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Abstract

We study channeling radiation from electron beams with energies under 100 MeV. We in-
troduce a phenomenological model of dechanneling, correct non-radiative transition rates from
thermal scattering, and discuss in detail the population dynamics in low order bound states.
These are used to revisit the X-ray properties measured at the ELBE facility in Forschungszen-
trum Dresden-Rosenstock (FZDR), extract parameters for dechanneling states, and obtain sat-
isfactory agreement with measured photon yields. The importance of rechanneling phenomena
in thick crystals is emphasized. The model is then used to calculate the expected X-ray ener-
gies, linewidths and brilliance for forthcoming channeling radiation experiments at Fermilab’s
ASTA photoinjector.

1 Introduction

Channeling radiation offers the promise of a quasi-monochromatic and tunable X-ray source with
electron beams of moderate energies (tens of MeV) passing through a thin crystal. This radiation
has been experimentally observed at several laboratories and many of the experimental features are
well understood from theoretical considerations. Reviews can be found in several publications, see
e.g. Refs. [1, 2, 3].

Channeling and channeling radiation experiments have a long history at Fermilab, see e.g.
Ref. [4]. Those were carried out at the A0 photoinjector which had a maximum beam energy of
about 15 MeV. A new photoinjector ASTA is being commissioned at Fermilab, which will use an
L-band (1.3 GHz) linac to generate beams with energies initially in the range 20-50 MeV and later
to 300 MeV and higher with the addition of one or more ILC style cryomodules [5]. Channeling
radiation experiments with beams in the lower energy range have been planned and descriptions of
the planned experiments can be found in Refs. [6, 7]. The goal is to generate X-ray beams with
high average brilliance using low emittance electron beams with the aim of increasing the bril-
liance by about six orders of magnitude over that obtained with channeling experiments conducted
at FZDR’s ELBE linac [8]. Once demonstrated, compact X-ray sources from channeling radiation
can be designed and built with X-band linacs.
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In this report we revisit the theoretical model for channeling radiation with the aim of improving
the calculation of the X-ray intensity. We compare the calculations of the revised model with the
measurements of previous experiments at ELBE and find betteragreement of the photon yields with
the experimental values shown in ref. [9]. We then use this model to calculate the expected photon
yields and X-ray brilliance at ASTA.

2 Theoretical model

In the case of planar channeling, the particle motion in its rest frame can be well approximated by
motion in a single transverse direction (herex) orthogonal to the plane. For particle energies below
100 MeV, the X-ray energy spectrum is discrete and the radiation is best understood as emitted
during transitions between the discrete bound states in thecrystal potential and requires a quantum
mechanical treatment. The Schroedinger equation for the electron wave functionψ(x) in the particle
rest frame is

[− ~
2

2meγ
∂ 2

∂x2 +V(x)]ψ(x) = E⊥ψ(x) (1)

Here γ = 1/
√

1− (v/c)2 is the usual kinematic factor related to the velocityv andV (x) is the
one dimensional continuum potential obtained by averagingthe three dimensional atomic potential
along the orthogonal directions(y,z). Taking into account the lattice periodicity, the potential can
be expanded as a Fourier series

V (x) =
∞

∑
n=−∞

Vn exp[ingx] (2)

Hereg = 2π/dp is the lattice spacing in reciprocal space whiledp is the lattice spacing in direct
space. The Fourier coefficientsVn are typically obtained from expanding the electron form factor
fel(4πs) (defined in Eq.(14)) into a sum of four Gaussians with four Doyle-Turner coefficients
(aDT ,bDT ) [10]. We use here instead six coefficients as used in Ref. [11]which extends the range
of validity of the approximation froms ≤ 2Å−1 to s ≤ 6Å−1 for planar channeling.

Vn = −2π
Vc
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0(

e2
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)e−M(~g) ∑
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ei~g·~r j
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∑
i=1

aDT
i exp[− bDT

i

16π2 (ng)2] (3)

Here~g is the reciprocal lattice vector,Vc is the volume of the unit cell,a0 is the Bohr radius,~r j

are the coordinates of thejth atom in the unit cell andM(~g) = 1
2g2〈u2

th〉 is the Debye-Waller factor
describing thermal vibrations with mean squared amplitude〈u2

th〉, assumed to be the same for all
atoms.

The wave function solution for the periodic potential is given in terms of Bloch waves

ψ(x) =
eikx

√

dp

∞

∑
n=−∞

cn exp[ingx] (4)

wherek is the electron wave number. In practice, the Fourier expansion for the potential and the
wave function is limited to a finite number of modesM, in the cases considered hereM = 20.
Substitution of Eqs. (2) and (4) into the Schroedinger equation reduces it to an eigenvalue problem
with a matrixA whose components are [12]

Ann =
~

2

2meγ
(k + ng)2 +V0

Anm =Vn−m, n 6= m (5)
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Solutions to the eigenvalue problem results in the eigen-energiesεn and the coefficientscn deter-
mining the wavefunctionsψ(x).

2.1 Radiative transitions

Radiative transitions from one state to another lead to photon emission and the transition rates are
given by Fermi’s golden rule which states that the transition rate per unit solid angle, per length
of traversal into the crystal and per unit photon energy is proportional to the matrix element of the
transition operator between the states, i.e.

d3N
dΩdzdEγ

(n → m) ∝ |〈ψm|
d
dx

|ψn〉|2Pn(z) (6)

whered/dx corresponds to the dipole operator andPn(z) is the probability of occupation in the state
|ψn〉 at a distancez into the crystal.

Applying this rule yields the differential energy angular spectrum from a staten to statem as
[13, 14, 15, 12]

d2N
dΩdEγ

=
α f λ 2

C

π5/2~c
2γ2(εn − εm)|〈ψm|

d
dx

|ψn〉|2

×
∫ d

0
dze[−µ(Eγ)(d−z)]Pn(z)

∫ ∞

0
dt

t−1/2(1+2α2t)(ΓT /2)e−t

[(1+2α2t)Eγ −E0]
2 +[(1+2α2t)(ΓT /2)]2

(7)

whereα f is the fine structure constant,λC is the Compton wavelength of the electron,εn,εm are
the energies of the statesn,m respectively,d is the crystal thickness,µ(Eγ) is the energy dependent
photon absorption coefficient,Eγ is the X-ray energy at the angle of observation,E0 is the X-ray
energy at zero angle,α = γθMS,ch whereθMS,ch is the multiple scattering angle during channeling
andΓT is the total linewidth of the transitionn→ m line. From this the differential angular spectrum
is found from

dN
dΩ

=
∫ Eγ+ΓT /2

Eγ−ΓT /2

d2N
dΩdEγ

dEγ (8)

where the integration is done over the linewidth of the spectral line with its peak atEγ . These
transitions only occur between states of opposite parity because the dipole transition matrix element
is non-zero only between these states. The dipole operator is of odd-parity and the bound states|ψn〉
in planar channeling are states of definite parity: even parity for n even and odd for n odd.

With the wave function defined in terms of the Fourier coefficientscn, the dipole matrix elements
between two states is given by

〈ψm|
d
dx

|ψn〉 = i
2π
dp

M

∑
j=−M

( jg+ k)(cm
j )∗cn

j (9)

wheredp is the inter-planar distance andcm
j ,cn

j are the coefficients in the Bloch wave expansion (see
Eq.(4)) ofψm,ψn respectively.

If the eigen-energies of the two states involved in the transition areεm,εn, the energy of a photon
emitted at zero angle and emitted at angleθ with the beam direction are given by

Eγ(0) = 2γ2(εn − εm)

Eγ(θ) =
Eγ(0)

1−β cosθ
≈ Eγ(0)

1+ γ2θ2 , θ ≪ 1 (10)
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2.2 Non-Radiative transitions

In addition to the radiative transitions, electrons can also change energy by non-radiative transitions
which we discuss here. Electrons in the lower bound states are closer to the atomic nuclei and
can change energy due to thermal scattering with the vibrational motion of the atoms. This energy
exchange can lead to a change of the wave vectors within the same Brillouin zone (intra-band scat-
tering) or even transfer them to different energy states (inter-band scattering). This electron-phonon
scattering is the dominant contribution to the non-radiative transitions that change the populations
of the states; a relatively smaller contribution is played by the electron scattering off atomic elec-
trons. The transition probability due to thermal scattering that an electron will move from statek,ψn

with momentumk to statek
′
,ψm with a different momentumk

′
is given by a transition rate per unit

lengthW
kn,k′m

where

W
kn,k′ m

= W
k′m,kn

=
2
~v

|〈k′
,ψm|V I|k,ψn〉 (11)

where the potentialV I describes the inelastic scattering. It is the imaginary part of a complex
potential with the real part being the continuum potentialV (x) which describes the elastic scattering.
Intra-band scattering is described bym = n while inter-band scattering hasm 6= n. Calculation shows
that the variation of the rate within an energy band (Brillouin zone) is smaller than the variation
between bands. For clarity of notation, we will drop the momentum indices fromW in the following
but they are understood to be present.

Similar to the real potential, the imaginary potential can also be expanded in a Fourier series as

V I(r) = ∑
g

V I
g exp[ig · r] = ∑

n
V I

ng exp[ing ĝ · r] (12)

whereĝ is the unit reciprocal lattice vector.

We briefly summarize the procedure for calculating the imaginary potential and hence the
Fourier coefficientsV I

ng, following the method in Ref. [11]. As is done in solving for the energy
eigenvalues, the incident and scattered wave functions of the electron are represented as sums of
Bloch functions with the sums extending over many reciprocal lattice planes. In general thermal
scattering occurs in all three directions, hence a three dimensional formalism is necessary. The
incident and scattered wave functions can be written as

ψinc(r) = ∑
n

an exp[i(k0 + gn) · r

ψscat(r) = ∑
n

∑
j

anγ fel(q−gn)exp[i(q−gn) · r j]exp[ik · r] (13)

Herean are the coefficients in the expansion, the sum overn extends over reciprocal lattice planes,
gn are the reciprocal lattice vectors while the sum overj extends over the atoms in the crystal.
k0,k are the incident and outgoing wave vectors of the electron and q = k−k0. fel is the electron
scattering form factor given by

fel(q) =
m

2π~2

∫

V (r)exp[−iq · r]dr (14)

HereV (r) is the real part of the atomic potential.

The transition rate is found from the intensity of the thermally diffuse scattering

W =
v

Vc

∫

dΩ Idi f f (15)
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wheredΩ is the solid angle into which the particle is scattered,Vc is the volume of the crystal. The
diffuse scattering intensity is related to the total scattering intensity via

Itotal ≡ 〈ψscat |ψscat〉 = Idi f f + IBragg (16)

Here IBragg is the Bragg scattering or the coherent scattering intensity. Bragg scattering does not
generally lead to energy exchange between electrons and theatoms but instead modulates the am-
plitude of the electron intensity in the crystal [16]. It occurs even when the atoms are stationary,
so the diffuse inelastic scattering intensity is found by extracting only the contribution from the
thermally induced vibrations.

In evaluating the scattered intensity, the instantaneous position can be represented asr j(t) =
R j + u j(t) whereR j is the stationary equilibrium position of thejth atom whileu j(t) represents
the time dependent position due to thermal vibrations. Thena thermal averaging is performed
assuming that the thermal vibrations are isotropic. The terms in the total scattered intensityItotal
that are independent of the atomic coordinatesR define the incoherent thermally diffuse scattering

〈Idi f f 〉= Natγ2∑
m

∑
n

a∗man fel(q−gm) fel(q−gn)

×
{

exp[−1
2

u2
th((gm −gn)

2)]−exp[−1
2

u2
th((q−gm)2 +(q−gn)

2)]

}

(17)

Here〈〉 represents the thermal average,〈u2〉 = u2
th, andNat is the number of atoms in the crystal.

This incoherent intensity would vanish in the absence of thermal vibrations.

Equating the two expressions for the transition rates in Eq.(11) and Eq.(15) leads to an expres-
sion for the Fourier coefficients

V I
g =

~βc
2Vc

γ2Nat

k2
0

∫ ∫

qdqdφ fel(q) fel(q−g)

×
[

exp(−1
2

u2
thg2)−exp(−1

2
u2

th(q
2 +(q−g)2))

]

(18)

The element of solid angle in this integral is written asdΩ = sinθdθdφ = (qdq/k2
0)dφ . The second

equality follows fromq = k−k0, henceqdq = k2
0 sinθdθ when|k| ≈ |k0|. Using the Doyle-Turner

like expansions.for the real potential, the electronic form factors can be written as

fel(q) = ∑
i

aDT
i exp[−(bDT

i +8π2u2
th)q

2/(16π2)] = ∑
i

aDT
i exp[−Biq

2] (19)

where

Bi =
1

16π2 bDT
i +

1
2

u2
th

Performing the integrations, the expression for the Fourier coefficients of the imaginary potential
is

V I
g =

~
3

2βm2
ec

Nat

Vc
exp[−(

1
2

u2
thg2)]∑

i
∑

j
aDT

i aDT
j

[

1
Bi + B j

exp[−
BiB j

Bi + B j
g2]− 1

Bi + B j + u2
th

exp[−(
BiB j −u4

th/4

Bi + B j + u2
th

)g2]

]

(20)
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Again, we note that the coefficientsV I
g vanish in the absence of thermal vibrationsuth = 0. This

potential depends on the particle energy only throughβ , hence this potential is nearly independent
of particle energy for relativistic electrons. This expression differs from the incorrect expression
(Eq.(A20)) in Ref. [11]. The resulting imaginary potentialturns out to have a smaller magnitude
and the opposite sign to the imaginary potential used in the numerical modeling for the ELBE
experiments, e.g Eq.(11) in reference [12].

From the numerical calculations, the transition ratesWm,n are found to obey the approximate
selection rule that only same parity transitions are allowed, i.e. |m− n| = even. The odd parity
transitions are non-zero but small.

The probabilityPn of a stateψn changes as the electron propagates through the crystal. Therate
of change is determined by the transition ratesWm,n as

dPn

dz
= ∑

m
Wm,n[Pm(z)−Pn(z)] (21)

whereWm,n is the transition probability from a state|ψm〉 to state|ψn〉. The first term in the sum
corresponds to entering the state|ψn〉 from other states while the second term corresponds to elec-
trons leaving that state. In this model, equilibrium populations, i.e. dP/dz = 0 are reached when
the populations in all states are equalPm = Pn.

2.3 Dechanneling

If the electron is scattered into a free state, it is possiblethat the electron will remain in a free state
and not be scattered back into a bound state while propagating through the crystal. In addition,
multiple scattering can move electrons from lower states tohigher states and effectively remove
electrons from contributing to the radiation yield. This enhanced dechanneling can be taken into
account phenomenologically in the above model by removing those electrons scattered into free
state above a certain energy from contributing to the photonyield. Thus the above equation would
be modified to a set of two equations. Ifn f denotes the free state at which electrons are dechanneled
and do not scatter back into the bound states, then the propagation of the probabilities are given by

dPn

dz
= ∑

m<n f

Wm,nPm −
M

∑
m=1

Wm,nPn; n < n f (22)

dPn

dz
=

M

∑
m=1

Wm,nPm − ∑
m≥n f

Wm,nPn; n ≥ n f (23)

The first term in Eq (22) restricts the electrons entering state n to only those from states belown f
while the second term allows the escape of electrons from this state to all states. Similarly for states
at and aboven f , electrons can enter from all states (1st term in Eq.(23)) but can only escape to states

aboven f . These set of equations conserve population, i.e.(d/dz)∑M
n=1Pn(z) = 0, as they should.

In this model there are no equilibrium solutions except for those states which are depopulated at the
beginning of the crystal and remain so. For the other states,the asymptotic solutions in this model
at largez are given bydPn/dz < 0 for n < n f anddPn/dz ≥ 0 for n ≥ n f .

A complete theory would have transition rates from multiplescattering in the model, but in its
absence we will use experimental data to find the best value for n f . In the cases we will consider,
n f is found to be determined primarily by the crystal thicknessand not by the electron energy. We
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expect thatn f will increase with crystal thickness to reflect the higher rechanneling probability that
electrons will scatter into bound states with increasing thickness. This was observed to be the case
in experiments at the Darmstadt linac [15] and our fits to the experimental data from the ELBE linac
will also show this to be the case.

A proper treatment of dechanneling at low energies using a quantum mechanical treatment still
seems to be lacking. However, when the electron energy is high enough that channeling radiation
can be treated classically, then a Fokker-Planck treatmentof the diffusive motion has been used
to describe dechanneling. Results from one such analysis and comparison with experiments using
855 MeV electrons were reported in Ref. [17]. A brief survey of dechanneling phenomena at high
energies for negatively and positively charged particles was reported in Ref. [18].

2.4 Line width and length scales

The finite lifetime of quantum states, Bloch wave broadeningof each energy band due to the varia-
tion of transverse momenta, and multiple scattering are thedominant sources of line broadening in
the regime of our interest. Other less significant sources are the Doppler broadening due to emis-
sion at non-zero angles, electron beam energy spread and detector resolution. Here we will consider
the dominant effects and the length scales associated with line broadening effects, more complete
discussions can be found in Refs. [11, 12].

Coherence length: This is a measure of the length over which a radiating electron stays in phase
and it determines the lifetime of the bound states. Thermal (phonon) scattering, atomic electron
(plasmon) scattering and other incoherent scattering effects change the phase of the initial wave
function of the electrons and they lose coherence. These scattering effects can be described by the
imaginary potential discussed above. The coherence lengthLcoh for transitions between two states
n,m is given by

1
Lcoh

=
1
ln

+
1
lm

, lm =
~βc

2〈V I
m〉

(24)

where〈V I
m〉 is the expectation value of the imaginary part of the complexpotential in the statem.

The line width due to this finite lifetime of each state is given by

Γcoh =
2γ2

~βc
Lcoh

(25)

The correction to the imaginary potential discussed in the previous section makes it smaller and
hence the calculated coherence lengths are larger than those reported in Ref. [12].

Bloch wave broadening: Each energy band has a finite width due to the spread of wave vectors
within each Brillouin zone. Hence the energy spread from transitions between statesn and m is
given by

ΓBW = 2γ2(|εk⊥=0
n − εk⊥=g/2

n |+ |εk⊥=0
m − εk⊥=g/2

m |) (26)

whereg is the reciprocal lattice spacing andk⊥ is the transverse component (herekx) of the wave
vector. The width is larger for the higher bound states because of their larger range of transverse
momentum. The relative importance of Bloch wave broadeningincreases with energy as the number
of bound states increases.

Multiple scattering of channeled particles: This contributes to the line width by changing the
angle of the scattered electron and hence the angle at which photons are emitted and their energy.
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For particle scattering in an amorphous medium, the rms scattering angle is given by [19]

θMS =
13.6

Ee[MeV]

√

d
Lr

[1+0.038log
d
Lr

] (27)

whered is the thickness andLr is the radiation length, the length over which an electron loses
1/e of its initial energy. This expression is considered to be accurate to about 10% for thickness
down to 0.001Lr [19]. Experimental estimates show that the scattering angle of channeled particles
in a crystal is less than that in an amorphous medium. Estimates of the scaling between the rms
multiple scattering angles during channeling and in an amorphous crystal are in the rangeθMS,ch ≃
(0.22−0.56)θMS [11, 12]. The range of values in the numerical coefficient depends on the crystal
thickness, smaller values for larger thickness, but is nearly independent of the beam energy.

The change in the angle of emission Doppler shifts the photonenergy, with its energy given by
the second equation in Eq.(10). The mean photon energy is found by averaging the angle dependent
energy over the distribution of multiple scattering angles, assumed to be Gaussian. Thus

〈Eγ〉 ≡
1√

2πθMS,ch

∫

Eγ(θ)exp[− θ2

2θ2
MS,ch

]dθ (28)

while the rms width of this distribution may be taken as a measure of the linewidth due to multiple
scattering,

ΓMS =
√

〈E2
γ 〉− 〈Eγ〉2 (29)

Dechanneling length or Occupation length: A simple estimate of the length over which particles
dechannel due to multiple scattering is given by setting therms multiple scattering angle equal to
the Lindhard critical angle yields [20]

Ldechan =
α
π

(

U0Ee

(mec2)2

)

Lr (30)

whereU0 is the depth of the atomic potential,Ee is the particle energy. This is based on a strictly
classical approach and predicts that the dechanneling length increases linearly with energy. Mea-
surements however have shown that the dechanneling lengthsfor electrons with energies in the tens
of MeV are higher than the above simple estimate and do not scale linearly with energy [14].

Quantum mechanically, a similar idea is expressed by the concept of an occupation lengthLocc

which is the length over which the initial probability in a quantum staten falls by a factor 1/e, i.e.

Pn(z) = Pn(0)exp[− z
Locc

] (31)

This occupation length depends on the states involved in thetransition, the plane of channeling and
on the beam energy. It was measured in a few experiments, e.g.Refs. [14, 21] with beam energies
in the 5 - 54 MeV range. Some measured values for the (1→ 0) transition in the (110) plane are
shown in Table 1.

Photon formation length: In the simplest version, this length represents the lengthscale over
which the photon “shakes free” from the electron after formation and separates from it by a reduced
wavelengthλ/(2π) [3]. It is given by

L f =
2γ2c

ω
(32)
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Table 1: Different length scales at different electron and photon energies. †: the dechanneling length
is found from Eq. 30 with a depthU0 = 23.8 eV for the (110) plane in diamond, ‡: the values for
the occupation lengths are quoted for the (110) plane and taken from Ref. [14].

Photon lengths
Eγ [keV] Length Eγ [keV] Length

Formation lengthL f with 50 MeV e− 10 0.38[µm] 80 0.047[µm]
Photon absorption lengthLa 10 1.26 [mm] 80 17.7 [mm]

Electron lengths
Ee [MeV] Length Ee [MeV] Length

Electron radiation lengthLr 20 16.7 [cm] 50 14.9 [cm]
Dechanneling lengthLdechan† 20 0.71 [µm] 50 1.58 [µm]

Occupation lengthLocc‡ (1→ 0) 17 20 [µm] 54 36[µm]

whereω is the photon frequency. Clearly the crystal thickness should be larger than this formation
length for a significant photon yield.

Photon absorption length: The photon absorption length within a material is given by

1
La

=
NAσT

A
(33)

whereNA is the atomic density,A is the atomic number andσT is the total cross-section of all
processes that lead to photon absorption during its passagethrough the material. These include the
photo-electric effect, Compton scattering, and also pair production for photon energies sufficiently
above 1 MeV. The scattering cross-sections for these processes are well known and the absorption
lengths at different photon energies can be obtained from tables maintained by NIST [22].

Table 1 shows the values of these length scales for some representative electron and photon
energies. The crystal thicknessd should be large enough for enough photons to be emitted from the
particle, sod > L f but small enough that most photons do not get absorbed withinthe crystal, i.e.
d < La. Since in all cases of interestd ≪ Lr, the radiation length, the electron will lose very little
of its energy through its passage through the crystal. We also note that the classical dechanneling
length found from the simple estimate in Eq (30) significantly underestimates the occupation length
found from measurements at nearby energies.

3 Simulations of ELBE experiments

We used a Mathematica notebook developed for modeling the channeling radiation experiments at
the ELBE facility [23]. This notebook (called PCR) or some version of it was used to model the
ELBE experiments and results in Ref. [9] showed the line widths were about half the measured
values and photon yields were about a factor of two higher than the experimental results. However
tests with the notebook available from the source [23] showed much greater discrepancies with the
ELBE experimental results. We therefore corrected and added features to the notebook, the more
significant changes are listed here in order of importance:

1. Used the set of equations (23) to model the effects of enhanced dechanneling due to multiple
scattering and other scattering phenomena from the bound and quasi-free states.

9



2. Corrected the imaginary part of the potential as described in Section 2.2. This also included
correcting the matrix elements of the imaginary part of the potential. These matrix elements
now better obey the approximate selection rule that the non-radiative transitions occur pri-
marily between states of the same parity. The Fourier coefficients of the real and imaginary
parts of the potential are now also calculated in the notebook.

3. Included the effects of a finite beam divergence.

4. Included the contributions to the linewidth from Bloch-wave broadening and multiple scat-
tering to the total line width. The notebook in Ref. [23] contained only the contribution from
the coherence length.

5. Corrected the line shape in the intensity spectrum calculation

6. Included photon self-absorption within the crystal.

Further improvements could be made to the physics model. These include:

• The effect of inelastic electron scattering off the valenceand bound electrons on the transi-
tion matrix elementsWmn needs to be included. The importance of electron scatteringto the
linewidth was discussed in Ref. [15] and will be discussed inSection 3.2 below.

• The rms multiple scattering angle while channeling in a crystal is obtained from that in an
amorphous medium by a scaling factor, based on limited experimental data. This could be
replaced by a calculation of the multiple scattering angle during channeling from first princi-
ples.

Table 2 shows the main parameters of the ELBE facility which we used in the simulations
reported here.

Table 2: Main parameters of the electron beam in ELBE, Ref. [8]
Crystal thickness[µm] 42.5, 168, 500
Beam energy [MeV] 14.6, 17, 30, 34

Uncertainty in beam energy [MeV] 0.2
Transverse norm. emittance [mm-mrad] 3.
Beam divergence, both planes [mrad] 0.1

Relative energy spread 1.3×10−3

Beam size at crystal [mm] ∼ 1
Average beam current [nA] ≥ 100

First we discuss the coherence length calculation. Since the corrected imaginary part of the
potential is weaker that that used in the previous calculations for ELBE, the coherence length found
here is longer and hence the linewidth from this effect is smaller than that reported in Ref. [12]. We
note that this coherence length includes only the effect of inelastic thermal scattering and does not
include the effects of inelastic electron scattering. Table 3 lists the coherence length from thermal
scattering at the ELBE energies for some low order transitions The coherence length for the 1→ 0
transition extracted from measured data [12] was about 0.65µm, more than a factor of two smaller
than the calculated values. This discrepancy is most likelydue to neglecting the inelastic electron-
plasmon and electron-core electrons from the atom scattering.
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Table 3: Coherence lengths (µm) for the low order transitions
Beam energy [MeV] Lcoh 1→ 0 [µm] Lcoh 2→ 1 [µm] Lcoh 3→ 2 [µm]

14.6 1.87 4.08 5.98
17.0 1.79 3.75 5.95
25.0 1.62 3.01 5.24
30.0 1.55 2.74 4.70

3.1 Population dynamics

The populations in the states change as the electron moves through the crystal. In our simulations
we have modeled dechanneling due to all effects in a heuristic fashion using the model with the
free parametern f in Eqs. (22) and (23). LetnB denote the index of the highest bound state at
a given energy;nB = 3 at 14.6 MeV andnB = 4 at 30 MeV with the ground state indexn = 0.
For each energy and crystal thickness, the appropriate values ofn f were determined by comparing
with the measured photon yield, to be discussed below in Section 3.2. Lower values ofn f imply
dechanneling from more free states and hence lower photon yields.

Here we discuss the probabilitiesPn(z) found from the numerical solutions of Eqs. (22), (23).
Figures 1 and 2 show the populations as a function of the distance into the crystal for thicknesses
of 42.5µm and 500µm respectively at the beam energy of 30 MeV. Only the three lowest bound
states are shown in each case. The appropriate values ofn f change with the thickness. The left
plot in both figures show the populations without enhanced dechanneling (n f = 21). Without the
additional dechanneling, the populations in the three states equalize and reach equilibrium at around
200 µm, as seen in Fig. 2. This length is relatively insensitive tothe energy, being about the
same at all energies modeled. Without dechanneling from multiple scattering, the photon yield was
significantly higher than the experimental value.

Two values ofn f were chosen such that the measured yield lay in between the calculated photon
yields with these values ofn f . At 42.5µm thickness, these values at 30 MeV weren f = (6,5) while
at 500µm, these weren f = (19,18). The middle plot in Figures 1 and 2 shows the populations with
the higher values ofn f in each case. As expected, the populations in these states donot reach
equilibrium but continue to decrease with distance. At 500 microns, the three states have nearly
equal populations and fall at the same rate implying that theoccupation lengths are about the same
in these states. The right plot in both figures shows the populations whenn f is set so that the
calculated yield is a slight under-estimate of the measuredyield. For both thicknesses, we find
that the populations in then = 1 state increase by several orders of magnitude before reaching a
maximum and falling at the same rate as in the even bound states. We find that ifn f is so low that
the initial increase in then = 1 state is less than an order of magnitude, the dechanneling is too
strong and the photon yield is much lower than the measured value. The dependence ofPn(z) for
different values ofn f is similar at other energies.

Fits to the population in the lowest order even statesn = 0,2 show good fits to an exponential
form Pn(z) = Pn(0)exp[−z/Locc], especially at the lower energies. At 30 MeV, a better fit is obtained
with a sum of two exponentials of the formPn(z) = Pn(0)[exp[−z/Ln1] + aexp[−z/Ln2]], where
Ln2 ≫ Ln1. However the weight of the second term is small, typicallya ∼ 0.3.
Since the intensity of the 1→ 0 transition is determined by the population in then = 1 state, we
consider it in a little more detail. Figure 3 shows the populations in this state at 30 MeV and
different thicknesses at a few chosen values of the parameter n f . For both thicknesses we observe
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Figure 1: Population of electrons (energy=30 MeV) vs distance into crystal (thickness=42.5µm)
for 3 cases. Left: no dechanneling, Middle:n f = 8 = nB +4, Right:n f = 6 = nB +2.
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Figure 2: Population vs distance into crystal (thickness=500 µm), electron energy=30 MeV for 3
cases of dechanneling. Left: no dechanneling, Middle:n f = 19, Right:n f = 18.

Table 4: Values of the occupation length and the power law exponentq for two energies and thick-
nesses.
Energy Thickness n f Occ. lengthLocc [µm] q

14.6 42.5 4 8.6 0.93
14.6 500 16 39.5 0.19
30.0 42.5 6 8.2 0.54
30.0 500 18 52.7 0.75

that asn f decreases, the distance at which the population reaches a maximum decreases and also
decays at a faster rate, i.e. with a shorter occupation length. The behavior shown can be modeled
by a functional form

P1(z) = (
z

L0
)q exp[− z

Locc
] (34)

HereL0 is a length parameter determined by the maximum of the population while the distance at
which the population is maximum is given byzm = qLocc. Table 4 shows fitted values ofLocc and
q at different beam energies and different thicknesses. The fits for the occupation lengthLocc in
the bound statesn = 0,2 yield very similar values to those shown in this table. We observe that the
occupation length changes relatively little with energy but depends strongly on the thickness. This is
one indication that the rechanneling probability which increases with thickness has a strong impact
on the population dynamics. Rechanneling occurs when an electron in a dechanneled free state
enters a bound state by losing transverse energy due to a number of processes including multiple
scattering. It is possible that the rechanneling probability and the occupation length saturate for
sufficiently thick crystals. Nevertheless from the resultsin Table 4 we can conclude that occupation
lengths cannot be considered in isolation from rechanneling and crystal thickness and that classical
expressions for the dechanneling length such as in Eq. (30) may be invalid in the quantum regime.
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Figure 3: Population in staten = 1 at energy = 30 MeV. Left: thickness = 42.5µm), Right: 500
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match the experimental yields. At 42.5µm, P1(z;n f = 18) is scaled down by 0.005, while at 500
µm P1(z;n f = 18) is scaled up by 5, in order to show all populations on a linear scale.

Equation (34) can be used to estimate the crystal thickness at which the intensity of the 1→ 0
transition will saturate. The intensity for a crystal of thicknessd relative to an infinitesimally thin
crystal in the limit that the photon absorption lengthLa is long compared to the crystal thickness is
proportional to the integral ofP1(z),

I(d) ∝
∫ d

0
P1(z)dz = Locc(

Locc

L0
)q

[

Γ(1+ q)−Γ(1+ q,
d

Locc
)

]

(35)

whereΓ is the gamma function. Figure 4 shows the relative intensityas a function of the relative
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Figure 4: Relative intensity for the 1→ 0 transition as a function of the crystal thicknessd relative
to the occupation lengthLocc and different values of the power law parameterq in Eq.(34).

crystal thicknessd/Locc for three values of the power law exponentq. Figure 4 shows that the
intensity of the 1→ 0 transition saturates within a thickness ofd = 7Locc for the range ofq values
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Table 5: Results for X-ray energies and line widths using a diamond crystal in the (110) plane and
the 1→ 0 transition. Experimental values from Tables IV and V in Ref. [12].

e− Energy Thickness Energy[keV] Linewidth [keV]
[MeV] µm Eexp 〈Esim〉 Γ̃exp Γsim
14.6 42.5 16.58 16.35 1.43 0.74

168 16.99 16.01 1.74 1.09
500 16.47 15.63 2.15 1.49

17 42.5 21.72 21.41 1.94 0.92
168 22.37 20.97 2.35 1.40
500 21.38 20.48 2.73 1.92

25 42.5 - 42.02 - 1.78
30 42.5 56.19 57.58 5.85 2.46

168 56.22 56.44 6.09 3.72
500 55.06 55.13 11.96 5.09

considered. This suggest that whenLocc ≃ (40− 50) µm as seen in Table 4, crystal thickness of
∼ 350µm may suffice to optimize the channeled fraction and the intensity of the 1→ 0 transition.

3.2 X-ray energies, line widths and photon yields

Here we discuss the main aspects of the X-ray photon spectrumfor the ELBE parameters. We
have assumed here and in subsequent calculations that variations in the incidence angle from zero
are small compared to the beam divergence. Table 5 shows the energies of the 1→ 0 transition
for different beam energies and different crystal thicknesses. In order to mimic the experimentally
observed dependence of the X-ray energy on the thickness, wehave used〈Esim〉, the average value
of the peak due to Doppler shift from multiple scattering, given in Eq(28). Due to the greater
multiple scattering in thicker crystals, the value of〈Esim〉 decreases with thickness. This trend is
also observed in the experimental values when going from 42.5 to 500µm at all energies but for
168 µm only at one energy. In most cases, the simulated value agrees to within 6% which is well
within the error bars on the measurements.

In comparing the linewidths, we have defined the quantityΓ̃exp as the experimental line width

but with the detector energy resolution removed via a quadrature, i.e. Γ̃exp =
√

Γ2
exp −Γ2

det where

Γexp is the measured linewidth. Table 5 shows that the simulated values are consistently smaller
than the measured values, in some cases by more than half. Themost likely reason for this under-
estimate is the neglect of scattering off the atomic electrons. Genz et al [15] had concluded from
their measurements that electronic scattering is not negligible in its contribution to the linewidth.
In principle, the imaginary part of the potential for electron-electron scatteringV I

el could also cause
non-radiative transitions and should be added to the potential for phonon scattering. However since
the momentum transfers involved in electronic scattering are small, the transition rates〈m|V I

el |n〉 for
m 6= n are small and therefore the transition rates to neighboringand more distant energy bands will
be small. Thus their contributions to the population dynamics can most likely be ignored. However
the linewidths involve the expectation values of the potential in the states involved in the transition,
〈m|V I

el |m〉 etc and these can be comparable to the values for thermal scattering.

Table 6 shows the photon yields for different beam energies and crystal thicknesses. In each
case the yields are shown for three values ofn f ; one corresponding to no (enhanced) dechanneling,
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Table 6: Results for diamond crystal with the (110) planes and the 1→ 0 transition. Experimental
values from Tables 2.2 and 2.6 in Ref. [9]. For the simulated yields, no (enhanced) dechanneling
was considered in one case while the other two had this dechanneling included in the model with
different values ofn f relative to the indexnB for the highest bound state.

e− Energy Thickness Yield dN/dΩ [phot/e-/sr]
[MeV] µm Exp. yield Sim yield

No dechan.Ysim n f | Ysim n f | Ysim

14.6 42.5 0.048 0.129 nB +3 | 0.053 nB +1 | 0.044
168 0.090 0.36 nB +9 | 0.11 nB +7 | 0.089
500 0.149 0.89 nB +15 | 0.18 nB +14 | 0.16

17 42.5 0.059 0.18 nB +3 | 0.069 nB +1 | 0.057
168 0.13 0.52 nB +9 | 0.15 nB +7 | 0.12
500 0.30 1.31 nB +16 | 0.34 nB +15 | 0.26

25 42.5 0.159 0.45 nB +3 | 0.14 nB +1 | 0.11
30 42.5 0.229 0.68 nB +3 | 0.24 nB +1 | 0.18

168 0.52 1.64 nB +9 | 0.54 nB +7 | 0.43
500 1.012 5.23 nB +15 | 1.33 nB +14 | 0.95

and the other two for which the simulated yields are closest to the experimental yield.nB is the
index of the highest bound state which changes with the energy. From the results shown in Table 6
we observe first that without dechanneling, the photon yields in the model are significantly higher
than experimental values in all cases and at the same energy,the difference increases with crystal
thickness. This is a clear indication that dechanneling effects need to be included in the model. The
last two columns show the simulated yields when these are included. We observe that the lowest
free staten f relative to the highest bound statenB depends almost entirely on the crystal thickness.
Thus with 42.5µm, the experimental yield is bounded by the yield in the states (nB +3,nB +1) at
all energies, with 168µm, the relevant states are(nB + 9,nB + 7) again at all energies while with
500µm, the relevant states are(nB +15,nB +14) at 14.6 MeV and 30 MeV and(nB +16,nB +15)
at 17 MeV.

The fact that these bounding states depend only on the thickness and not on the energy is both
significant and useful. It shows a) that the energy dependence in the model is reasonably accurate
and b) the conjecture that the experimental yield is obtained by including dechanneling effects which
increase with crystal thickness is most likely correct. It is useful because results obtained with a
given crystal thickness at a certain energy can be used to predict the yields at other energies. We
will use this feature in the next section to estimate the photon yields with ASTA parameters.

Another significant conclusion inferred from the results inTable 6 is that rechanneling is im-
portant, especially for thicker crystals. We find that for a thickness of 42.5µm, the assumption
that dechanneling occurs from bound and nearly all the free states is a good model. This follows
from the observation that the theoretical yield withn f = nB + 1 or n f = nB + 3 are the closest to
the experimental yield at this thickness. For thicker crystals, such low values ofn f leads to yields
much smaller than experimental values. The fact thatn f in the model increases with thickness in
order to match the experimental yields shows that rechanneling significantly affects the observed
yield. The relative absence of rechanneling in thin crystals would explain why only the populations
in the bound states and the lowest free states can be considered to contribute to the radiation yield.
For thicker crystals this is a likely a wrong assumption thatdrastically reduces the yield. Instead the
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electrons which are in the higher free states can also scatter back into the bound states and increase
the yield by radiative emission.

Figure 5 shows a comparison of the experimental yields with the 20% error bars quoted in
Ref. [9] as a function of energy with the simulated photon yields from the two bounding states
with dechanneling. We observe that the lower value of the simulated yield is within 15% of the
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Figure 5: Comparison of the experimental yield including 20% error bars with the theoretical values
found with the updated model. At each thickness, the lower and upper solid lines correspond to the
smaller and larger values ofn f in Table 6.

experimental yield in most cases. This compares to nearly a factor of two difference in the earlier
simulations [9]. It is clear that the simulation model with the lower value ofn f can be used to predict
the expected yield over this range of thicknesses. We will use the population equations, Eqs. (22),
(23), with the lowern f to calculate the expected yield with ASTA parameters.

4 ASTA simulations

In this section we apply the model to the ASTA photoinjector and calculate the expected X-ray
properties including the brilliance. The main parameters of ASTA are shown in Table 7. The major
improvement over the ELBE facility is in the transverse emittance of the electron beam. Recent
developments have shown that normalized emittances of lessthan 100 nm can be obtained with
a conventional laser photocathode by suitably reducing thelaser spot size [24]. Recent studies of
field emission based cathodes using needle like structures with tips of 5 nm radius of curvature have
shown promising results [25]. Estimates show that the normalized emittances of the electron beam
at the needle cathode can be as small as 1 nm. Simulations haveshown that this emittance is mostly
preserved from the source to the crystal about 5m downstream. Here however we will assume a
normalized emittance of 100 nm. Reductions in this emittance will increase the spectral brilliance.
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Table 7: ASTA beam parameters at two different electron energies. A diamond crystal will be used
cut parallel to the (110) planes.

Beam energy [MeV] 20 50
Bunch charge [pC] 20 20

Bunch frequency [MHz] 3 3
Average beam current [nA] 300 300

Transverse normalized emittance [nm]≤ 100 ≤ 100
Bunch length [mm] ≤ 1 ≤ 1

Relative energy spread [%] ≤ 1 ≤ 1
Critical angle [mrad] 1.54 0.98

Diamond crystals cut parallel to the (110) plane are alreadyavailable and these will be used for all
the studies reported here.

4.1 Potential and Populations

Figure 6 shows the real potential with the bound states at 20 MeV and 50 MeV and the imaginary
potential. These potentials depend on the crystal lattice and the chosen planes while the number of
bound states (shown as bands in the two figures) increase withbeam energy roughly asγ1/2. The
depth of the real potential for the (110) plane in diamond is about 23.8 eV while the height of the
imaginary potential is about 0.045 eV.
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Figure 6: Left: Real potential with bound state levels at 20 MeV; Middle: Real potential at 50 MeV,
Right: Imaginary potential

Figure 7 shows the transition probabilitiesWmn calculated using Eqs. (11) and (20) for the four
bound states at 20 MeV. As mentioned earlier, they obey the approximate selection ruleWmn = 0
if |m− n| = odd. The diagonal matrix elementWnn is the largest for eachn and decreases with
increasing energy transfer as|m− n| increases. Several conclusions can be drawn from these tran-
sition rates. For example, most of the transitions from the lower bound states are to other bound
states. Atn = 0, only 16% of the transitions take an electron to a free staten ≥ 4, this increases
to 36% from the next bound staten = 1 and to 52% fromn = 2. Since the transition ratesWnm are
larger at lowern, the bound states will depopulate faster than the free states will be populated.

Figure 8 shows the probability density of the first three bound states at beam energies of 20
MeV and 50 MeV. The eigenstates have definite parity, consequently the even states have a local
maximum at the nucleus while the odd states have a node at the nucleus. We also observe that the
probability densities of these states increase slightly with energy and they are more localized around
the nucleus at 50 MeV.
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Figure 7: Transition probabilities for the non-radiative transitions due to thermal scattering from the
four bound states at the beam energy of 20 MeV.

Figure 9 shows the initial population at the entrance of the crystal for different incidence angles.
The transverse energy increases with incidence angle and the initial populations in these states also
change, in particular being non-zero for the odd states as well. Increased initial populationP1(0) in
then = 1 state would increase the photon flux in the 1→0 transitions. At 20 MeV,P1(0) is maximum
at an incidence angle of 0.54 mrad while at 50 MeV, the maximumis at 0.3 mrad. The left plot in
Fig.10 shows the initial population as a function of the beamdivergence at beam energy of 50 MeV.
These populations will be dominated by the electrons incident at close to zero angle. Thus in the
even states we observe a slow decrease with divergence and not the oscillations seen in the higher
even states in Fig. 9. In the odd states however, the non-zerocontributions are due to electrons with
non-zero incident angle and thus in then = 1 state we observe a slow rise and a broad maximum
at a beam divergence of 0.3 mrad, matching the maximum location seen in Fig. 9. This optimum
divergence is well below the critical angle 0.98 mrad for channeling at 50 MeV. The right plot in
Fig. 10 shows the initial populations as a function of the incidence angle when the beam divergence
is set to 0.3 mrad to maximize the population in then = 1 state. Now we observe that the maximum
in all states is obtained at zero incidence angle, so there isno advantage in tilting the crystal with
respect to the beam direction when the beam divergence is optimum. The same observations hold
at 20 MeV where the optimum beam divergence is about 0.5 mrad.

From the decay of the populations with distance into the crystal, we find that the occupation
lengths are about 9µm with a 42.5µm thick crystal and about 20µm with a 168µm thick crystal.
These values are about the same at 20 and 50 MeV and for the different bound states.
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Figure 8: Probability density as a function of the transverse distance from the center of an atomic
plane for the first three bound states.

4.2 X-ray energies, linewidths, photon yields

We discuss the X-ray intensity spectrum expected at ASTA andconsider the effects of beam di-
vergence on the spectrum. Fig. 11 shows the angular intensity spectrum (photons/sr-electron) with
different beam divergences for a crystal thickness of 168µm at two energies. At the beam energy of
20 MeV, the 1→0 transition leads to the highest peak at 29.3 keV with a widthof 1.8 keV while the
2→1 transition leads to a lower peak at 16.5 keV with a broader width of about 2.1 keV. From our
discussion of the ELBE simulations, we expect these linewidths to under-estimate the experimental
width by roughly a factor of two.

At a beam energy of 50 MeV there are more bound states and we observe more lines in the
spectrum. The highest energy peak is still from the 1→ 0 transition at 141.9 keV with a width of 9
keV while the most intense peak is from the 2→1 transition at 89.3 keV with a width of 5.7 keV.
There are also lower energy and less intense lines from the 3→2 transition at 66.3 keV and from the
4→3 transition at 53.6 keV. In these calculations, the effect of the beam divergence on the initial
populations in the different states is included but not the change of channeling fraction with the
divergence. The spectrum with a beam divergence of 0.1 mrad is very close to that of the single
electron spectrum for both energies.

At 20 MeV, the yield in the 1→0 transition at 0.54 mrad divergence is higher compared to the
yield at 0.1 mrad, but decreases on further increasing the divergence to 1 mrad. At 50 MeV, similar
behavior is observed with the maximum in the 1→0 and the 3→2 transitions at a divergence of 0.3
mrad. Since the divergence affects the dechanneling fraction, the observed spectrum may have a
somewhat different dependence on the beam divergence.

Table 8 shows the X-ray energies, linewidths and photon yields expected at ASTA. Based on
the ELBE simulations, the energies are expected to be accurate to better than 10%. However the
linewidths will be about a factor of two larger than the values in this table, as follows from the discus-
sion in Section 3.2. This table also shows the photon yields for two cases: without enhanced dechan-
neling and with this dechanneling with the parametern f set to the value which under-estimates the
yield; see the discussion following Table 6 and Fig. 5.
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Figure 9: Initial population as a function of the incident angle for the 3 lowest bound states. Left:
At electron energy of 20 MeV. The maximum in then = 1 state occurs at an angle of 0.54 mrad.
Right: At 50 MeV. The maximum in then = 1 state occurs at an angle of 0.3 mrad.
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Figure 10: Left: Initial populations in the lowest four bound states as a function of the beam di-
vergence at a beam energy of 50 MeV. The population in then = 1 state has a maximum at a
divergence of 0.3 mrad. Right: Populations in the same states as a function of the incident angle at
a beam divergence of 0.3 mrad and energy 50 MeV.

4.3 Spectral brilliance

A radiation source is usually characterized by the number ofphotons emitted per second per band-
width per unit solid angle and unit area of the source, also called the spectral brilliance. The photon
yields found above can be used to estimate the expected X-rayspectral brilliance at ASTA. The
yield as calculated in Section 4.2 depends on the beam divergence through the dependence of the
initial population on the divergence, as shown in Fig. 10. Itdoes not include the likelihood that
particles in the distribution with incidence angles greater than the Lindhard critical angleθC will
not be channeled. With the assumption of no rechanneling, the yield could be multiplied by the
fraction of particles with incident angles less thanθC,

f (|θ | ≤ θC) =
1√

2πσ ′
e

∫ θC

−θC

exp[− θ2

2(σ ′
e)

2 ]dθ = Erf[
θC√
2σ ′

e

] (36)

where Erf is the error function,σ ′
e is the electron beam divergence andθC =

√

2U0/Ee/β for planar
channeling withU0 the depth of the potential.

The average brilliance of the radiation emitted by a beam of electrons can be written in terms of
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Figure 11: Angular intensity spectrum at three values of thebeam divergence with crystal thickness
of 168µm Left: 20 MeV, Right: 50 MeV

Table 8: Expected X-ray energies, linewidths and photon yields with and without dechanneling.
The yields were calculated with the beam divergence set to 0.1 mrad and the incidence angle to
zero. .At 50 MeV, the values for both the 1→0 and 2→ 1 transitions are shown.

e− Energy Thickness Energy Linewidth Yield [phot/e-/sr]
[MeV] µm Esim[keV] Γsim[keV] No dechan. yield n f | yield
20.0 42.5 29.3 1.21 0.27 nB +1 | 0.075

168 29.3 1.85 0.77 nB +7 | 0.17
50.0 42.5 89.3 3.83 2.7 nB +1 | 1.00

42.5 141.9 6.1 2.1 nB +1 | 0.65
168 89.3 5.65 6.6 nB +7 | 1.7
168 141.9 8.96 6.1 nB +7 | 1.6
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Figure 12: Left: Average spectral brilliance of X-rays with50 MeV electron beams as a function of
the X-ray energy with beam divergence =0.1 mrad. Right: Spectral brilliance as a function of the
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the differential intensity spectrum per electron as

Bav =
d2N

dωdΩ
Iav

e

Eγ

(σγ)2 Erf[
θC√
2σ ′

e

] (37)

whereIav is the average electron beam current,Eγ is the energy of the X-ray line andσγ is the X-ray
beam spot size. Expressed in terms of the yield per electron and in a 0.1% band-width we have the
average brilliance expressed in typical light source units

Bav =
Iav

e
Y ∗10−3

(σγσ ′
γ)

2∆Eγ/Eγ
Erf[

θC√
2σ ′

e

] =
Iav

e
γ2Y (σ ′

e)
210−3

ε2
N∆Eγ/Eγ

Erf[
θC√
2σ ′

e

]

photons/s− (mm−mrad)2 −0.1%BW (38)

Y is the total photon yield per electron,∆Eγ/Eγ is the relative width of the X-ray line, andεN is the
normalized emittance in mm-mrad. We set the X-ray beam spot size to the lower limit value of the
electron beam spot sizeσγ = σe = εN/(γσ ′

e), while the X-ray divergence isσ ′
γ = 1/γ .

The left plot in Fig. 12 shows the brilliance as a function of X-ray energy at a beam energy of
50 MeV with a beam divergence of 0.1 mrad while the right plot in this figure shows the expected
brilliance in the 1→0 line as a function of the beam divergence for two crystal thicknesses. With
the assumptions made above, we observe that that the brilliance is larger with the thicker crystal,
the difference increases with divergence and reaches about70% when the beam divergence equals
the Lindhard critical angle.

Table 9 shows the brilliance and photon flux at two energies for a crystal thickness of 168
µm, again with the same assumptions as in Figure 12. Since the values quoted are for the beam
divergence of 0.1 mrad, the value quoted for the ELBE experiment and used in setting the value of
n f in Eqs. (22) and (23), the deviations from the values to be observed at ASTA may be small.

As steps towards increasing the brilliance, one could consider increasing the beam current ei-
ther with a higher bunch charge or a higher micropulse repetition rate if the crystal does not suffer
damage from heating at the higher currents. A more promisingpath would be to lower the emit-
tance since the brilliance depends inversely on the square of the emittance. The results above have
assumed an electron emittance of 100 nm using a laser photocathode. First tests of operation with a
field emission cathode mentioned above have recently been reported [26]. Assuming that success is
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Table 9: X-ray brilliance and photon flux from the 1→ 0 transition with ASTA parameters for two
energies and crystal thickness of 168µm. The estimated energy spreads shown are a factor of two
larger than the calculated values. ‡ Units of the brillianceare : photons/(s-(mm-mrad)2-0.1% BW)

Beam energy [MeV] 20 50
Av. beam current [nA] 300 300
Beam emittance [nm] 100 100

Beam divergence [mrad] 0.1 0.1
X-ray energy from 1→ 0 Eγ [keV] 29.2 141.9

Est. energy spread∆Eγ [keV] ∼ 4 ∼ 18
Angular yield [photons/(e-sr)] 0.17 1.69

Absolute yield/electron [×10−3] 0.11 0.17
Av. X-ray brilliance [×107] ‡ 0.79 48.0

Av. Photon flux atEγ [photons/s]×108 2.1 3.3

achieved with these cathodes and that the low emittance generated can be preserved until the crystal,
the brilliance could then be increased by about two orders ofmagnitude above the values reported
here.

5 Conclusions

In this report we have studied the expected spectral brilliance of X-rays from channeling experi-
ments to be performed at the ASTA photoinjector. We revisited the theoretical model, corrected the
potential describing thermal scattering and developed a heuristic model to include dechanneling in
the population dynamics. We used the updated model to first compare with the experimental values
reported from the ELBE facility and second to predict valuesfor ASTA.

We compared the energies, linewidths and photon yields fromthe model with the results at the
ELBE facility. With appropriate choices of dechanneling states in the model, the simulated yield
agrees well with observed photon yields, see Fig.5. The theoretical linewidth is about a factor of two
smaller than the observed values. This is due to the neglect of electron scattering with the atomic
electrons and the plasmonic modes. This scattering affectsonly the linewidth but does not affect the
photon yields. From the population dynamics we were able to estimate, for different quantum states,
the occupation length whose classical analog is the dechanneling length. The occupation length was
found to increase with crystal thickness but was nearly independent of beam energy in the energy
range studied. This pointed to the importance of rechanneling in the quantum regime where particles
in the free states can be scattered back into the channeled bound states. Rechanneling increases
with crystal thickness and explains why the measured occupation lengths are longer than simple
classical estimates. We found that the optimum crystal thickness to maximize the intensity of the
1→0 transition is about 7 times the occupation length.

When applied to ASTA, the model finds that with an electron beam energy of 50 MeV, X-
ray peaks are expected at about 142 keV from the 1→0 transition and at 89 keV from the 2→1
transition with linewidths around 14%. The ability of channeling radiation to produce hard X-rays
with moderate beam energies is one of the main premises for these experiments. We find that with
a crystal thickness of 168µm and electron transverse emittances of 100 nm and beam current of
300 nA, the expected brilliance is of the order of 1010 photons/(s-(mm-mrad)2-0.1% BW). It is
possible that thicker crystals may increase the brillianceabove these values. Significant increase in
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the brilliance by about two orders of magnitude could be achieved with ultra-low emittance beams
using field emitter cathodes and beam studies with these novel cathodes are in progress.
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