, t, t), M(t, h, t, h, t), U(h, h, t, t),

M(t,W, t,W, 0), U(W,W, 0, t), U(t, t, 0,W ), S(0, t,W ), T (W, 0, t), T (t, 0,W ),

M(t, t, t, t, 0), T (t, 0, t), T (0, t, t),

M(W,W,W,W, 0), T (W, 0,W ), T (0,W,W ), U(W,W, 0, 0), S(0, 0,W ),

T (W, 0, 0), U(Z,Z, 0, 0), S(0, 0, Z), T (Z, 0, 0), I(h, h, h), I(t, t, Z),

I(h, t, t), I(W,W,Z), I(h,W,W ), I(h, Z, Z), I(0, t,W ), I(0, h,W ),

I(0, h, Z), I(0,W, Z), I(0, 0,W ), I(0, 0, Z), I(0, 0, h), I(0, 0, t)
}
. (2.45)

In each of the B, S, T , T , U , and M integrals, the external momentum invariant is taken to

be the real pole squared mass, s = M2
h , as discussed above. Then eq. (2.43) can be solved

numerically, by iteration.

The explicit results for the 1-loop part and the 2-loop QCD part of the Higgs pole squared

mass corrections are:

∆
(1)

M2

h

= 3y2t (4t− s)B(t, t)− 18λ2v2B(h, h)

+
1

2
(g2 + g′2)

[
(s− 3Z − s2/4Z)B(Z,Z)− sA(Z)/2Z + 2Z

]

+g2
[
(s− 3W − s2/4W )B(W,W )− sA(W )/2W + 2W

]
, (2.46)

∆
(2),QCD

M2

h

= g23y
2
t

[
8(4t− s)(s− 2t)M(t, t, t, t, 0) + (36s− 168t)T (t, 0, t)
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+16(s− 4t)T (0, t, t) + 14sB(t, t)2 + (−176 + 36s/t)A(t)B(t, t)

+(80t− 36s)B(t, t)− 28A(t)2/t + 80t− 17s
]
. (2.47)

In eq. (2.46), a term 3λ(s2−h2)B(0, 0)/h coming from loops involving Goldstone bosons and

longitudinal vector bosons has been moved into the 2-loop order non-QCD part discussed

below, by iterating using s = h + ∆
(1)

M2

h

/16π2. There, it cancels against other terms, and

the full 2-loop result does not depend on B(0, 0). This is as expected, because a term with

B(0, 0) coming from loops involving Goldstone bosons and longitudinal vector bosons would

imply an imaginary part to the pole squared mass that does not correspond to any physical

decay of the Higgs boson. One-loop contributions B(0, Z) and B(0,W ) from individual

Feynman diagrams involving Goldstone bosons and longitudinal vector bosons also cancel

as expected, even without iteration in s.

For the remaining, non-QCD, 2-loop contributions, there are a large number of terms,

and some of them are a bit complicated, so that the length of the result may exceed the

threshold of impoliteness, and we decline to present them explicitly in print. The result has

the form:

∆
(2),non−QCD

M2

h

=
∑

i

c
(2)
i I

(2)
i +

∑

j≤k

c
(1,1)
j,k I

(1)
j I

(1)
k +

∑

j

c
(1)
j I

(1)
j + c(0). (2.48)

The coefficients c
(2)
i and c

(1,1)
j,k and c

(1)
j and c(0) are available in electronic form in a file called

coefficients.txt. They are also implemented in a public computer code written in C,

described below. These electronic files are available from the authors’ web pages [35], and

coefficients.txt is also included as an ancillary file with the arXiv source for this article.

In these coefficients, we replaced s by its tree-level approximation 2λv2 wherever it appears

explicitly (but not where it appears as the implicit argument of the basis functions). This

enforces the cancellations between Goldstone and longitudinal vector boson contributions,

avoiding spurious imaginary contributions to the pole squared mass that do not correspond

to physical decay modes of the Higgs boson. Therefore each coefficient is a sum of ratios of

polynomials in λ, yt, g, g
′, multiplied by the appropriate power of v. The impact incurred by

doing these substitutions for s is of 3-loop order without involving QCD, and so is beyond

the order of our calculations in this paper, including the QCD part of the leading 3-loop

corrections discussed in the next section.

The expression of the result in terms of the basis integrals is not unique, because there

are identities between different basis integrals that hold when the squared mass arguments

are not generic. These identities include eqs. (A.14), (A.15), and (A.17)-(A.20) in ref. [36],

and eqs. (A.17)-(A.21) in the Appendix of the present paper. We also used the threshold

integral relations (A.15) and (A.16) in the Appendix to simplify the 2-loop order non-QCD

part.
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There are several quite non-trivial checks on the calculation. First, we checked that all

single and double poles in ǫ cancel inM2
h . This relies on agreement between the counter-term

poles cXℓ,n (for X = v, λ,m2, yt, g, g
′) as extracted from the Higgs anomalous dimension and

the beta functions in the literature, and the divergent parts of the loop integrations per-

formed independently here. Second, we checked that logarithms of G cancel, avoiding any

spurious imaginary parts that would occur if the renormalization scale were chosen so that

G < 0, or spurious divergences that would occur if G = 0. Third, we observed cancellation

between the parts of loop integral functions involving Landau gauge vector propagators with

poles at squared mass equal to 0 and the corresponding Goldstone propagators, once the

latter were expanded using eq. (2.39). This is important in verifying the absence of spurious

absorptive (imaginary) parts of the self-energy evaluated on-shell. Fourth, we noted that the

imaginary part −iΓhMh of eq. (2.43) comes entirely from the contributions of the six basis

integrals U(W,W, 0, 0), S(0, 0,W ), T (W, 0, 0) and U(Z,Z, 0, 0), S(0, 0, Z), T (Z, 0, 0), corre-

sponding to the 3-body decays Γ(h → Wff
′
) and Γ(h → Zff). We checked numerically to

very high precision that these imaginary contributions, when computed with s = h, agree

with the tree-level prediction for the 3-body widths found in eqs. (8a)-(10) of ref. [37]. Fifth,

we checked that although some of the individual 2-loop coefficients in eq. (2.48) are singular

in the formal limits g, g′ → 0 or λ → 0, the whole expression is well-behaved in those limits,

thanks to relations between different basis integrals when squared mass arguments are small.

Finally, we checked that the result for M2
h is renormalization group scale invariant through

terms of 2-loop order. This is in principle equivalent to the first check mentioned, but in

practice it tests the validity of various intermediate steps. It takes the form:

0 = Q
d

dQ
M2

h =

[
Q

∂

∂Q
− γφv

∂

∂v
+
∑

X

βX

∂

∂X

]
M2

h , (2.49)

where X = {λ, yt, g, g′, g3}, and γφ is the anomalous dimension of the Higgs field. This

check makes use of the derivatives of basis integrals with respect to the implicit argument

Q, provided in eqs. (4.7)-(4.13) of ref. [33], and on eqs. (A.5), (A.6) in the Appendix of the

present paper. It also makes use of the MS beta functions and Higgs anomalous dimension

given in refs. [27–30], [21], [38, 39].

Although the lighter quarks and leptons have been neglected above due to their very

small Yukawa couplings, it is easy enough to include them in the leading approximation:

∆
(1),b,τ,c,...

M2

h

= −[3y2b + y2τ + 3y2c + . . .]B(0, 0)M2
h , (2.50)

Here we have taken s = M2
h and dropped the y4f contributions and replaced the masses in
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light fermion propagators by 0. In that limit, we can also take

B(0, 0) = 2− ln(M2
h/Q

2) + iπ. (2.51)

The numerical impact on the real pole mass Mh from eq. (2.50) is seen to be of order 1 MeV.

By comparing the imaginary part of the pole squared mass, M2
h−iΓhMh, to the contribution

of eq. (2.50), multiplied by the loop factor 1/16π2, we also obtain the well-known result

Γ(h → ff) =
Ncy

2
f

16π
Mh. (2.52)

However, there are certainly better ways of obtaining the precise Higgs decay widths in the

Standard Model; see for example ref. [40] and references therein.

III. LEADING THREE-LOOP CORRECTIONS TO THE HIGGS MASS

In this section, we find the leading 3-loop contributions to the Higgs pole squared mass

in the effective potential approximation, based on the formal limit in which the top-quark

squared mass is taken to be much larger than the squared masses of h, Z, and W . In

that limit, the Higgs self-energy function at leading order in yt and g3 can be approximated

by taking s = 0, and is proportional to the second derivative of the renormalized effective

potential with respect to the Higgs field. Taking into account also the change in the mini-

mization condition of the effective potential, we have a contribution (see for example section

VI of ref. [22]):

δM2
h =

[
∂2

∂v2
− 1

v

∂

∂v

]
δVeff . (3.1)

Using the leading 3-loop effective potential of ref. [22], with resummed Goldstone boson

contributions to eliminate spurious imaginary parts and infrared singular contributions [23,

24], we obtain the 3-loop contribution to be added to eq. (2.43):

∆M2
h =

1

(16π2)3

[
∆

(3),leading QCD
M2

h

+∆
(3),leading non-QCD
M2

h

]
(3.2)

where

∆
(3),leading QCD
M2

h

= g43y
2
t t
[
248.122 + 839.197ln(t) + 160ln

2
(t)− 736ln

3
(t)

]

+g23y
4
t t
[
2764.365 + 1283.716ln(t)− 360ln

2
(t) + 240ln

3
(t)

]
, (3.3)
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∆
(3),leading non-QCD
M2

h

= y6t t
[
−3199.017 + 36ln(h)− 2653.511ln(t) + 756ln(h)ln(t)

+
27

2
ln

2
(t) + 324ln(h)ln

2
(t)− 225ln

3
(t)

]
. (3.4)

The analytical forms of the decimal coefficients are:

248.122 ≈ −3776

9
+ 320ζ(3) +

704π4

135
+

256

9
ln2(2)[π2 − ln2(2)]− 2048

3
Li4(1/2), (3.5)

839.197 ≈ 128ζ(3) + 2056/3, (3.6)

2764.365 ≈ 760

3
− 16π2

3
+ 576ζ(3) +

496π4

15
+

512

3
ln2(2)[π2 − ln2(2)]− 4096Li4(1/2), (3.7)

1283.716 ≈ −344 + 48π2 + 960ζ(3), (3.8)

−3199.017 ≈ −727− 17π2

2
− 1962ζ(3)− 88π4

15
+ 32 ln2(2)[π2 − ln2(2)] + 768Li4(1/2), (3.9)

−2653.511 ≈ −4191

2
− 39π2 − 144ζ(3). (3.10)

The 3-loop approximate formulas just described may be subject to significant corrections,

because s/t ≈ 0.59 is not a very small expansion parameter. However, experience shows

that in such small-s expansions of loop integrals the coefficients of s/t are typically also less

than 1, so that the 3-loop approximation above might be expected to provide the bulk of the

effect. For example, the small s-expansions of the 1-loop and 2-loop basis functions involved

in the contributions from the top quark and gluons are [33]:

B(t, t) = −ln(t) +
s

6t
+ . . . (3.11)

T (t, 0, t) =
1

2
[ln(t)− 1]2 +

s

4t
+ . . . (3.12)

T (0, t, t) = −1

2
[3 + 2ln(t) + ln

2
(t)] +

s

36t
[6ln(t) + 1] + . . . (3.13)

M(t, t, t, t, 0) =
1

t
+

13s

72t2
+ . . . (3.14)

As noted in the discussion surrounding eqs. (6.21)-(6.28) of ref. [22], the relatively small

coefficient 248.122 of the g43y
2
t t term independent of ln(t) in eq. (3.3) is the result of a

remarkable accidental near-cancellation. Because of this, the g23y
4
t t and y6t t contributions are

actually numerically more important than the g43y
2
t t contribution.

Because the full s dependence of the 2-loop QCD part was retained above, the QCD

part of the 3-loop contribution found in the effective potential approximation can simply be

added in. As a check, we have verified the renormalization group invariance of the combined

full 2-loop plus leading 3-loop QCD result from eqs. (2.43) and (2.46)-(2.48) and eqs. (3.2)-

(3.3). This check consists of evaluating eq. (2.49) including all terms of 2-loop order and the
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terms of 3-loop order that involve g3 and are not suppressed by λ, g, or g′. The check again

makes use of the MS beta functions and Higgs anomalous dimension given in refs. [27–30],

[21], [38, 39], as well as eqs. (4.7)-(4.13) of ref. [33], and on eqs. (A.5), (A.6) in the Appendix

of the present paper.

For the 3-loop non-QCD part, the situation is more subtle, because in the 2-loop non-

QCD contribution of eq. (2.48) we made the substitution s = h, implicitly dropping 3-loop

order corrections of order y6t t, formally of the same order as in eq. (3.4). However, the

approximation for the 3-loop contribution above is still justified if the renormalization scale

Q is chosen within an appropriate range. To see this, note that if Q is chosen to the particular

value such that s = h, then the numerical error made by using s = h in the 2-loop part

will vanish exactly. More formally, since we are interested in the 3-loop contributions in the

limits s/t ≪ 1 and yt ≫ λ, g, g′, note that from eqs. (2.43) and (2.46) we have

s = h− 1

16π2
12y2t tln(t) + . . . (3.15)

where the ellipses represent electroweak terms and terms suppressed by s/t. Thus we see

that the neglected 3-loop order terms that are of order y6t t will vanish when Q is chosen so

that ln(t) = 0, and are correspondingly suppressed for small ln(t). In practice, the conditions

s = h and ln(t) = 0 imply values of Q that are not very far apart from each other, and

therefore this range of Q is preferred when including the 3-loop contributions above. As we

will see below, the numerical renormalization scale dependence of the computed Mh is mild

for a larger range of Q.

IV. COMPUTER CODE IMPLEMENTATION AND NUMERICAL RESULTS

We have implemented the Higgs pole mass calculations described above in a computer

code library of utilities written in C, called SMH (for “Standard Model Higgs”). The code

can be downloaded from the authors’ web pages [35].

The SMH program requires the use of the program TSIL (Two-loop Self-energy Integral

Library) [34], which is used to handle the loop integrations. The 1-loop basis integrals are

evaluated in terms of logarithms, and the last 29 of the 2-loop integrals in the list eq. (2.45)

[starting with S(0, t,W )] are computed analytically in terms of polylogarithms by TSIL,

using formulas obtained in [7, 33, 41–46]. The other 38 integrals are computed numerically

by TSIL; this requires only 12 calls of the function TSIL Evaluate. The program SMH is

distributed with a file README.txt, which gives complete instructions for building and using

it, as well as several example and test programs. Most user applications, like the example

programs provided, will make use of a static archive called libsmh.a, which can be linked

to by C or C++ programs.
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The functionality implemented in SMH includes the following:

• SMH RGrun performs the renormalization group running of λ, yt, g3, g, g
′, m2, v at up

to 3-loop order, using the MS beta functions and Higgs anomalous dimension given

in refs. [27–30], [21], [38, 39]. (At this writing, the lighter fermion Yukawa couplings

yb, yτ , yc are not included, but they will be in a future release, as an option.)

• SMH Find vev and SMH Find m2 implement the minimization of the Landau gauge ef-

fective potential for the Standard Model, at up to 2-loop order [21] with leading 3-loop

corrections [22], using eqs. (4.18)-(4.21) of ref. [23]. The function SMH Find vev finds

v, given m2, λ, yt, g, g
′, g3 at a renormalization scale Q, while the function SMH Find m2

does the inverse task of finding m2, given v, λ, yt, g, g
′, g3 at Q.

• SMH Find Mh and SMH Find lambda implement the 2-loop Higgs pole mass of eqs. (2.43)

and (2.46)-(2.48), with the leading 3-loop corrections from eqs. (3.2)-(3.4). The

function SMH Find Mh finds Mh given λ, v, yt, g, g
′, g3 at Q, while the function

SMH Find lambda does the inverse, finding λ given Mh and v, yt, g, g
′, g3 at Q.

The user can choose various different loop-order approximations, as illustrated in the exam-

ples below, with the default being to use the complete set of available corrections. Stand-

alone command-line programs corresponding to each of the above library functions are also

included in the SMH package. We also include example programs that produce the data

for the figures below. We plan to maintain and improve the SMH code indefinitely, and

welcome bug reports or suggestions.

For purposes of illustration, consider as benchmark inputs [taken from ref. [20] version 2,

eqs. (55)-(59)]:

m2(Mt) = −(93.36 GeV)2, (4.1)

λ(Mt) = 0.12711, (4.2)

yt(Mt) = 0.93558, (4.3)

g3(Mt) = 1.1666, (4.4)

g(Mt) = 0.64822, (4.5)

g′(Mt) = 0.35761. (4.6)

where Q = Mt = 173.10 GeV is the input scale. From these, we find our benchmark value

by minimizing the effective potential with leading 3-loop corrections:

v(Mt) = 247.039 GeV. (4.7)

If only the full 2-loop corrections were included, the result would be v(Mt) = 247.381 GeV.
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FIG. 4.1: The Standard Model Higgs VEV, v(Q), obtained from minimization of the effective

potential is shown in the left panel as a function of the renormalization scale Q. The dashed

line shows the results for the 2-loop minimization condition of eqs. (4.18)-(4.20) of ref. [23],

while the solid line is the 2-loop plus leading 3-loop result obtained by including also eq. (4.21)

of the same reference. The input parameters m2, λ, yt, g3, g, g
′ are obtained at the scale Q by

3-loop renormalization group running starting from eqs. (4.1)-(4.6). The right panel shows the

ratio of v(Q) to the value vrun(Q) obtained from directly running it using its renormalization

group equation and input value eq. (4.7).

The variation of v(Q) with Q is shown in Figure 4.1. To make the figure, the input pa-

rameters m2, λ, yt, g3, g, g
′ were run from the input scale to Q using 3-loop renormalization

group equations. In the left panel of Figure 4.1, we show the results for the 2-loop mini-

mization condition of eqs. (4.18)-(4.20) of ref. [23] as the dashed line, while the solid line is

the 2-loop plus leading 3-loop result obtained by including also eq. (4.21) of the same ref-

erence. The right panel shows the ratio of v(Q) to the value vrun(Q) obtained from directly

running it using its renormalization group equation and input value eq. (4.7). The deviation

of this ratio from unity is due to higher order-effects; it is seen to be less than 0.1% for the

calculation that includes the leading 3-loop effects.

In Figure 4.2, we reverse the roles of m2 and v, by showing the dependence of the Higgs

Lagrangian mass parameter m2(Q) obtained by minimizing the effective potential, this time

with the VEV v(Q) as an input parameter. To make the figure, the input parameters

v, λ, yt, g3, g, g
′ were run from the input scale to Q using 3-loop renormalization group equa-

tions. In the left panel of Figure 4.2, we show
√
−m2 obtained from the 2-loop minimization

condition of eqs. (4.18)-(4.20) of ref. [23] as the dashed line, while the solid line is the 2-loop

plus leading 3-loop result obtained by including also eq. (4.21) of the same reference. The

right panel shows the ratio of m2(Q) to the value m2
run(Q) obtained from directly running

it using its renormalization group equation and input value eq. (4.1).

In Figure 4.3, we show results for the Higgs pole mass Mh as a function of the renormal-
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FIG. 4.2: The Standard Model Lagrangian Higgs squared mass parameter, obtained from

minimization of the effective potential is shown in the left panel as
√
−m2 as a function of

the renormalization scale Q. The dashed line shows the results for the 2-loop minimization

condition of eqs. (4.18)-(4.20) of ref. [23], while the solid line is the 2-loop plus leading 3-

loop result obtained by including also eq. (4.21) of the same reference. The input parameters

v, λ, yt, g3, g, g
′ are obtained at the scale Q by 3-loop renormalization group running starting

from eqs. (4.2)-(4.7). The right panel shows the ratio of m2(Q) to the value m2
run(Q) obtained

from directly running it using its renormalization group equation and input value eq. (4.1).

ization scale Q. To make the figure, the input parameters λ, yt, g, g
′, g3, v were run from the

input scale to Q using 3-loop renormalization group equations. The lower solid (blue) line

is the 2-loop calculation of eqs. (2.43) and (2.46)-(2.48), while the upper solid (black) line

includes also the leading 3-loop contributions of eqs. (3.2)-(3.4). The results at the input

scale Q = 173.1 GeV are Mh = 125.789 GeV and Mh = 125.818, respectively. We also

show the tree-level approximation
√
2λv as the dotted line, and the 1-loop approximation

obtained from eqs. (2.43) and (2.46) as the short-dashed line, and the 1-loop approximation

with the 2-loop QCD corrections from (2.47) included as the long-dashed line.

Figure 4.4 is a close-up of the previous figure, to illustrate the scale dependence more

clearly for the full 2-loop and leading 3-loop approximations. The lower (blue) line is again

the full 2-loop Mh as calculated from eqs. (2.43) and (2.46)-(2.48). For comparison, we

also show the result for the full 2-loop plus the 3-loop QCD contribution of eqs. (3.2)-(3.3),

without including the non-QCD 3-loop corrections, as the upper (magenta) line. This has

a much stronger scale dependence than the 2-loop result, despite the formal independence

of Mh with respect to Q through terms of 3-loop order involving g3. Including the non-

QCD y6t t contributions from eq. (3.4) yields the middle (black) line, which again has a mild

scale dependence comparable to the 2-loop result. The residual scale dependence is due to

higher order effects. Note that, as can be seen by comparing eqs. (3.3) and (3.4), the 3-loop

QCD and 3-loop y6t t contributions contribute with opposite sign, and have an opposite scale
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FIG. 4.3: The calculated Higgs pole mass Mh as a function of the renormalization scale Q, in

various approximations. The input data at Q are obtained from 3-loop renormalization group

running of λ, yt, g, g
′, g3, v starting from eqs. (4.2)-(4.7). The dotted (green) line is the tree-level

approximation
√
2λv. The short-dashed (orange) line is the 1-loop approximation obtained from

eqs. (2.43) and (2.46). The long-dashed (red) line is the 1-loop approximation with the 2-loop

QCD corrections from eq. (2.47). The lower solid (blue) line is the 2-loop Mh as calculated from

eqs. (2.43) and (2.46)-(2.48), while the upper solid (black) line also includes the leading 3-loop

corrections of eqs. (3.2)-(3.4).
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FIG. 4.4: A close-up of the dependence of the calculated Mh on Q, as in Fig. 4.3. The lower (blue)

line is the full 2-loop Mh as calculated from eqs. (2.43) and (2.46)-(2.48). The upper (magenta)

line is the full 2-loop plus the 3-loop QCD contribution of eqs. (3.2)-(3.3), not shown in Fig. 4.3.

The middle (black) line is the full 2-loop plus the 3-loop corrections of eqs. (3.2)-(3.4), with the

left dot marking the case s = h and the right dot marking the case ln(t) = 0.
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FIG. 4.5: The Higgs self-coupling parameter, λMh
(Q) as calculated from a fixed pole mass

Mh = 125.818 GeV using eqs. (2.43) and (2.46)-(2.48) and eqs. (3.2)-(3.4), with yt, g, g
′, g3, v

obtained at the scale Q by 3-loop renormalization group running starting from eqs. (4.3)-(4.7).

The right panel shows the ratio of λMh
(Q) to the value λrun(Q) obtained from directly running

it using its renormalization group equation and input value eq. (4.2).

dependence.

The points with s = h and ln(t) = 0 are marked with dots on the leading 3-loop Mh

line in Figure 4.4. As argued in the previous section, the range of Q near these points is

preferred due to the treatment of the 2-loop corrections. In particular, the choice of Q that

makes ln(t) = 0 is easy to implement as a natural standard. Given the value of the running

top-quark mass, and the observed mild scale dependence in this region, a fixed value of, say,

Q = 160 GeV would also make sense.

In the left panel of Figure 4.5, we show the scale dependence of λ(Q) obtained

from eqs. (2.43) and (2.46)-(2.48) and eqs. (3.2)-(3.4), with the same input parameters

v, yt, g, g
′, g3 at Q = 173.1 GeV, but now using a fixed pole mass Mh = 125.818 GeV as

the input. This value is chosen so that the calculated Higgs self-coupling at the input scale

agrees with eq. (4.2). In the right panel, we show the ratio of λMh
(Q) determined in this

way to λrun(Q) obtained by directly running it from the input value eq. (4.2) using its 3-loop

renormalization group equation. As expected, the ratio is very close to 1 for all values of

Q; the two versions of λ would be visually indistinguishable in the left panel. These results

illustrate the renormalization group scale independence through 2-loop and 3-loop QCD or-

der that we verified analytically as described above, with small discrepancies less than 0.1%

coming from 3-loop y6t t and from sub-leading 3-loop and higher-order effects.
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V. OUTLOOK

In this paper, we have obtained the pole mass of the Higgs boson, Mh, including full 2-

loop and leading 3-loop corrections, in the MS scheme. The calculation was done in Landau

gauge, in order to match with existing multi-loop calculations of the effective potential

used to eliminate m2 by relating it to the VEV v and the other Lagrangian parameters. The

inputs to the calculation are the MS running parameters of the theory, v, λ, yt, g, g
′, g3. Other

observables, such as the pole masses of the top quark and the W,Z bosons, are not inputs to

the calculation, and are to be calculated separately. A possible advantage to this strategy is

that future refinements in calculations and measurements of those other observable quantities

will not be entangled with the calculation of the Higgs pole mass. Previous results for the

2-loop corrections [18–20] to the Higgs mass were organized in a different way, and in the

case of the non-QCD corrections [19, 20] were given only in the form of simple interpolating

formulas, making comparison with the present paper not practical. Our full analytic results

are contained in an ancillary electronic file, and a computer code called SMH is provided [35],

implementing the results for Mh, the effective potential minimization, and renormalization

group running.

Because there is no way of directly measuring the Higgs self-coupling parameter accurately

in the immediate future, the measurement of the Higgs mass is the best way to determine

λ, assuming the validity of the Standard Model, with variations related approximately by

∆λ = 0.00205(∆Mh/GeV). (5.1)

From the renormalization scale variation and the magnitudes of the leading 3-loop QCD and

non-QCD effects, we make a very rough estimate of the theoretical uncertainty on Mh of 100

MeV, or about 0.1%, taking MS quantities as the inputs. This does not include the effects

of reducible parametric error, notably the dependence on the uncertainties in the top-quark

Yukawa coupling (or mass) and the QCD coupling. The future experimental error in Mh has

been estimated [47] to be perhaps 100 MeV (50 MeV) with 300 fb−1 (respectively 3000 fb−1)

at the LHC, and of order 30 MeV or less at future e+e− colliders. We conclude that more

refined 3-loop order and quite possibly 4-loop order corrections to Mh will be necessary in

order to make the theoretical error small compared to the foreseeable experimental error,

discounting the parametric uncertainties that may be reducible by independent calculations

and measurements. At the least, a further refinement of the 3-loop Mh calculation would

serve to firm up an estimate of the theoretical error.

Besides applications within the Standard Model, the result may find use in extensions

of the Standard Model, including supersymmetry. The most straightforward interpretation

of the current LHC searches for supersymmetry is that the superpartners, if they exist, are

sufficiently heavy that the Standard Model can be treated as an effective theory with other
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new physics nearly decoupled. The direct observation that the Higgs mass is relatively large

compared to most pre-LHC expectations within supersymmetry can be taken as indirect

evidence of the same thing. In the past, many attempts to compute the Higgs mass within

supersymmetry have calculated directly within the full softly broken supersymmetric the-

ory in the Feynman diagrammatic [48]-[56] and effective potential approximation [57]-[60]

approaches. However, it now seems to us that with very heavy superpartners, the effective

field theory and renormalization group resummation strategy [61]-[67] for calculating the

Higgs mass is probably the best one. One can match the supersymmetric theory onto the

Standard Model parameters as an effective theory at some scale or scales comparable to the

most important superpartner masses (probably the top squarks), and then run the param-

eters of the theory down to a scale comparable to Mt, and there compute Mh within the

Standard Model. In that case, the results obtained here may be a useful ingredient.

Appendix: Some loop integral identities

This Appendix contains some loop integral identities that are useful for processing and

simplifying the 2-loop Higgs pole mass. Other useful identities in the notation of the present

paper can be found in refs. [33, 34, 36]

First, the derivatives of 1-loop basis functions, obtained by dimensional analysis and

integration by parts, are:

∂

∂x
A(x) = (d/2− 1)A(x)/x, (A.1)

∂

∂x
B(x, y) =

[
(d− 3)(x− y − s)B(x, y) + (d− 2){(x+ y − s)A(x)/2x −A(y)}

]
/∆sxy,

(A.2)

where d = 4−2ǫ is the number of spacetime dimensions and ∆abc ≡ a2+b2+c2−2ab−2ac−2bc.

Using the expansions for small ǫ,

A(x) = −x/ǫ+ A(x) + ǫAǫ(x) +O(ǫ2), (A.3)

B(x, y) = 1/ǫ+B(x, y) + ǫBǫ(x, y) +O(ǫ2), (A.4)

one then obtains

∂

∂x
A(x) = A(x)/x+ 1 = ln(x), (A.5)

∂

∂x
B(x, y) = {(x− y − s)[B(x, y)− 1] + (x+ y − s)A(x)/x− 2A(y)]}/∆sxy, (A.6)
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and the expansions for small G:

A(G) = G ln(G)−G, (A.7)

B(0, G) = B(0, 0) +G[3− B(0, 0)− ln(G)]/s+O(G2), (A.8)

B(G,G) = B(0, 0) + 2G[3− B(0, 0)− ln(G)]/s+O(G2), (A.9)

B(G, x) = B(0, x) +G[3s− x− (s+ x)B(0, x)− 2A(x)]/(x− s)2

+Gln(G)/(x− s) +O(G2), (A.10)

Aǫ(G) = G[−1− π2/12 + ln(G)− 1

2
ln

2
(G)], (A.11)

Bǫ(0, G) = Bǫ(0, 0) +G[−Aǫ(G)/G+ 2B(0, 0)− Bǫ(0, 0)]/s+O(G2), (A.12)

Bǫ(G,G) = Bǫ(0, 0) + 2G[−Aǫ(G)/G+ 2B(0, 0)− Bǫ(0, 0)]/s+O(G2), (A.13)

Bǫ(G, x) = Bǫ(0, x) +G
[
2A(x)− 2Aǫ(x) + (s+ x)

{
2B(0, x)− Bǫ(0, x)

}]
/(x− s)2

+Aǫ(G)/(x− s) +O(G2). (A.14)

Some identities between basis integrals that hold for non-generic squared mass arguments

are the threshold identities:

lim
s→x

B(0, x) = 1−A(x)/x, (A.15)

lim
s→x

[
T (0, 0, x) + T (x, 0, 0)

]
= −1, (A.16)

and the general relations

I(0, 0, x) = A(x)− A(x)2/2x − x(1 + π2/6), (A.17)

I(0, x, x) = 2A(x)− A(x)2/x − 2x, (A.18)

T (0, 0, x) = −T (x, 0, 0) + [−s + 2A(x)− A(x)2/x+ (s+ x)B(0, x)

−(s+ x)A(x)B(0, x)/x− sB(0, x)2]/(s− x), (A.19)

T (0, 0, 0) = −[B(0, 0)− 1]2/2, (A.20)

U(0, x, 0, 0) = (1− x/s)T (x, 0, 0) +B(0, 0)B(0, x) + A(x)B(0, 0)/x

+(1− x/s)B(0, x)− I(0, 0, x)/s+ 2− x/s. (A.21)

Other identities of similar type that express redundancies among the basis integrals for non-

generic squared mass arguments and were used here have appeared as eqs. (A.14), (A.15),

and (A.17)-(A.20) of ref. [36].
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