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We study the stability of particles in slip-stacking configuration, used to nearly double proton
beam intensity at Fermilab. We introduce universal area factors to calculate the available phase
space area for any set of beam parameters without individual simulation. We find perturbative
solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve
97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven
pendulum and to the system of two standing-wave traps moving with respect to each other.
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Introduction

Slip-stacking is integral to high-intensity operation at
Fermilab and will likely play a central role in upgrades
to the accelerator complex [1][2][3]. Particle loss in the
slip-stacking process is a limiting factor on ultimate per-
formance [1] [4]. Single-particle dynamics associated with
slip-stacking contribute directly to the particle losses.
This paper analyzes these dynamics at depth, both an-
alytically and numerically. Our numerical results com-
pletely characterize the stable phase-space boundary. We
use these results to recommend an upgrade to the Fermi-
lab Booster that would substantially reduce slip-stacking
losses.

Our analytical results provide insight into slip-stacking
by presenting a perturbative general solution and new
parameteric resonances. These results should also be of
interest to the greater field of dynamical mathematics be-
cause, as we demonstrate, the dynamics of slip-stacking
are isomorphic to the well-studied dynamics of the driven
pendulum. The analysis in this paper is also intended to
facilitate application of slip-stacking to other accelerators
and non-accelerator systems with analogous dynamics.

Background

Slip-stacking is a particle accelerator configuration
that permits two high-energy particle beams of differ-
ent momenta to use the same transverse space in a cyclic
accelerator. The two beams are longitudinally focused by
two sets of rf cavities with a small frequency difference
between them. Each frequency is tuned to the momen-
tum of one of the beams.

The two azimuthal beam distributions are manipu-
lated as a consequence of their difference in rf frequency.
The two beams injected on separated portions of az-
imuth with a small frequency difference will overlap grad-
ually, allowing injection [4]. When the cyclic acceler-
ator is filled, the azimuthal distribution of the beams
will coincide at a certain tune and can then be acceler-
ated simultaneously. The accelerating rf cavities operate

at the average frequency, capturing both beams as one.
The potential beam intensity of a synchrotron is doubled
through the application of this technique.

A preliminary study explored the beam dynamics in
a 2-rf system [5]. The slipping of bunched beams was
first demonstrated at the CERN SPS [6] but the emit-
tance growth led to unacceptable particle losses. Fermi-
lab has subsequently implemented slip-stacking opera-
tionally since 2004 [7][8][4]. Initially, the higher beam
intensity was used to increase antiproton production
for proton-antiproton collider experiments [9]. Subse-
quently, slip-stacking was applied to neutrino produc-
tion for Neutrinos at Main Injector (NuMI) experiments
[10][11][12][13].

Beam-loading effects can impact the effectveness of
slip-stacking and were addressed in the Main Injector by
the development of a beam-loading compensation system
with -14dB feedback and -20dB feedforward [14][15][16].
The beam-loading effects on slip-stacking in the Recy-
cler will be an order of magnitude weaker than in the
Main Injector and can be compensated if necessary. The
typical beam-loading voltage is ∼2kV [15] compared to
a typical rf cavity voltage of 90kV[16]. In the Main In-
jector the Rsh/Q of the rf cavities is 100Ω [15], while in
the Recycler the Rsh/Q is 13Ω [17]. This paper focuses
on the constraints on the stable phase-space area from
the single-particle dynamics of the two-rf system; direct
space-charge effects are an order of magnitude weaker.

For the particular case of slip-stacking at Fermilab, the
difference between the two rf frequencies must be equal to
the product of the harmonic number of the Booster rf and
the cycle rate of the Fermilab Booster. The cycle-rate of
the Booster is 15-Hz and therefore ∆f = hBfB = 1260
Hz. A possible upgrade to a 20-Hz Booster is also ana-
lyzed, for which ∆f = 1680 Hz. A 20-Hz Booster would
enable slip-stacking buckets with substantially greater
phase-space area. However, the slip-stacking cyclic accel-
erator (either the Main Injector or the Recycler) must be
able to simultaneously accommodate beams in a range of
momentum corresponding to their frequency difference.
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Single-rf Longitudinal Stability

The motion of a single particle under the influence of
a single stationary rf cavity is described in terms of its
phase space coordinates φ and δ. The phase φ is the
phase of the particle relative to the resonating electro-
magnetic field in the rf cavity. δ is the fractional devi-
ation from the reference momentum; δ = 0 corresponds
to a particle whose revolution frequency frev is a subhar-
monic of the frequency of the rf cavity frf = hfrev. The
phase-slip factor η is used to describe how the revolution
period T changes with δ and is given by ηδ = ∆T/T (see
[18]).

The equations of motion associated with the trajec-
tory of a single particle under the influence of a single
stationary rf cavity [18] are given by:

φ̇ = 2πfrevhηδ, δ̇ = frev
eV

β2E
sin(φ). (1)

V is the effective voltage of the rf cavity, e is the charge
of the particle, β = v/c is the velocity fraction of the
speed of light, E is the total energy of the particle. Let
Vδ be equal to eV

β2E , the maximum change in δ during a

single revolution.
For small φ, Eq. 1 has a stable solution known as a

synchrotron oscillation

φ = ρ sin(ωst+ ψ) (2)

where the synchrotron frequency ωs is given by ωs =

2πfrev

√
Vδhη

2π
. The amplitude ρ and the initial phase

ψ are set by initial conditions. More generally, stable
oscillatory motion is bound in phase and momentum by
the separatrix

δ = ± 2

h|η|
ωs
ωrev

cos

(
φ

2

)
. (3)

The equations of motion given in Eq. 1 are isomorphic
to that of a simple pendulum. The stable region of phase
space within the separatrix is referred to as the rf bucket
and the region outside of the separatrix is referred to as
slipping with respect to the bucket.

In contrast, the dynamics of slip-stacking are explicitly
time-dependent and there is no simple separatrix delin-
eating the bucket boundary. The lack of a clearly defined
bucket confounds beam operation as the incoming par-
ticles cannot be conventionally inserted into the bucket.
We broaden the term bucket to include cases without
a separatrix: a particle trajectory is in a particular rf
bucket if the particle phase with respect to the rf cavity
is bounded and averages to zero.

Slip-stacking and the Driven Pendulum

The equations of motion for a single particle under
the influence of two rf cavities with identical voltage and

different frequencies are:

φ̇A = 2πfrevhηδA

˙δA = 2frevVδ sin(φA) cos

(
ωφt+ φD

2

)
. (4)

ωφ is what we refer to as the phase-slipping frequency, the
angular frequency separation between the two rf cavities
ωφ = 2π∆f . φA is the average of the phases and φD is
the difference between the phases for the two rf cavities at
t = 0. Without loss of generality, we eliminate φD with
t → t − φD/ωφ. Applying a substitution to Eq. 4 yields
the corresponding second-order equation of motion:

φ̈A = −2ω2
s sin(φA) cos

(
ωφt

2

)
. (5)

The corresponding Hamiltonian is then given by:

H = πfrevhηδ
2
A + frevVδ cos(φA) cos

(
ωφt

2

)
. (6)

This Hamiltonian leads to nonlinear, resonant, and
chaotic phase-space trajectories. We find that this
Hamiltonian is isomorphic to that of a pendulum under a
sinusoidal driving force (in the absence of gravity). The
driven pendulum is a type of nonlinear Mathieu equation
that is a subject of ongoing research in computational
mathematics [19][20]. A canonical form for the driven
pendulum may be parameterized as [19]:

d2

dτ2
x = (a+ b cos(τ)) sin(x), a ≥ 0, b ≥ 0. (7)

Eq. 7 is obtained from Eq. 5 under the substitution

t→ (2/ωφ)τ, φA → x+ π, b = 8

(
ωs
ωφ

)2

. (8)

The parameter a corresponds to the force of gravity and
a = 0 in this analogue.

The accelerator literature [5][6][7] has identified the im-
portance of the slip-stacking parameter

αs = ωφ/ωs (9)

as the criterion for effective slip-stacking. The param-
eter b in Eq. 8 is a function of αs, indicating that all
nontrivial dynamics of slip-stacking depend only on αs.
For example, if one slip-stacking configuration has phase-
slipping frequency ωφ and another configuration with the
same αs has phase-slipping frequency ω′φ then the second
phase space diagram is isomorphic to the first where the
δ axis must be scaled by ω′φ/ωφ.

General Perturbative Solution

We analyze the dynamics within a slip-stacking bucket
by shifting the origin from one synchronized to the av-
erage frequency and phase of the two rf cavities to one
synchronized to the rf cavity with higher frequency:

φ̇ = 2πfrevhηδ, δ̇ = frevVδ[sin(φ) + sin(φ− ωφt)]. (10)
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Substituting one equation into the other we have:

φ̈ = −ω2
s [sin(φ)+sin(φ) cos(ωφt)−cos(φ) sin(ωφt)]. (11)

Eq. 11 can be expanded into powers of φ to consider
the small φ perturbation:

φ̈ = −ω2
s

{ ∞∑
k=0

(−1)k

(2k + 1)!
φ2k+1[1 + cos(ωφt)]

−
∞∑
k=0

(−1)k

(2k)!
φ2k sin(ωφt)

}
. (12)

We use the Poincare-Lindstedt method (see Ch. 2 of
[21]) to find the perturbative solution to Eq. 12 as a
linear combination of oscillatory terms. We substitute
the case φ = 0 into Eq. 12 and we solve to generate
φ = −α2

s sin(ωφt). Next we use φ = −α2
s sin(ωφt) to gen-

erate An sin(nωφt) terms. The coefficients An are of the
order α−2ns and do not depend on the initial coordinates
of the particle. These terms form the particular solution:

φp =

∞∑
n=1

An sin(nωφt). (13)

There is no stable equilibrium point inside of the bucket.
The particular solution is analogous to a moving bucket
center; we term the trajectory of a particle at the mov-
ing bucket center to be quasi-synchronous because the
frequency spectrum will depend only on harmonics of ωφ.

We continue the perturbation to the general case by
using φ = φp+ρ sin(ωst+ ψ), the sum of the particular
solution (Eq. 13) and the small-oscillation single-rf solu-
tion (Eq. 2). Using φ = φp + ρ sin(ωst + ψ) generates
terms of the form Bm,nsin[m(1 + σ)ωst+ nωφt+mψ].
The shift in the synchrotron oscillation frequency
σ is a necessary contribution to the coefficient of
sin[(1 + σ)ωst+ ψ] in Eq. 12 to counterbalance the con-
tribution made by the cross-multiplication of higher order
Bm,nsin[m(1 + σ)ωst+ nωφt+mψ] terms. For any inte-
ger m > 0 and any integer n, the coefficients Bm,n are of

the order ρmα
−2|n|
s ; except when m is even and n = 0, in

which case the coefficients Bm,0 are of the order ρmα−2s .
Writing out the full perturbative solution, we have:

φ =

∞∑
n=1

An sin(nωφt)

+

∞∑
m=1

∞∑
n=1

Bm,n sin[m(1 + σ)ωst+ nωφt+mψ]

+

∞∑
m=1

∞∑
n=1

Bm,−n sin[m(1 + σ)ωst− nωφt+mψ].

(14)

The trajectory of a particle in a slip-stacking rf bucket is
referred to as a rotating solution in the driven-pendulum
literature. The particular solution was previously ob-
tained by Zhang and Ma [22]. An alternate perturbative

approach for the general solution in implicit form is given
in [23]. We are first to find a general and explicit solution.

The perturbative solution for the small oscillations
around the moving bucket center can be expressed in
coefficients up to order α−4s and ρα−2s . The derivation
shown in the appendix leads to the equations of motion:

φ =A1 sin(ωφt) +A2 sin(2ωφt)

+ ρ sin[(1 + σ)ωst+ ψ]

+B1,1 sin[(1 + σ)ωst+ ωφt+ ψ]

+B1,−1 sin[(1 + σ)ωst− ωφt+ ψ]. (15)

δ =
1

2πfrevhη
φ̇. (16)

A1 =− 1

α2
s − 1

. (17)

A2 =
1

(2αs)2 − 1

(
A1

2

)
. (18)

B1,±1 =
α−1s
αs ± 2

(ρ
2

)
. (19)

σ =
3

4
α−4s . (20)

The parameters ρ and ψ are determined by initial con-
ditions, shown explicitly in the appendix. We are the
first to discover and calculate σ, the synchrotron fre-
quency shift from a slip-stacking perturbation. Gener-
ally, particles within a slip-stacking bucket will undergo
synchrotron oscillations at a higher frequency than the
corresponding single-rf bucket.

Substituting the perturbative terms from Eq. 14 into
Eq. 11 indicates that a new parametric resonance will
occur wherever mωs(1 + σ) = nωφ. For example, the

ρmα
−2(n−1)
s sin[m(1 + σ)ωt − (n − 1)ωφt + mψ] term

will be multiplied by cos(ωφt) in Eq. 11 and lead to a

growth term proportional to ρmα
−2(n−1)
s sin(mψ). The

case where mωs = ωφ was previously investigated by
Mills [5]. An analytical description of the stable phase-
space boundary would require a complete determination
of the cases in which parametric resonances lead to par-
ticle loss; this may be the subject of future work.

Stability Maps & Area Factors

The size and shape of slip-stacking buckets deter-
mine which portion of an injected beam distribution is
lost. In application, lost particles migrate to an incor-
rect azimuthal location and consequently collide into the
beampipe during injection, extraction, or acceleration [4].
We map the stability of initial particle positions by in-
tegrating the equations of motion for each position. The
integration is iterated for a sufficiently large number of
revolutions (at least 30 synchrotron periods). The sta-
bility of the particle is tested after every phase-slipping
period. A particle is considered lost if its phase with re-
spect to each of the first rf cavity, the second rf cavity, and
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the average of the two rf cavities, is larger than a certain
cut-off (we used 3π/2). The remaining particles there-
fore belong to one of four stable regions shown in Fig. 1:
one for the higher frequency, one for the lower frequency,
one for the average frequency and average phase, and
one with average frequency but π offset from the average
phase. These two stable regions at the average frequency
are the original examples of dynamic stabilization [24].
Fig. 2 shows the stability of initial coordinates in the
higher bucket for αs = 3.6 and αs = 4.1, in which the
effects from slip-stacking resonances are evident. The
supplemental material [25] shows the stability maps of
the higher slip-stacking bucket for values of αs from 2 to
8 in descending 0.1 increments.

We find some trajectories are “metastable” because
they lead to particle loss only after thousands of rev-
olutions. The stable phase-space area as a function of
time is shown in Fig. 3 for several values of αs.
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FIG. 1: Stability of initial coordinates for αs = 4.4. The color
corresponds to the number of synchrotron periods a particle
with the corresponding initial coordinates survives before it
is lost. The two large stable regions correspond to the higher
and lower rf buckets where beam is injected and maintained.
The two stable regions along the δA = 0 axis are created by
the interaction between the two rf cavities.

The bucket area is computed as the product of the
total number of ultimately surviving points and the cell
area. We define the slip-stacking area factor F (αs) =
As/A0 as the ratio of the slip-stacking bucket area to
that of a single-rf bucket with the same rf voltage and
frequency. The area factor follows the notation of Lee
(Ch. 3.II of [18]) for accelerating beams, in which the
ratio of running bucket area to stationary bucket area is
used. Particles in the bucket are described by Eq. 14 with
finite coefficients, therefore the bucket area is conserved.
Consequently F (αs) does not depend on the initial rf
phase difference used to generate the stability map. We
write the phase space area (φ · δ units) using F (αs):

As = A0F (αs) =
16

h|η|
ωs
ωrev

F (αs). (21)
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FIG. 2: Stability of initial coordinates for selected values of
αs. The color corresponds to the number of synchrotron peri-
ods a particle with the corresponding initial coordinates sur-
vives before it is lost. On the left, αs = 3.6 and four resonance
islands can be seen due to the ωs(1+σ) = 4ωφ resonance. On
the right, αs = 4.1 and five resonance islands can be seen due
to the ωs(1 + σ) = 5ωφ resonance.

Fig. 4(a) plots the numerically derived slip-stacking
area factor F (αs). Using Fig. 4(a) with Eq. 21 provides
the first method for calculating the slip-stacking stable
phase-space area without requiring each case to be simu-
lated individually. F (αs) increases rapidly above αs ≈ 3
and asymptotically approaches 1. F (αs) has several local
minimum where resonances are crossed; this loss of area
occurs when large amplitude trajectories have a para-
metric resonance and therefore does not occur at precise
integer values of αs.

In application, slip-stacking is tuned to maximize sta-
ble phase-space area while holding ωφ constant. The
value of ωφ is generally constrained by gross features
of the accelerators, for example the harmonic number
and cycle time. The slip-stacking parameter αs is tuned
through changing ωs which is proportional to the square
root of the applied rf voltage. Furthermore ωs changes
the bucket area by both the slip-stacking area factor
F (αs) and the single-rf bucket area, so there is an op-
timal voltage in which phase space area is maximized.
We rewrite Eq. 21 to separate the parameters that are
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FIG. 3: The stable area of the slip-stacking bucket relative
to a single rf bucket, is plotted on a log scale and plotted
over time. Each curve corresponds to a simulation with a
different value of αs with αs = 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0 (going from the bottom line to
the top line). The rapid losses at the beginning corresponds
to regions of phase space in which particles rapidly slip by
both slip-stacking buckets. In the next phase, the metastable
particle loss occurs asymptotically.
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FIG. 4: (a) The slip-stacking area factor as a function of αs.
As αs increases the distance between the rf buckets becomes
greater, the buckets become more independent, and the slip-
stacking bucket area approaches the single-rf bucket area.
(b) The modified slip-stacking area factor as a function of
αs. The modified slip-stacking area factor is maximized near
αs = 6.2.

held constant from those dependent on αs:

As =
16

h|η|
ωφ
ωrev

(
F (αs)

αs

)
=

16

h|η|
ωφ
ωrev

Z(αs). (22)

This modified area factor Z(αs) is graphed in Fig. 4(b).
Z(αs) is maximal near αs = 6.2 and when considering

other optimization criteria 5.5 to 7 is is a practical tuning
range for αs.

Injection Efficiency, Emittance, and Aspect Ratio

The stability maps can also be used to analyze injec-
tion scenarios, by weighting the (scaled) stability maps
according to a distribution that represents the number
of incoming particles injected into that region of phase-
space. We used this technique to identify the greatest
longitudinal emittance an incoming Gaussian-distributed
beam could have and still achieve 97% injection efficiency
at its optimal value of αs. The longitudinal beam emit-
tance is given in Eq. 23 below:

ε = πσpσT , ε97% = 2.172πσpσT (23)

The current accelerator upgrade proposal, Proton Im-
provement Plan II (PIP-II) [1], defines a minimum 97%
slip-stacking efficiency required to maintain current loss
levels while increasing intensity. Fig. 5 shows the 97%
longitudinal emittance as a function of aspect ratio and
demonstrates the consequences of a mismatched injec-
tion into a slip-stacking bucket. Fig. 6 shows the opti-
mal value of αs as a function of aspect ratio. The opti-
mal value of αs determines the optimal rf cavity voltage,
shown in Fig. 7. These results were obtaining using pa-
rameter values specific to slip-stacking in the Fermilab
Recycler (see Table. I).
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FIG. 5: The maximum 97% emittance at 97% efficiency (at
an optimal value of αs) is shown as a function of aspect ratio.
The bottom line (black) is for the 15-Hz Booster cycle-rate
(status quo) and top line (red) is for 20-Hz Booster cycle-rate
(proposed upgrade). The vertical dashed lines represent the
nominal aspect ratios given in Table I.

A nominal value for the Booster emittance is 0.12
eV·s [26]. The Fermilab Booster uses bunch rotation via
quadrupole excitation [27][28], with parameters that are
actively tuned to minimize losses. With bunch rotation,
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FIG. 7: The optimal Recycler rf voltage for maximum emit-
tance (at 97% efficiency) is shown as a function of aspect ratio.
The bottom line (black) is for the 15-Hz Booster cycle-rate
(status quo) and top line (red) is for 20-Hz Booster cycle-rate
(proposed upgrade). The vertical dashed lines represent the
nominal aspect ratios given in Table I.

the aspect ratio of at least 2.6 MeV/ns is achievable at
extraction from the Booster [26]. At Recycler rf cavity
voltage V0 = 100kV, the slip-stacking parameter for the
Recycler is αs(V0) ≈ 4.39 for a 15-Hz Booster cycle-rate
and αs(V0) ≈ 5.86 for a 20-Hz Booster cycle-rate. For
other voltages, the Recycler slip-stacking parameter is
given by αs(V ) = αs(V0)

√
V/V0.

We examine the 97% efficiency benchmark not only for
a 15-Hz Booster cycle-rate but also for a proposed 20-Hz

Recycler Kinetic Energy (E) 8 GeV

Recycler Reference RF freq. (f) 52.8 MHz

Recycler Harmonic number (h) 588

Recycler Phase-slip factor (η) -8.6*10−3

Maximum Recycler RF Voltage (V ) 2 × 150 kV

Booster harmonic number (hB) 84

Booster cycle rate (fB) 15/20 Hz

Difference in Recycler RF freq. (∆f) 1260/1680 Hz

Nominal Booster emittance (ε97%) 0.12 eV·s
Nominal Booster Aspect Ratio 3.00 MeV/ns

Nominal Recycler Aspect Ratio (100 kV) 1.06 MeV/ns

Nominal Recycler Aspect Ratio (57 kV) 0.80 MeV/ns

TABLE I: Recycler and Booster parameters used in analysis.

Booster cycle-rate. A 20-Hz Booster cycle-rate would
necessarily increase the phase-slipping frequency (rf fre-
quency separation) by a factor of 4/3 and therefore the
bucket height would increase by a factor of 4/3 (and have
the same αs). Slip-stacking losses could be reduced by
a factor 4-10 for the same emittance [29]. Alternatively,
the 97% efficiency benchmark is achievable at an emit-
tance up to a factor of ∼1.7 greater. Other implications
of a 20-Hz Booster cycle-rate are discussed in a Fermi-
lab technical memo [29]. A 20-Hz Booster cycle-rate is
clearly superior for high-intensity operation.

The scaling symmetry used to analyze the 20-Hz
Booster cycle-rate can generalized. An optimization at
phase-slipping frequency ωφ and aspect ratio r is equiva-
lent to an optimization at phase-slipping frequency ω′φ
and aspect ratio (ω′φ/ωφ)r. The same optimal slip-
stacking parameter would be obtained at a higher syn-
chrotron frequency (ω′φ/ωφ)ωs, increasing the rf voltage

at (ω′φ/ωφ)r to (ω′φ/ωφ)2V .

Application to Other Physical Systems

In general, the dynamics discussed in this paper apply
to any system governed by (nearly) identical sinusoidal
potentials moving with respect to each other (or equiv-
alently, a sinusoidal potential oscillating in amplitude).
This is relevant to standing wave traps which are used in
optical and acoustic physics and are instances of a con-
trollable sinusoidal potential. Optical lattices are a type
of standing wave trap used in ultracold atomic physics.
Two optical lattices moving with respect to each other
could occupy the same transverse space yet focus two
groups of atoms with independent momenta. We know of
no such experiment that utilizes this optical slip-stacking
laser configuration, but we believe it may be relevant to
at least two optical applications: trap accumulation [30]
and atomic collisions [31]. If M is the mass of the atom,
VH is the potential barrier height, and v is the relative
velocity between the two standing wave traps, then the
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optical slip-stacking parameter is given by:

αs = v

√
M

2VH
. (24)

The relative velocity v can be calculated from the fre-
quency difference in the standing waves v = ∆f [32].
Our approach suggests a value of αs equal to at least 5
for efficient stacking.

Acoustic standing waves can be used to trap small
spheres or droplets in a sinusoidal potential originally
described by Gor’kov [33]. This technique has grown in
sophistication and application [34][35]. Eq. 24 would also
determine the stability of objects (with mass M) in a
possible acoustic slip-stacking configuration.

Conclusion

In summary, we have provided a framework for ad-
dressing both the trajectory and stability of particles in
a slip-stacking potential. We introduce the slip-stacking
area factor F (αs) and the modified area factor Z(αs) as
tools to calculate the stable slip-stacking bucket area for
any combination of accelerator parameters. We introduce
the quasi-synchronous particle trajectory and provide a
perturbative solution near it. We describe a series of new
parametric resonances in slip-stacking. We provide a gen-
eral method for analyzing slip-stacking injection scenar-
ios and describe the implications for the operation and
upgrades of the Fermilab Booster. We identify for the
first time how the dynamics of slip-stacking correspond
to the driven pendulum and moving standing wave traps.
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Appendix A: Derivation of Perturbative Solution

In this paper we show that the second-order equation
of motion for a single particle in a slip-stacking bucket is
given by Eq. 11 and the perturbative solution is given by
Eq. 14. Recall also, that the coefficients An are of order

α−2ns and Bm,n are of order ρmα
−2|n|
s except the B2k,0

coefficients which are of the order ρ2kα−2s . The coefficient
B1,0 is defined to be equal to ρ. The parameters ρ and
ψ are set by initial conditions.

For clarity, we adopt a short-hand notation for the

oscillatory terms as follows:

sin[m(1 + σ)ωst+ nωφt+mψ] ≡ sm,n,
cos[m(1 + σ)ωst+ nωφt+mψ] ≡ cm,n. (A1)

In this appendix, we explicitly obtain the perturbative
solution up to order α−4s and ρα−2s (or equivalently, all
coefficients up to order α−5s with ρ ∼ α−3s ). Therefore, we
use the coefficients A1, A2, ρ, B1,1 and B1,−1; all other
coefficients are neglected at this precision. We start by
assuming a solution form and will demonstrate it to be
self-consistent:

φ = A1s0,1+A2s0,2+ρs1,0+B1,1s1,1+B1,−1s1,−1. (A2)

It will be sufficient to substitute this expression into
the form of Eq. 11 expanded up to second order in φ:

ω−2φ φ̈ = −α−2s
[
φ(1 + c0,1)− s0,1 +

1

2
φ2s0,1

]
. (A3)

Here we have divided both sides by ω2
φ to make the order

of the perturbation terms more explicit.
Next we can substitute the solution given in Eq. A2

into Eq. A3 to calculate the coefficients. We write out
the left-hand side (LHS):

−A1s0,1 − 4A1s0,2

− α−2s (1 + σ)2ρs1,0

− [α−1s (1 + σ) + 1]2B1,1s1,1

− [α−1s (1 + σ)− 1]2B1,−1s1,−1 = (A4)

We write out the right-hand side (RHS):

= −α−2s
(
A1s0,1 +A1s0,1c0,1 +

1

2
A2

1s0,1s0,1s0,1

+A2s0,2 +A2s0,2c0,1 − s0,1

+
1

2�
�A2
2s0,2s0,2s0,1 +���A1A2s0,1s0,2s0,1

+ ρs1,0 + ρs1,0c0,1

+B1,1s1,1 +B1,1s1,1c0,1

+B1,−1s1,−1 +B1,−1s1,−1c0,1

+
1

2((((
((((

(((
(((

(ρs1,0 +B1,1s1,1 +B1,1s1,−1)2s0,1

+A1ρs0,1s1,0s0,1 +��A2ρs0,2s1,0s0,1

+���
�A1B1,1s0,1s1,1s0,1 +���

�A1B1,−1s0,1s1,−1s0,1

+���
�A2B1,1s0,2s1,1s0,1 +���

�A2B1,−1s0,2s1,−1s0,1

)
.

(A5)

where the crossed-out terms are higher order than the
precision of this analysis. We rewrite the RHS without
these immediately negligible terms, using the trigonomet-
ric product-to-sum rules, and grouping by the oscillatory
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term:

= −α−2s
[(

A1 − 1 +
1

2
A2 +

3

8
A2

1

)
s0,1

+

(
1

2
A1 +A2

)
s0,2

+

(
ρ+

1

2
B1,1 +

1

2
B1,−1 +

1

2
A1ρ

)
s1,0

+

(
1

2
ρ+B1,1

)
s1,1 +

(
1

2
ρ+B1,−1

)
s1,−1

+

(
1

2
A2 −

1

8
A2

1

)
s0,3

+

(
1

2
B1,1 −

1

4
A1ρ

)
s1,2

+

(
1

2
B1,−1 −

1

4
A1ρ

)
s1,−2

]
. (A6)

We then equate Eq. A4 with Eq. A6 for all time. Each
oscillatory term corresponds to its own equation:

−A1 = −α−2s
(
A1 − 1 +

1

2
A2 +

3

8
A2

1

)
.

(A7)

−4A2 = −α−2s
(

1

2
A1 +A2

)
. (A8)

−α−2s (1 + σ)2ρ = −α−2s
(
ρ+

1

2
B1,1 +

1

2
B1,−1 +

1

2
A1ρ

)
.

(A9)

−[α−1s (1 + σ) + 1]2B1,1 = −α−2s
(

1

2
ρ+B1,1

)
. (A10)

−[α−1s (1 + σ)− 1]2B1,−1 = −α−2s
(

1

2
ρ+B1,−1

)
.

(A11)

0 = −α−2s
(

1

2
A2 −

1

8
A2

1

)
. (A12)

0 = −1

2
α−2s B1,1 +

1

4
α−2s A1ρ. (A13)

0 = −1

2
α−2s B1,−1 +

1

4
α−2s A1ρ. (A14)

Solving Eq. A8 for A2 we obtain:

A2 =
1

4− α−2s

(
A1

2

)
=

1

(2αs)2 − 1

(
A1

2

)
. (A15)

Solving Eq. A7 for the linear A1 terms we obtain:

A1 =
α−2s

1− α−2s

(
−1 +

1

2
A2 +

3

8
A2

1

)
. (A16)

Since A1 of the order α−2s (as expected) then the α−2s A2

term and the α−2s A2
1 are of order α−6s and are neglected.

Rewriting Eq. A7 to reflect this, we have:

A1 = − α−2s
1− α−2s

= − 1

α2
s − 1

. (A17)

All expressions on the RHS side of Eq. A12 are of order
α−6s , therefore we are self-consistent to exclude the A3

term.
We solve Eq. A10 and Eq. A11 for B1,±1 and obtain:

B1,±1 =
α−2s

[α−1s ± 1]2 − α−2s

(ρ
2

)
=

α−2s
1± 2α−1s

(ρ
2

)
=

α−1s
αs ± 2

(ρ
2

)
. (A18)

where σ makes a negligible contribution to B1,±1.
All expressions on the RHS of Eq. A13 and Eq. A14 are

of order α−4s ρ, therefore we are self-consistent to exclude
the B1,2 and B1,−2 terms.

For Eq. A9 we call the σ2 terms negligible, subtract
the bare ρ term from each side and solve for σ to obtain
the shift in synchrotron frequency:

σ =
1

4

(
B1,1 +B1,−1

ρ
+A1

)
. (A19)

To calculate Eq. A19 first we must calculate:

B1,1 +B1,−1

ρ
=
α−1s

2

(
1

αs + 2
+

1

αs − 2

)
=
α−1s

2

(
αs − 2 + αs + 2

α2
s − 4

)
=

1

α2
s − 4

. (A20)

We substitute Eq. A20 into Eq. A19 to obtain:

σ =
1

4

(
1

α2
s − 4

− 1

α2
s − 1

)
=

1

4

(
α2
s − 1− α2

s + 4

(α2
s − 4)(α2

s − 1)

)
=

3

4
α−4s . (A21)

To summarize, we write these coefficients together:

A1 = − 1

α2
s − 1

= −α−2s (1 + α−2s ). (A22)

A2 =
1

(2αs)2 − 1

(
A1

2

)
= −1

8
α−4s . (A23)

B1,±1 =
α−1s
αs ± 2

(ρ
2

)
. (A24)

σ =
1

4

(
B1,1 +B1,−1

ρ
+A1

)
=

3

4
α−4s . (A25)
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Derivation of ρ and ψ from Initial Conditions

At this the synchrotron amplitude ρ and initial syn-
chrotron phase ψ are still undetermined, but we can ex-
press them in terms of the initial coordinates. At time
t = 0 (which is fixed to a time in which the relative phase
between the rf cavities is zero), let δ = δ0 and φ = φ0.

We have shown that φ takes the form give in Eq. A2.
We evaluate this expression for φ at t = 0, leave the
short-hand notation (Eq. A1), and find φ0 in terms of ρ
and ψ:

φ0 = (ρ+B1,1 +B1,−1) sin(ψ). (A26)

We can calculate δ from our solution for φ by taking the
derivative:

δ =
1

2πfrevhη
φ̇. (A27)

δ =
ωφ

2πfrevhη

{
A1c0,1 + 2A2c0,2 + α−1s (1 + σ)ρc1,0

+ [α−1s (1 + σ) + 1]B1,1c1,1

+ [α−1s (1 + σ)− 1]B1,−1c1,−1

}
. (A28)

We evaluate this expression for δ at t = 0, leave the
short-hand notation (Eq. A1), and find δ0 in terms of ρ
and ψ:

δ0 =
ωφ

2πfrevhη

{
A1 + 2A2

+

[(
1 + σ

αs

)
(ρ+B1,1 +B1,−1)

+ αs(B1,1 −B1,−1)

]
cos(ψ)

}
.

(A29)

Next we solve Eq. A26 and Eq. A29 for Φ0 = ρ sin(ψ)
and ∆0 = ρ cos(ψ):

Φ0 =

(
1 +

B1,1 +B1,−1

ρ

)−1
φ0. (A30)

∆0 = αs

[
1 +

B1,1 +B1,−1

ρ
+ αs

B1,1 −B1,−1

ρ

+ σ

(
1 +

B1,1 +B1,−1

ρ

)]−1
×
(

2πfrevhη

ωφ
δ0 −A1 − 2A2

)
. (A31)

φ0 and δ0 have been translated by the initial position of
the bucket center and rescaled to obtain the expressions
for Φ0 and ∆0. Using Φ0 = ρ sin(ψ) and ∆0 = ρ cos(ψ),
the solution for ρ and ψ be written as:

ρ =
√

Φ2
0 + ∆2

0. (A32)

ψ = sgn(Φ0) arccos

(
∆0

ρ

)
. (A33)

Eq. A30 and Eq. A31 can be further simplified by writing
the B1,1 and B1,−1 terms explicitly in terms of αs. We
calculate:

αs
B1,1 −B1,−1

ρ
=

1

2

(
1

αs + 2
− 1

αs − 2

)
=

1

2

(
αs − 2− αs − 2

α2
s − 4

)
=
−2

α2
s − 4

. (A34)

We apply Eq. A20 and Eq. A34 to Eq. A30 and Eq. A31
to obtain:

Φ0 =

(
1 +

1

α2
s − 4

)−1
φ0 =

α2
s − 4

α2
s − 3

φ0. (A35)

∆0 =αs

[
1 +

1

α2
s − 4

− 2

α2
s − 4

+ σ

(
1 +

1

α2
s − 4

)]−1
×
(

2πfrevhη

ωφ
δ0 −A1 − 2A2

)
. (A36)

∆0 =
αs(α

2
s − 4)

(α2
s − 5) + σα2

s

(
2πfrevhη

ωφ
δ0 −A1 − 2A2

)
.

(A37)

Φ0 and ∆0 are fully expanded as follows:

Φ0 =φ0(1− α−2s − 3α−4s ). (A38)

∆0 =αs

(
2πfrevhη

ωφ
δ0 + α−2s +

5

4
α−4s

)
×
(

1 + α−2s +
17

4
α−4s

)
. (A39)

Eq. A38 and Eq. A39 can then be substituted into
Eq. A32 and Eq. A33 to obtain ρ and ψ respectively.
Then ρ can be substituted into Eq. A24 to obtain B1,1

and B1,−1.
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G. Vegter, J. Dyn. Diff. Eq. 16, 897 (2004).

[20] X. Xu, M. Wiercigroch, and M. P. Cartmell, Chaos, Soli-
tons Fractals 23, 1537 (2005).

[21] A. J. Lichtenberg and M. A. Lieberman, Regular and
Chaotic Dynamics, 2nd Ed. (Springer, California, 1992).

[22] H. Zhang and T. W. Ma, Nonlinear Dyn. 70, 2433 (2012).
[23] S. Lenci, E. Pavlovskaia, G. Rega, and M. Wiercigroch,

J. Sound Vib. 310, 243 (2008).
[24] E. I. Butikov, J. Phys. A 44, 295202 (2013).
[25] See supplemental material for complete series of stability

maps.
[26] K. Seiya, B. Chase, J. Dey, P. Joireman, I. Kourbanis,

and J. Reid, in Proceedings of CARE-HHH-APD Work-
shop BEAM’07, 2007, edited by W. Scandale and F. Zim-
mermann.

[27] X. Yang, A. I. Drozhdin, and W. Pellico, in Proceed-
ings of Particle Accelerator Conference, 2007, edited by
C. Petit-Jean-Genaz.

[28] L. A. Ahrens et al., in Proceedings of Particle Accelerator
Conference, 1999, edited by A. Luccio and W. MacKay.

[29] J. Eldred and R. Zwaska, Fermi National Accelerator
Laboratory Report TM-2587-APC, 2014.

[30] H. J. Davies and C. S. Adams, J. Phys. B 33, 4079 (2000).
[31] D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and

P. Zoller, Phys. Rev. Lett. 82, 1975 (1999).
[32] A. Clairon, C. Salomo, S. Guellati, and W.D. Phillip,

Europhys. Lett. 16, 165 (1991).
[33] L. P. Gor’kov, Sov. Phys. Dokl. 6, 773 (1962).
[34] D. Foresti and D. Poulikakos, Phys. Rev. Lett. 112,

024301 (2014).
[35] C. W. Shields, L. M. Johhson, L. Gao, and G. P. López,
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