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Abstract

We study channeling radiation from electron beams with energies under 100 MeV. We in-
troduce a phenomenological model of dechanneling, correct non-radiative transition rates from
thermal scattering, and discuss in detail the population dynamics in low order bound states.
These are used to revisit the X-ray properties measured at the ELBE facility in Forschungszen-
trum Dresden-Rosenstock (FZDR), extract parameters for dechanneling states, and obtain sat-
isfactory agreement with measured photon yields. The importance of rechanneling phenomena
in thick crystals is emphasized. The model is then used to calculate the expected X-ray ener-
gies, linewidths and brilliance for forthcoming channeling radiation experiments at Fermilab’s
ASTA photoinjector.

1 Introduction

Channeling radiation offers the promise of a quasi-monochromatic and tunable X-ray source with
electron beams of moderate energies (tens of MeV) passing through a thin crystal. This radiation
has been experimentally observed at several laboratories and many of the experimental features are
well understood from theoretical considerations. Reviews can be found in several publications, see
e.g. Refs. [1, 2, 3].

Channeling and channeling radiation experiments have a long history at Fermilab, see e.g.
Ref. [4]. Those were carried out at the AO photoinjector which had a maximum beam energy of
about 15 MeV. A new photoinjector ASTA is being commissioned at Fermilab, which will use an
L-band (1.3 GHz) linac to generate beams with energies initially in the range 20-50 MeV and later
to 300 MeV and higher with the addition of one or more ILC style cryomodules [5]. Channeling
radiation experiments with beams in the lower energy range have been planned and descriptions of
the planned experiments can be found in Refs. [6, 7]. The goal is to generate X-ray beams with
high average brilliance using low emittance electron beams with the aim of increasing the bril-
liance by about six orders of magnitude over that obtained with channeling experiments conducted
at FZDR'’s ELBE linac [8]. Once demonstrated, compact X-ray sources from channeling radiation
can be designed and built with X-band linacs.
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In this report we revisit the theoretical model for chanmgliadiation with the aim of improving
the calculation of the X-ray intensity. We compare the dalibons of the revised model with the
measurements of previous experiments at ELBE and find lzgteement of the photon yields with
the experimental values shown in ref. [9]. We then use thidehto calculate the expected photon
yields and X-ray brilliance at ASTA.

2 Theoretical modd

In the case of planar channeling, the particle motion indit frame can be well approximated by
motion in a single transverse direction (hejerthogonal to the plane. For particle energies below
100 MeV, the X-ray energy spectrum is discrete and the radias best understood as emitted
during transitions between the discrete bound states iarffstal potential and requires a quantum
mechanical treatment. The Schroedinger equation for #atreh wave function(x) in the particle
rest frame is
h? 02

[—mﬁ +V(X)]@((x) =E, ¢(x) (1)
Herey =1/,/1— (v/c)? is the usual kinematic factor related to the velooitgandV (x) is the
one dimensional continuum potential obtained by averatfinghree dimensional atomic potential
along the orthogonal directior(y,z). Taking into account the lattice periodicity, the potehtan
be expanded as a Fourier series

V(x) = Z Vi explingx] 2
N=—o0

Hereg = 27/d, is the lattice spacing in reciprocal space wthilgis the lattice spacing in direct
space. The Fourier coefficieriy are typically obtained from expanding the electron formdac
f, (4ms) (defined in Eq.(14)) into a sum of four Gaussians with four Bejurner coefficients
(aPT,bPT) [10]. We use here instead six coefficients as used in Ref.\ffil¢h extends the range
of validity of the approximation frons < 2A -1 to s < 6A 1 for planar channeling.
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Hereg is the reciprocal lattice vecto¥, is the volume of the unit celia, is the Bohr radiusT;
are the coordinates of thgh atom in the unit cell an¥(g) = 3g%(u2,) is the Debye-Waller factor
describing thermal vibrations with mean squared amplit , assumed to be the same for all
atoms.

The wave function solution for the periodic potential isagivin terms of Bloch waves
R
Y =—— Y coexpingX (@)

Vb nfen
wherek is the electron wave number. In practice, the Fourier exparn®r the potential and the
wave function is limited to a finite number of modbg in the cases considered hdve= 20.
Substitution of Egs. (2) and (4) into the Schroedinger gquatduces it to an eigenvalue problem
with a matrixA whose components are [12]
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Solutions to the eigenvalue problem results in the eigargese, and the coefficients, deter-
mining the wavefunctiongs(x).

2.1 Radiativetransitions

Radiative transitions from one state to another lead togrhetnission and the transition rates are
given by Fermi’s golden rule which states that the transitiate per unit solid angle, per length
of traversal into the crystal and per unit photon energy apprtional to the matrix element of the
transition operator between the states, i.e.
d>N d
—————(nN—m) [ — 2p,(z 6

whered/dx corresponds to the dipole operator &h(kz) is the probability of occupation in the state
|yn) at a distance into the crystal.

Applying this rule yields the differential energy angulgestrum from a state to statem as
[13, 14, 15, 12]
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wherea; is the fine structure constam, is the Compton wavelength of the electrag, &, are
the energies of the statagm respectivelyd is the crystal thicknesgy(E, ) is the energy dependent
photon absorption coefficienE, is the X-ray energy at the angle of observati&g,is the X-ray
energy at zero angley = y6,,s 4, Where6,q 4, is the multiple scattering angle during channeling
andr ; is the total linewidth of the transition— mline. From this the differential angular spectrum
is found from
dN E/+M/2 d2N
dQ E,—1/2 deEy
where the integration is done over the linewidth of the gpédine with its peak aE,. These
transitions only occur between states of opposite paritabse the dipole transition matrix element
is non-zero only between these states. The dipole opesatdodd-parity and the bound states,)
in planar channeling are states of definite parity: everty#or n even and odd for n odd.

dE, 8

With the wave function defined in terms of the Fourier coadfitsc,, the dipole matrix elements
between two states is given by

M
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whered, is the inter-planar distance an?il ) are the coefficients in the Bloch wave expansion (see
Eq.(4)) of Ym, Y, respectively.

If the eigen-energies of the two states involved in the itammsaree,, €,, the energy of a photon
emitted at zero angle and emitted at an@leith the beam direction are given by
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2.2 Non-Radiativetransitions

In addition to the radiative transitions, electrons cap alsange energy by non-radiative transitions
which we discuss here. Electrons in the lower bound state<laser to the atomic nuclei and
can change energy due to thermal scattering with the vadmaktimotion of the atoms. This energy
exchange can lead to a change of the wave vectors within the Baillouin zone (intra-band scat-
tering) or even transfer them to different energy statdeiiband scattering). This electron-phonon
scattering is the dominant contribution to the non-radéatransitions that change the populations
of the states; a relatively smaller contribution is playgdte electron scattering off atomic elec-
trons. The transition probability due to thermal scatigtimat an electron will move from stakey,
with momentunk to statek , Ym with a different momenturk is given by a transition rate per unit
IengthWanm where

2 |
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where the potential/' describes the inelastic scattering. It is the imaginaryt pfia complex
potential with the real part being the continuum potentigt) which describes the elastic scattering.
Intra-band scattering is describedry= n while inter-band scattering has~ n. Calculation shows
that the variation of the rate within an energy band (Brilomone) is smaller than the variation
between bands. For clarity of notation, we will drop the matnen indices fromWV in the following
but they are understood to be present.

Similar to the real potential, the imaginary potential cEode expanded in a Fourier series as
Vi) =Y vgexplig-r] = Y Vpgexping §-r] (12)
[5] n

whereg is the unit reciprocal lattice vector.
We briefly summarize the procedure for calculating the imagyi potential and hence the

Fourier coefﬁcientevr{g, following the method in Ref. [11]. As is done in solving fdret energy

eigenvalues, the incident and scattered wave functioneeotlectron are represented as sums of
Bloch functions with the sums extending over many recipréai#ice planes. In general thermal
scattering occurs in all three directions, hence a threeed@ional formalism is necessary. The
incident and scattered wave functions can be written as

Winc(r) = anexpli(kg+gn) - 1

Wea (1) = Z Zanyfd (9 —0n) expi(d —gn) - rj]exp[ik ] (13)
m T

Herea, are the coefficients in the expansion, the sum ovextends over reciprocal lattice planes,
On are the reciprocal lattice vectors while the sum oyextends over the atoms in the crystal.
Ko,k are the incident and outgoing wave vectors of the electrahgan k — k. fy is the electron
scattering form factor given by

fu(@) = 55 [ V(r)expl-ig-ridr (14)

HereV (r) is the real part of the atomic potential.

The transition rate is found from the intensity of the thellyndiffuse scattering

v .
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wheredQ is the solid angle into which the particle is scatteMds the volume of the crystal. The
diffuse scattering intensity is related to the total seattpintensity via

liota = (Wscat |Wscat) = g1 + lgragg (16)

Herelg, oq is the Bragg scattering or the coherent scattering inten&itagg scattering does not
generally lead to energy exchange between electrons araddhes but instead modulates the am-
plitude of the electron intensity in the crystal [16]. It ocs even when the atoms are stationary,
so the diffuse inelastic scattering intensity is found byrasting only the contribution from the
thermally induced vibrations.

In evaluating the scattered intensity, the instantane@s#tipn can be represented q$t) =
R+ uj(t) whereR; is the stationary equilibrium position of thgh atom Whileuj(t) represents
the time dependent position due to thermal vibrations. Téae¢hermal averaging is performed
assuming that the thermal vibrations are isotropic. Theasein the total scattered intensiky,
that are independent of the atomic coordindedefine the incoherent thermally diffuse scattering

<|diff>:Natyzzzar*nanfel(q_gm)fel(q_gn)
«{ x5 (am - 0%)] - x-S (@- g+ @- @]} @)

Here () represents the thermal average?) = ui, andN is the number of atoms in the crystal.
This incoherent intensity would vanish in the absence ahtlaé vibrations.

Equating the two expressions for the transition rates irflEJ.and Eq.(15) leads to an expres-
sion for the Fourier coefficients

V)= hpc VZNa‘//qdqdfpf fy(a—9)

. {exq—éumg )~ e S (e + (0 -9)%) 18)

The element of solid angle in this integral is writtendgs= sin6d6d¢ = (qdg/k2)d¢. The second
equality follows fromq = k — k,, hencegdq = kZsin8d6 when k| = |k,|. Using the Doyle-Turner
like expansions.for the real potential, the electronierfdactors can be written as

Z Texp— (bPT + 8mPu,)o?/ (1617))] Z T exp—B,¢?] (19)
where
B = !
= 1o 2ut
Performing the integrations, the expression for the Fogoefficients of the imaginary potential

is
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Again, we note that the coefficient§) vanish in the absence of thermal vibratiags = 0. This
potential depends on the particle energy only throdghence this potential is nearly independent
of particle energy for relativistic electrons. This exmies differs from the incorrect expression
(Eq.(A20)) in Ref. [11]. The resulting imaginary potenttatns out to have a smaller magnitude
and the opposite sign to the imaginary potential used in timaenical modeling for the ELBE
experiments, e.g Eq.(11) in reference [12].

From the numerical calculations, the transition ratégs, are found to obey the approximate
selection rule that only same parity transitions are althwiee. |m—n| = even. The odd parity
transitions are non-zero but small.

The probabilityP, of a statey), changes as the electron propagates through the crystatafighe
of change is determined by the transition ralgs, as

% = S Winn[Pn(2) — Pa(2)] (21)

whereW,, is the transition probability from a sta¢y,) to state|yr). The first term in the sum
corresponds to entering the stafe) from other states while the second term corresponds to elec-
trons leaving that state. In this model, equilibrium pofiolss, i.e. dP/dz= 0 are reached when
the populations in all states are eqBal= Px.

2.3 Dechannéling

If the electron is scattered into a free state, it is posslé the electron will remain in a free state
and not be scattered back into a bound state while propag#tiough the crystal. In addition,
multiple scattering can move electrons from lower statekigber states and effectively remove
electrons from contributing to the radiation yield. Thishanced dechanneling can be taken into
account phenomenologically in the above model by remouirugd electrons scattered into free
state above a certain energy from contributing to the phygield. Thus the above equation would

be modified to a set of two equations nif denotes the free state at which electrons are dechanneled
and do not scatter back into the bound states, then the bpagf the probabilities are given by

dR, o
— = WhinPn— ) WhnPy, n<n 22
dz man m,nFm ngl m,nFn <Ng (22)
M
? = Z WinnPm— Z WinnPa; n>ng (23)
z m=1 m>ng

The first term in Eq (22) restricts the electrons enteringgstdo only those from states belomy
while the second term allows the escape of electrons frosrsthie to all states. Similarly for states
at and abovey, electrons can enter from all states (1st termin Eq.(23)y&0 only escape to states
aboven;. These set of equations conserve population, (0g¢dz) N, P,(z) = 0, as they should.

In this model there are no equilibrium solutions except lfmse states which are depopulated at the
beginning of the crystal and remain so. For the other stitesasymptotic solutions in this model
at largez are given bydPR,/dz < 0 for n < n; anddP,/dz > 0 for n > n;.

A complete theory would have transition rates from multipdattering in the model, but in its
absence we will use experimental data to find the best value,foln the cases we will consider,
n; is found to be determined primarily by the crystal thicknasd not by the electron energy. We

6



expect thanh; will increase with crystal thickness to reflect the higherhanneling probability that
electrons will scatter into bound states with increasirigkiiiess. This was observed to be the case
in experiments at the Darmstadt linac [15] and our fits to #peamental data from the ELBE linac
will also show this to be the case.

A proper treatment of dechanneling at low energies usingaatgmm mechanical treatment still
seems to be lacking. However, when the electron energy sdnigugh that channeling radiation
can be treated classically, then a Fokker-Planck treatmetite diffusive motion has been used
to describe dechanneling. Results from one such analydis@mparison with experiments using
855 MeV electrons were reported in Ref. [17]. A brief survéylechanneling phenomena at high
energies for negatively and positively charged particlas veported in Ref. [18].

2.4 Linewidth and length scales

The finite lifetime of quantum states, Bloch wave broademifigach energy band due to the varia-
tion of transverse momenta, and multiple scattering arel¢éimeinant sources of line broadening in
the regime of our interest. Other less significant sourcegrsr Doppler broadening due to emis-
sion at non-zero angles, electron beam energy spread astatatesolution. Here we will consider
the dominant effects and the length scales associated imglbioadening effects, more complete
discussions can be found in Refs. [11, 12].

Coherence length: This is a measure of the length over which a radiating edecttays in phase
and it determines the lifetime of the bound states. Therplabiion) scattering, atomic electron
(plasmon) scattering and other incoherent scatteringtsfiehange the phase of the initial wave
function of the electrons and they lose coherence. Thesteng effects can be described by the
imaginary potential discussed above. The coherence lgngtHor transitions between two states
n,mis given by

1 1 1 hBc
—=—4— In==0 (24)
Ln In 1m0 20V
where (V) is the expectation value of the imaginary part of the completential in the staten.
The line width due to this finite lifetime of each state is givsy

_ 2y°hc

rCOh L

(25)
coh

The correction to the imaginary potential discussed in tlevipus section makes it smaller and
hence the calculated coherence lengths are larger tham thpsrted in Ref. [12].

Bloch wave broadening: Each energy band has a finite width due to the spread of waterge
within each Brillouin zone. Hence the energy spread fromditeons between stateasandm is
given by

Fow = 2V2(len =0 — e =92 + g =0 — e =9)) (26)

whereg is the reciprocal lattice spacing akd is the transverse component (hégg of the wave
vector. The width is larger for the higher bound states beeani their larger range of transverse
momentum. The relative importance of Bloch wave broademaggases with energy as the number
of bound states increases.

Multiple scattering of channeled particles. This contributes to the line width by changing the
angle of the scattered electron and hence the angle at whitlos are emitted and their energy.



For particle scattering in an amorphous medium, the rmsesaag angle is given by [19]

Ous = % Lgr[lJr 0.038 IogLEr] (27)
whered is the thickness and, is the radiation length, the length over which an electrae$o
1/e of its initial energy. This expression is considered to beusate to about 10% for thickness
down to 0.001, [19]. Experimental estimates show that the scatteringeanfithanneled particles
in a crystal is less than that in an amorphous medium. Estsnaitthe scaling between the rms
multiple scattering angles during channeling and in an ahnauis crystal are in the ran@@]Sch ~
(0.22—0.56)6y,5 [11, 12]. The range of values in the numerical coefficientethels on the crystal
thickness, smaller values for larger thickness, but isipéadependent of the beam energy.

The change in the angle of emission Doppler shifts the phetamgy, with its energy given by
the second equation in Eq.(10). The mean photon energynsifoy averaging the angle dependent
energy over the distribution of multiple scattering anglessumed to be Gaussian. Thus

2

1 / 0
= [E/(0)exp—=—r—]d6 (28)
V 21Oy s on 26I\2/ISch

while the rms width of this distribution may be taken as a measf the linewidth due to multiple
scattering,

(Ey)

Mvs= <E$> - <Ey>2 (29)

Dechanneling length or Occupation length: A simple estimate of the length over which particles
dechannel due to multiple scattering is given by settingrth® multiple scattering angle equal to
the Lindhard critical angle yields [20]

a [ UgEe
L gechan = 7 (7(mec2)2> L, (30)

whereU, is the depth of the atomic potentide is the particle energy. This is based on a strictly
classical approach and predicts that the dechannelinghiéncreases linearly with energy. Mea-

surements however have shown that the dechanneling lefogtblectrons with energies in the tens

of MeV are higher than the above simple estimate and do nt Boaarly with energy [14].

Quantum mechanically, a similar idea is expressed by theegirof an occupation lengthy.
which is the length over which the initial probability in aantum staten falls by a factor e, i.e.

Po(2) = Pa(0) expl— ] (31)
0CcC
This occupation length depends on the states involved itraingition, the plane of channeling and
on the beam energy. It was measured in a few experimentsRRefg. [14, 21] with beam energies
in the 5 - 54 MeV range. Some measured values for the>(@) transition in the (110) plane are
shown in Table 1.

Photon formation length: In the simplest version, this length represents the lesgttie over
which the photon “shakes free” from the electron after fdiaraand separates from it by a reduced
wavelengthA /(2m) [3]. Itis given by

2%

L; o

(32)



Table 1: Different length scales at different electron anotpn energies. T: the dechanneling length
is found from Eq. 30 with a deptd, = 23.8 eV for the (110) plane in diamond, f: the values for
the occupation lengths are quoted for the (110) plane amhtltkm Ref. [14].

Photon lengths
E, [keV] Length E, [keV] Length
Formation length_; with 50 MeV e 10 0.38[um] 80 0.047[um]
Photon absorption length, 10 1.26 [mm] 80 17.7 [mm]
Electron lengths
Eec [MeV] Length | E¢[MeV] Length
Electron radiation length, 20 16.7 [cm] 50 14.9 [cm]
Dechanneling length .., T 20 0.71 [um] 50 1.58 [um]
Occupation length.oe.t (1 — 0) 17 20 [um] 54 36[um]

wherew is the photon frequency. Clearly the crystal thickness khbe larger than this formation
length for a significant photon yield.

Photon absorption length: The photon absorption length within a material is given by

1 Njot

™ A (33)

whereN, is the atomic densityA is the atomic number and; is the total cross-section of all

processes that lead to photon absorption during its passegegh the material. These include the
photo-electric effect, Compton scattering, and also padpction for photon energies sufficiently
above 1 MeV. The scattering cross-sections for these pesesre well known and the absorption
lengths at different photon energies can be obtained frotedanaintained by NIST [22].

Table 1 shows the values of these length scales for somesesptative electron and photon

energies. The crystal thicknedshould be large enough for enough photons to be emitted fiem t
particle, sod > L, but small enough that most photons do not get absorbed witigicrystal, i.e.
d < La. Since in all cases of interedt< L,, the radiation length, the electron will lose very little
of its energy through its passage through the crystal. Weraie that the classical dechanneling
length found from the simple estimate in Eq (30) significanthderestimates the occupation length
found from measurements at nearby energies.

3 Simulations of EL BE experiments

We used a Mathematica notebook developed for modeling thenghing radiation experiments at
the ELBE facility [23]. This notebook (called PCR) or somesien of it was used to model the

ELBE experiments and results in Ref. [9] showed the line dgdivere about half the measured
values and photon yields were about a factor of two highar tha experimental results. However
tests with the notebook available from the source [23] sltbmech greater discrepancies with the
ELBE experimental results. We therefore corrected and ddlelgtures to the notebook, the more
significant changes are listed here in order of importance:

1. Used the set of equations (23) to model the effects of emthdechanneling due to multiple
scattering and other scattering phenomena from the bowhdwasi-free states.



2. Corrected the imaginary part of the potential as desgribéSection 2.2. This also included
correcting the matrix elements of the imaginary part of tbteptial. These matrix elements
now better obey the approximate selection rule that theradiative transitions occur pri-
marily between states of the same parity. The Fourier cioefitic of the real and imaginary
parts of the potential are now also calculated in the noteboo

3. Included the effects of a finite beam divergence.

4. Included the contributions to the linewidth from Bloclawe broadening and multiple scat-
tering to the total line width. The notebook in Ref. [23] cained only the contribution from
the coherence length.

5. Corrected the line shape in the intensity spectrum caticul

6. Included photon self-absorption within the crystal.
Further improvements could be made to the physics modekeTinelude:

e The effect of inelastic electron scattering off the valeaoe bound electrons on the transi-
tion matrix element$\,, needs to be included. The importance of electron scattéoitige
linewidth was discussed in Ref. [15] and will be discusse8eation 3.2 below.

e The rms multiple scattering angle while channeling in a talyis obtained from that in an
amorphous medium by a scaling factor, based on limited @xgatal data. This could be
replaced by a calculation of the multiple scattering angiend) channeling from first princi-
ples.

Table 2 shows the main parameters of the ELBE facility whiah wged in the simulations
reported here.

Table 2: Main parameters of the electron beam in ELBE, Réf. [8

Crystal thicknesgim] 42.5, 168, 500
Beam energy [MeV] 14.6, 17, 30, 34
Uncertainty in beam energy [MeV] 0.2
Transverse norm. emittance [mm-mrgd] 3.
Beam divergence, both planes [mrad] 0.1
Relative energy spread 1.3x10°8
Beam size at crystal [mm] ~1
Average beam current [nA] > 100

First we discuss the coherence length calculation. Sineecdinrected imaginary part of the
potential is weaker that that used in the previous calanatfor ELBE, the coherence length found
here is longer and hence the linewidth from this effect islEnthan that reported in Ref. [12]. We
note that this coherence length includes only the effeanelfistic thermal scattering and does not
include the effects of inelastic electron scattering. &zblists the coherence length from thermal
scattering at the ELBE energies for some low order tramstibhe coherence length for the10
transition extracted from measured data [12] was about @65more than a factor of two smaller
than the calculated values. This discrepancy is most lidaky to neglecting the inelastic electron-
plasmon and electron-core electrons from the atom saadteri
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Table 3: Coherence lengthgr) for the low order transitions

Beam energy [MeV] L., 1—0[um] | Ly, 2— 1[um] | L, 3— 2 [um]
14.6 1.87 4.08 5.98
17.0 1.79 3.75 5.95
25.0 1.62 3.01 5.24
30.0 1.55 2.74 4.70

3.1 Population dynamics

The populations in the states change as the electron mowegyththe crystal. In our simulations
we have modeled dechanneling due to all effects in a heufisshion using the model with the
free parameten; in Egs. (22) and (23). Letg denote the index of the highest bound state at
a given energyng = 3 at 14.6 MeV andz = 4 at 30 MeV with the ground state index= 0.

For each energy and crystal thickness, the appropriatesalfn; were determined by comparing
with the measured photon yield, to be discussed below ind@e8t2. Lower values of; imply
dechanneling from more free states and hence lower phoébasyi

Here we discuss the probabiliti®(z) found from the numerical solutions of Egs. (22), (23).
Figures 1 and 2 show the populations as a function of therdistanto the crystal for thicknesses
of 42.5 um and 500um respectively at the beam energy of 30 MeV. Only the threeestvdound
states are shown in each case. The appropriate values afange with the thickness. The left
plot in both figures show the populations without enhancezhaeneling i6; = 21). Without the
additional dechanneling, the populations in the thre@statjualize and reach equilibrium at around
200 um, as seen in Fig. 2. This length is relatively insensitivehe energy, being about the
same at all energies modeled. Without dechanneling frontipteiscattering, the photon yield was
significantly higher than the experimental value.

Two values o, were chosen such that the measured yield lay in between lihdatad photon
yields with these values of;. At 42.5pum thickness, these values at 30 MeV weye= (6,5) while
at 500um, these were; = (19,18). The middle plot in Figures 1 and 2 shows the populations with
the higher values ofi; in each case. As expected, the populations in these statastdeach
equilibrium but continue to decrease with distance. At 506roms, the three states have nearly
equal populations and fall at the same rate implying thabtieipation lengths are about the same
in these states. The right plot in both figures shows the popunls whem; is set so that the
calculated vyield is a slight under-estimate of the measyield. For both thicknesses, we find
that the populations in the = 1 state increase by several orders of magnitude beforeingaah
maximum and falling at the same rate as in the even boundsstéte find that ifn; is so low that
the initial increase in tha = 1 state is less than an order of magnitude, the dechannalitapi
strong and the photon yield is much lower than the measurkee v&he dependence &(z) for
different values of is similar at other energies.

Fits to the population in the lowest order even states0,2 show good fits to an exponential
form Py (z) = Py (0) exp[—z/Locc], €specially at the lower energies. At 30 MeV, a better fit imoted
with a sum of two exponentials of the forf(z) = Pn(0)[exp—z/L,;] +aexp—z/L,,]], where
L, > L,;. However the weight of the second term is small, typicalty 0.3.

Since the intensity of the 4> O transition is determined by the population in tne- 1 state, we
consider it in a little more detail. Figure 3 shows the popiafes in this state at 30 MeV and
different thicknesses at a few chosen values of the paramgtd-or both thicknesses we observe

11



30 MeV, Thickness=42.5 um 30 MeV, Thickness=42.5 ym 30 MeV, Thickness=42.5 um
1 1 1

n=0 n=0 n=0

=1 =1 =1

01 \\\2,_}_ 01 "= 01 s
0.01 0.01 0.01

0.001 0.001

0.001

0.0001 0.0001 (\ 0.0001
le-05 No dechanneling 1e-05 Dechanneling above n=8 le-05 Dechanneling above ni=t

1le-06 1le-06 1le-06
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

Distance [pm] Distance [pm] Distance [um]

Population
Population
Population

Figure 1: Population of electrons (energy=30 MeV) vs distaimto crystal (thickness=42 /&m)
for 3 cases. Left: no dechanneling, Middig: = 8 = ng + 4, Right:n; =6 =ng + 2.
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Figure 2: Population vs distance into crystal (thickne€8=pm), electron energy=30 MeV for 3
cases of dechanneling. Left: no dechanneling, Middje= 19, Right:n; = 18.

Table 4. Values of the occupation length and the power lavoeaptq for two energies and thick-
nesses.

Energy | Thickness| n; | Occ. lengthLoec [um] | g
14.6 42.5 4 8.6 0.93
14.6 500 16 39.5 0.19
30.0 42.5 6 8.2 0.54
30.0 500 18 52.7 0.75

that asn; decreases, the distance at which the population reachesimum decreases and also
decays at a faster rate, i.e. with a shorter occupationhenthe behavior shown can be modeled
by a functional form

2 ydexg——2] (34)

P@) = (T -
Herel is a length parameter determined by the maximum of the popnlavhile the distance at
which the population is maximum is given lay, = gLoc. Table 4 shows fitted values bf. and
g at different beam energies and different thicknesses. Tédoii the occupation lengthgg in
the bound states = 0, 2 yield very similar values to those shown in this table. Weestse that the
occupation length changes relatively little with energydepends strongly on the thickness. This is
one indication that the rechanneling probability whichr@@ses with thickness has a strong impact
on the population dynamics. Rechanneling occurs when anrefein a dechanneled free state
enters a bound state by losing transverse energy due to aenwhprocesses including multiple
scattering. It is possible that the rechanneling prokgbiind the occupation length saturate for
sufficiently thick crystals. Nevertheless from the resuit$able 4 we can conclude that occupation
lengths cannot be considered in isolation from rechangelimd crystal thickness and that classical
expressions for the dechanneling length such as in Eqg. (8@)bm invalid in the quantum regime.
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Figure 3: Population in state= 1 at energy = 30 MeV. Left: thickness = 42.8n), Right: 500
pum. Populations are shown for different values of the lowesst Staten; from which dechanneling
occurs. The smallest value aof shown in each plot is the one for which simulated yields best
match the experimental yields. At 42.6n, P;(z n; = 18) is scaled down by 0.005, while at 500
umP;(zn; = 18) is scaled up by 5, in order to show all populations on a lineafes

Equation (34) can be used to estimate the crystal thickrieskiaeh the intensity of the - 0
transition will saturate. The intensity for a crystal ofdkimessd relative to an infinitesimally thin
crystal in the limit that the photon absorption lengthis long compared to the crystal thickness is
proportional to the integral d?,(z),

d
@) 0 [Py (@)dz= L 20| F(10) T (1400 ) (@)

wherel is the gamma function. Figure 4 shows the relative interastya function of the relative

1 ‘ ———
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0.2 g=0.1 —— |
0.1 q=0.75 ——
0 ‘ ‘ q=1.0 ——

0 2 4 6 8 10
Relative thickness d/L

Relative intensity

occ

Figure 4: Relative intensity for the- 0 transition as a function of the crystal thicknesgelative
to the occupation lengthy. and different values of the power law paramejen Eq.(34).

crystal thicknessl/Loc for three values of the power law exponent Figure 4 shows that the
intensity of the 1— 0 transition saturates within a thicknessdof 7L for the range ofj values
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Table 5: Results for X-ray energies and line widths usingaandind crystal in the (110) plane and
the 1— 0O transition. Experimental values from Tables IV and V in R&2].
e Energy| Thickness| Energy[keV] Ljnewidth [keV]
[MeV] pm Eep | (Esm) | Tep Csm
14.6 42.5 16.58| 16.35| 1.43 0.74
168 16.99| 16.01| 1.74 1.09
500 16.47| 15.63| 2.15 1.49
17 42.5 21.72| 21.41| 1.94 0.92
168 22.37| 20.97| 2.35 1.40
500 21.38| 20.48 | 2.73 1.92
25 42.5 - 42.02 - 1.78
30 42.5 56.19| 57.58 | 5.85 2.46
168 56.22| 56.44 | 6.09 3.72
500 55.06| 55.13| 11.96| 5.09

considered. This suggest that whieg: ~ (40— 50) um as seen in Table 4, crystal thickness of
~ 350 um may suffice to optimize the channeled fraction and the gitgof the 1— 0 transition.

3.2 X-ray energies, linewidths and photon yields

Here we discuss the main aspects of the X-ray photon spedtoutihhe ELBE parameters. We
have assumed here and in subsequent calculations thaiorsiam the incidence angle from zero
are small compared to the beam divergence. Table 5 showsérgies of the 4+ 0 transition
for different beam energies and different crystal thicleess In order to mimic the experimentally
observed dependence of the X-ray energy on the thicknessaveeusedEg,,,), the average value
of the peak due to Doppler shift from multiple scatteringvegi in Eq(28). Due to the greater
multiple scattering in thicker crystals, the value (&) decreases with thickness. This trend is
also observed in the experimental values when going frord #2500 um at all energies but for
168 um only at one energy. In most cases, the simulated value sgpeeithin 6% which is well
within the error bars on the measurements.

In comparing the linewidths, we have defined the qualftgy, as the experimental line width

but with the detector energy resolution removed via a quacdrai.e. I:exp =, /rgﬂp — Fget where

exp is the measured linewidth. Table 5 shows that the simulasdakes are consistently smaller
than the measured values, in some cases by more than halindstdikely reason for this under-
estimate is the neglect of scattering off the atomic elestraGenz et al [15] had concluded from
their measurements that electronic scattering is not gibgh in its contribution to the linewidth.
In principle, the imaginary part of the potential for electrelectron scatterin\gg| could also cause
non-radiative transitions and should be added to the gatdat phonon scattering. However since
the momentum transfers involved in electronic scatteriegsanall, the transition ratés|V,} |n) for
m=: n are small and therefore the transition rates to neighba@imymore distant energy bands will
be small. Thus their contributions to the population dyre@ngian most likely be ignored. However
the linewidths involve the expectation values of the paatim the states involved in the transition,
(mV}|m) etc and these can be comparable to the values for thermeeriegt

Table 6 shows the photon yields for different beam energimescaystal thicknesses. In each
case the yields are shown for three valuesgfone corresponding to no (enhanced) dechanneling,
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Table 6: Results for diamond crystal with the (110) planesthe 1— 0 transition. Experimental
values from Tables 2.2 and 2.6 in Ref. [9]. For the simulatettlg, no (enhanced) dechanneling
was considered in one case while the other two had this daeliag included in the model with
different values of; relative to the indexg for the highest bound state.

e Energy| Thickness Yield dN/dQ [phot/e-/sr]
[MeV] um Exp. yield Sim yield
No dechanYy, Nt | Yam Nt | Ysm

14.6 42.5 0.048 0.129 ng+3]0.053| ng+1|0.044
168 0.090 0.36 ng+9/0.11 | ng+7|0.089
500 0.149 0.89 ng+15/0.18 | ng+14|0.16
17 42.5 0.059 0.18 ng+3/0.069| ng+1|0.057
168 0.13 0.52 ng+9/0.15 | ng+7]0.12
500 0.30 1.31 ng+16|0.34| ng+15|0.26
25 42.5 0.159 0.45 ng+3(0.14 | ng+1]0.11
30 42.5 0.229 0.68 ng+3[0.24 | ng+1/0.18
168 0.52 1.64 ng+9/0.54 | ng+7]0.43
500 1.012 5.23 ng+15[1.33| ng+14|0.95

and the other two for which the simulated yields are closeshé experimental yieldng is the
index of the highest bound state which changes with the gn&rm the results shown in Table 6
we observe first that without dechanneling, the photon gigidhe model are significantly higher
than experimental values in all cases and at the same ertieegglifference increases with crystal
thickness. This is a clear indication that dechannelingotsfneed to be included in the model. The
last two columns show the simulated yields when these ateded. We observe that the lowest
free staten; relative to the highest bound statg depends almost entirely on the crystal thickness.
Thus with 42.5um, the experimental yield is bounded by the yield in the statg+ 3,ng +1) at

all energies, with 16g:/m, the relevant states afag + 9,ng + 7) again at all energies while with
500 um, the relevant states afeg + 15,ng + 14) at 14.6 MeV and 30 MeV anthg + 16,ng + 15)

at 17 MeV.

The fact that these bounding states depend only on the #skand not on the energy is both
significant and useful. It shows a) that the energy deperdanthe model is reasonably accurate
and b) the conjecture that the experimental yield is obthinyencluding dechanneling effects which
increase with crystal thickness is most likely correct.sluseful because results obtained with a
given crystal thickness at a certain energy can be used thicpitbe yields at other energies. We
will use this feature in the next section to estimate the ghgields with ASTA parameters.

Another significant conclusion inferred from the resultsTable 6 is that rechanneling is im-
portant, especially for thicker crystals. We find that fothickness of 42.5um, the assumption
that dechanneling occurs from bound and nearly all the fiatesis a good model. This follows
from the observation that the theoretical yield with= ng + 1 or n; = ng + 3 are the closest to
the experimental yield at this thickness. For thicker @lgstsuch low values of; leads to yields
much smaller than experimental values. The fact thah the model increases with thickness in
order to match the experimental yields shows that rechangnsignificantly affects the observed
yield. The relative absence of rechanneling in thin crgstebuld explain why only the populations
in the bound states and the lowest free states can be casittecontribute to the radiation yield.
For thicker crystals this is a likely a wrong assumption tiaistically reduces the yield. Instead the
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electrons which are in the higher free states can also staité into the bound states and increase
the yield by radiative emission.

Figure 5 shows a comparison of the experimental yields with20% error bars quoted in
Ref. [9] as a function of energy with the simulated photorndgefrom the two bounding states
with dechanneling. We observe that the lower value of thaukitad yield is within 15% of the

ELBE Measurements
1.4 -

Exp, 42.5um + ®
12 L Theory, 42.5um ——
' Exp,168um — & —

5 1L Theory, 168um —— 1

< Exp,500pm —a—
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Figure 5: Comparison of the experimental yield includin§@érror bars with the theoretical values
found with the updated model. At each thickness, the lowdrgper solid lines correspond to the
smaller and larger values of in Table 6.

experimental yield in most cases. This compares to neaidytaif of two difference in the earlier
simulations [9]. Itis clear that the simulation model witietiower value oh; can be used to predict
the expected yield over this range of thicknesses. We wallthe population equations, Egs. (22),
(23), with the lowem; to calculate the expected yield with ASTA parameters.

4 ASTA simulations

In this section we apply the model to the ASTA photoinjectod &alculate the expected X-ray
properties including the brilliance. The main parameté&STA are shown in Table 7. The major
improvement over the ELBE facility is in the transverse ¢amite of the electron beam. Recent
developments have shown that normalized emittances ofthess100 nm can be obtained with
a conventional laser photocathode by suitably reducindaber spot size [24]. Recent studies of
field emission based cathodes using needle like structdtkdips of 5 nm radius of curvature have
shown promising results [25]. Estimates show that the nbzethemittances of the electron beam
at the needle cathode can be as small as 1 nm. Simulationsihawe that this emittance is mostly
preserved from the source to the crystal about 5m downstrédmne however we will assume a
normalized emittance of 100 nm. Reductions in this emittanit! increase the spectral brilliance.
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Table 7: ASTA beam parameters at two different electrongiesr A diamond crystal will be used
cut parallel to the (110) planes.

Beam energy [MeV] 20 50
Bunch charge [pC] 20 20
Bunch frequency [MHZz] 3 3

Average beam current [nA] 300 300
Transverse normalized emittance [nm¥ 100 | < 100

Bunch length [mm] <1 <1

Relative energy spread [%0] <1 <1
Critical angle [mrad] 1.54 | 0.98

Diamond crystals cut parallel to the (110) plane are alreadylable and these will be used for all
the studies reported here.

4.1 Potential and Populations

Figure 6 shows the real potential with the bound states at 20 khd 50 MeV and the imaginary
potential. These potentials depend on the crystal latticktlae chosen planes while the number of
bound states (shown as bands in the two figures) increasebedtm energy roughly ag/2. The
depth of the real potential for the (110) plane in diamondosud 23.8 eV while the height of the
imaginary potential is about 0.045 eV.

20MeV, (110) plane 50MeV, (110) plane (110) plane

0 0 e 0.05
- 0.045
5 \ 0.04
=2 0.035

0.03
0.025
0.02
0.015
20 = 0.01
0.005

Real Potential [eV]
Real Potential [eV]
Imag Potential [eV]

-25 -25 0
-08 -06 -04 -02 [ 02 04 06 08 -08 -06 -04 -02 0 02 04 06 08 -08 -06 -04 -02 0 02 04 06 08
transverse distance [Ang] transverse distance [Ang] transverse distance [Ang]

Figure 6: Left: Real potential with bound state levels at 28MyMiddle: Real potential at 50 MeV,
Right: Imaginary potential

Figure 7 shows the transition probabilitié,, calculated using Egs. (11) and (20) for the four
bound states at 20 MeV. As mentioned earlier, they obey tpeoapnate selection rulé,, =0
if /m—n| =odd. The diagonal matrix elemeft}, is the largest for each and decreases with
increasing energy transfer g — n| increases. Several conclusions can be drawn from these tran
sition rates. For example, most of the transitions from tweek bound states are to other bound
states. Atn =0, only 16% of the transitions take an electron to a free stated, this increases
to 36% from the next bound state= 1 and to 52% fromm = 2. Since the transition rat&4,, are
larger at lowemn, the bound states will depopulate faster than the freesstaitebe populated.

Figure 8 shows the probability density of the first three libgtates at beam energies of 20
MeV and 50 MeV. The eigenstates have definite parity, cormgfjuthe even states have a local
maximum at the nucleus while the odd states have a node atutheus. We also observe that the
probability densities of these states increase slightti emergy and they are more localized around
the nucleus at 50 MeV.
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Figure 7: Transition probabilities for the non-radiativartsitions due to thermal scattering from the
four bound states at the beam energy of 20 MeV.

Figure 9 shows the initial population at the entrance of tiystal for different incidence angles.
The transverse energy increases with incidence angle ariditial populations in these states also
change, in particular being non-zero for the odd states #s wereased initial populatiof®, (0) in
then= 1 state would increase the photon flux in theQ transitions. At 20 MeW;(0) is maximum
at an incidence angle of 0.54 mrad while at 50 MeV, the maxinsiat 0.3 mrad. The left plot in
Fig.10 shows the initial population as a function of the bekwargence at beam energy of 50 MeV.
These populations will be dominated by the electrons imttidé: close to zero angle. Thus in the
even states we observe a slow decrease with divergence aiftermscillations seen in the higher
even states in Fig. 9. In the odd states however, the nonepertoibutions are due to electrons with
non-zero incident angle and thus in the- 1 state we observe a slow rise and a broad maximum
at a beam divergence of 0.3 mrad, matching the maximum totaten in Fig. 9. This optimum
divergence is well below the critical angle 0.98 mrad forroteling at 50 MeV. The right plot in
Fig. 10 shows the initial populations as a function of thedance angle when the beam divergence
is set to 0.3 mrad to maximize the population in the 1 state. Now we observe that the maximum
in all states is obtained at zero incidence angle, so thame edvantage in tilting the crystal with
respect to the beam direction when the beam divergenceimapt The same observations hold
at 20 MeV where the optimum beam divergence is about 0.5 mrad.

From the decay of the populations with distance into thetatysve find that the occupation
lengths are about Am with a 42.5um thick crystal and about 20m with a 168um thick crystal.
These values are about the same at 20 and 50 MeV and for theediffoound states.
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Figure 8: Probability density as a function of the transeatistance from the center of an atomic
plane for the first three bound states.

4.2 X-ray energies, linewidths, photon yields

We discuss the X-ray intensity spectrum expected at ASTAamider the effects of beam di-
vergence on the spectrum. Fig. 11 shows the angular ingess#ictrum (photons/sr-electron) with
different beam divergences for a crystal thickness of @68Bat two energies. At the beam energy of
20 MeV, the 10 transition leads to the highest peak at 29.3 keV with a wadth 8 keV while the
2—1 transition leads to a lower peak at 16.5 keV with a broadétiwbf about 2.1 keV. From our
discussion of the ELBE simulations, we expect these linthwgitb under-estimate the experimental
width by roughly a factor of two.

At a beam energy of 50 MeV there are more bound states and vesvebsore lines in the
spectrum. The highest energy peak is still from the Q transition at 141.9 keV with a width of 9
keV while the most intense peak is from the»2 transition at 89.3 keV with a width of 5.7 keV.
There are also lower energy and less intense lines from-th2tBansition at 66.3 keV and from the
4—3 transition at 53.6 keV. In these calculations, the efféddhe beam divergence on the initial
populations in the different states is included but not thange of channeling fraction with the
divergence. The spectrum with a beam divergence of 0.1 nsradri close to that of the single
electron spectrum for both energies.

At 20 MeV, the yield in the -0 transition at 0.54 mrad divergence is higher comparedeo th
yield at 0.1 mrad, but decreases on further increasing treggince to 1 mrad. At 50 MeV, similar
behavior is observed with the maximum in the-@ and the 3-2 transitions at a divergence of 0.3
mrad. Since the divergence affects the dechanneling dracthe observed spectrum may have a
somewhat different dependence on the beam divergence.

Table 8 shows the X-ray energies, linewidths and photordyiekpected at ASTA. Based on
the ELBE simulations, the energies are expected to be dectodetter than 10%. However the
linewidths will be about a factor of two larger than the valirethis table, as follows from the discus-
sion in Section 3.2. This table also shows the photon yiedsxo cases: without enhanced dechan-
neling and with this dechanneling with the parameteset to the value which under-estimates the
yield; see the discussion following Table 6 and Fig. 5.
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Figure 9: Initial population as a function of the incidengbnfor the 3 lowest bound states. Left:
At electron energy of 20 MeV. The maximum in the= 1 state occurs at an angle of 0.54 mrad.
Right: At 50 MeV. The maximum in tha = 1 state occurs at an angle of 0.3 mrad.
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Figure 10: Left: Initial populations in the lowest four balistates as a function of the beam di-
vergence at a beam energy of 50 MeV. The population inntkel state has a maximum at a
divergence of 0.3 mrad. Right: Populations in the samesstde function of the incident angle at
a beam divergence of 0.3 mrad and energy 50 MeV.

4.3 Spectral brilliance

A radiation source is usually characterized by the numbghotons emitted per second per band-
width per unit solid angle and unit area of the source, alfleatthe spectral brilliance. The photon
yields found above can be used to estimate the expected Xpmgtral brilliance at ASTA. The
yield as calculated in Section 4.2 depends on the beam éreegthrough the dependence of the
initial population on the divergence, as shown in Fig. 10ddées not include the likelihood that
particles in the distribution with incidence angles gredan the Lindhard critical anglé. will

not be channeled. With the assumption of no rechannelirgyitld could be multiplied by the
fraction of particles with incident angles less than

2

\/_ / 2(0e)? \fZ

where Erf is the error functioraé is the electron beam divergence afd= /2U,/E./p for planar
channeling witiJ, the depth of the potential.

£(16] < 6.) ——]d6 = Erf|

7] (36)

The average brilliance of the radiation emitted by a beantexftieons can be written in terms of
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Table 8: Expected X-ray energies, linewidths and photofdgigvith and without dechanneling.
The yields were calculated with the beam divergence setltar®ad and the incidence angle to

50MeV, (110) plane, Thickness = 168um
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zero. .At 50 MeV, the values for both the<I0 and 2— 1 transitions are shown.

e Energy| Thickness| Energy | Linewidth Yield [phot/e-/sr]

[MeV] um EgmlkeV] | Mg [keV] | No dechan. yield n; | yield

20.0 42.5 29.3 1.21 0.27 ng+1|0.075
168 29.3 1.85 0.77 ng+7/0.17

50.0 42.5 89.3 3.83 2.7 ng+1]1.00
42.5 141.9 6.1 2.1 ng+1]0.65
168 89.3 5.65 6.6 ng+7|1.7
168 141.9 8.96 6.1 ng+7|1.6
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Figure 12: Left: Average spectral brilliance of X-rays wi@ MeV electron beams as a function of
the X-ray energy with beam divergence =0.1 mrad. Right: 8akbrilliance as a function of the
beam divergence for the-1 0 transition at two values of the crystal thickness.

the differential intensity spectrum per electron as

N 1 Ey e
¥ dwdQ e (0,2 V20,

(37)

wherel,, is the average electron beam currdfjtjs the energy of the X-ray line aral, is the X-ray
beam spot size. Expressed in terms of the yield per electrdrinea 0.1% band-width we have the
average brilliance expressed in typical light source units

B, lv_ Y+107 e fo p_ lav yzv(og)21¢3Erf[ % |
e (0,0,)?0E,/E, ~ "\/20, e &FAE,/E, V20,
photongs— (mm— mrad? — 0.1%BW (38)

Y is the total photon yield per electrofE,/E, is the relative width of the X-ray line, arg; is the
normalized emittance in mm-mrad. We set the X-ray beam spets the lower limit value of the
electron beam spot sizg, = 0. = £/(ya,), while the X-ray divergence ie;, =1/y.

The left plot in Fig. 12 shows the brilliance as a function efa¢ energy at a beam energy of
50 MeV with a beam divergence of 0.1 mrad while the right phothis figure shows the expected
brilliance in the 1-0 line as a function of the beam divergence for two crystalkimésses. With
the assumptions made above, we observe that that thermédlis larger with the thicker crystal,
the difference increases with divergence and reaches @bdtitwhen the beam divergence equals
the Lindhard critical angle.

Table 9 shows the brilliance and photon flux at two energiesaforystal thickness of 168
Um, again with the same assumptions as in Figure 12. Sinceatbbessquoted are for the beam
divergence of 0.1 mrad, the value quoted for the ELBE expaminand used in setting the value of
n; in Egs. (22) and (23), the deviations from the values to bevesi at ASTA may be small.

As steps towards increasing the brilliance, one could cemsncreasing the beam current ei-
ther with a higher bunch charge or a higher micropulse riépetiate if the crystal does not suffer
damage from heating at the higher currents. A more promigath would be to lower the emit-
tance since the brilliance depends inversely on the sqddhe @mittance. The results above have
assumed an electron emittance of 100 nm using a laser phioboea First tests of operation with a
field emission cathode mentioned above have recently bpenteel [26]. Assuming that success is
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Table 9: X-ray brilliance and photon flux from the-10 transition with ASTA parameters for two
energies and crystal thickness of 1881. The estimated energy spreads shown are a factor of two
larger than the calculated values. f Units of the brilliaage: photons/(s-(mm-mrad.1% BW)

Beam energy [MeV] 20 50

Av. beam current [nA] 300 | 300
Beam emittance [nm] 100 | 100

Beam divergence [mrad] 01| 01
X-ray energy from - O E, [keV] 29.2| 1419
Est. energy spreafiE, [keV] ~4 | ~18

Angular yield [photons/(e-sr)] 0.17| 1.69
Absolute yield/electron}10-3] 0.11] 0.17
Av. X-ray brilliance [x107] % 0.79| 48.0

Av. Photon flux atE, [photons/s]x 10°| 2.1 | 3.3

achieved with these cathodes and that the low emittancea@edecan be preserved until the crystal,
the brilliance could then be increased by about two ordersagjnitude above the values reported
here.

5 Conclusions

In this report we have studied the expected spectral bridéaof X-rays from channeling experi-
ments to be performed at the ASTA photoinjector. We revdsite theoretical model, corrected the
potential describing thermal scattering and developeduadte model to include dechanneling in
the population dynamics. We used the updated model to fispace with the experimental values
reported from the ELBE facility and second to predict valiesASTA.

We compared the energies, linewidths and photon yields frmmmodel with the results at the
ELBE facility. With appropriate choices of dechannelingtss in the model, the simulated yield
agrees well with observed photon yields, see Fig.5. Thadtieal linewidth is about a factor of two
smaller than the observed values. This is due to the negledectron scattering with the atomic
electrons and the plasmonic modes. This scattering affetyshe linewidth but does not affect the
photon yields. From the population dynamics we were ablstimate, for different quantum states,
the occupation length whose classical analog is the deetiagriength. The occupation length was
found to increase with crystal thickness but was nearlypedédent of beam energy in the energy
range studied. This pointed to the importance of rechamgétithe quantum regime where particles
in the free states can be scattered back into the channeled lstates. Rechanneling increases
with crystal thickness and explains why the measured od¢imup#&engths are longer than simple
classical estimates. We found that the optimum crystaktt@ss to maximize the intensity of the
10 transition is about 7 times the occupation length.

When applied to ASTA, the model finds that with an electronnbemergy of 50 MeV, X-
ray peaks are expected at about 142 keV from thedXransition and at 89 keV from the-21
transition with linewidths around 14%. The ability of chating radiation to produce hard X-rays
with moderate beam energies is one of the main premisesdee taxperiments. We find that with
a crystal thickness of 168m and electron transverse emittances of 100 nm and beammtofre
300 nA, the expected brilliance is of the order offd@hotons/(s-(mm-mrad)0.1% BW). It is
possible that thicker crystals may increase the brillissloeve these values. Significant increase in
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the brilliance by about two orders of magnitude could beaatd with ultra-low emittance beams
using field emitter cathodes and beam studies with thesd oatledes are in progress.
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