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Abstract

We compute the leptonic decay constants fD+ , fDs , and fK+ , and the quark-mass ratios mc/ms

and ms/ml in unquenched lattice QCD using the experimentally determined value of fπ+ for nor-

malization. We use the MILC Highly Improved Staggered Quark (HISQ) ensembles with four

dynamical quark flavors — up, down, strange, and charm — and with both physical and unphys-

ical values of the light sea-quark masses. The use of physical pions removes the need for a chiral

extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four

different lattice spacings ranging from a ≈ 0.06 fm to 0.15 fm are included in the analysis to control

the extrapolation to the continuum limit. Our primary results are fD+ = 212.6(0.4)(+1.0
−1.2) MeV,

fDs = 249.0(0.3)(+1.1
−1.5) MeV, and fDs/fD+ = 1.1712(10)(+29

−32), where the errors are statistical and

total systematic, respectively. The errors on our results for the charm decay constants and their

ratio are approximately two to four times smaller than those of the most precise previous lat-

tice calculations. We also obtain fK+/fπ+ = 1.1956(10)(+26
−18), updating our previous result, and

determine the quark-mass ratios ms/ml = 27.35(5)(+10
−7 ) and mc/ms = 11.747(19)(+59

−43). When

combined with experimental measurements of the decay rates, our results lead to precise determi-

nations of the CKM matrix elements |Vus| = 0.22487(51)(29)(20)(5), |Vcd| = 0.217(1)(5)(1) and

|Vcs| = 1.010(5)(18)(6), where the errors are from this calculation of the decay constants, the un-

certainty in the experimental decay rates, structure-dependent electromagnetic corrections, and,

in the case of |Vus|, the uncertainty in |Vud|, respectively.
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I. INTRODUCTION AND MOTIVATION

The leptonic decays of pseudoscalar mesons enable precise determinations of Cabibbo-

Kobayashi-Maskawa (CKM) quark-mixing matrix elements within the Standard Model. In

particular, experimental rates for the decays D+ → µ+ν, Ds → µ+ν and Ds → τ+ν, when

combined with lattice calculations of the charm-meson decay constants fD+ and fDs , allow

one to obtain |Vcd| and |Vcs|. Indeed, this approach results in the most precise current

determination of |Vcd|. Similarly, the light-meson decay-constant ratio fK+/fπ+ can be used

to extract |Vus|/|Vud| from the experimental ratio of kaon and pion leptonic decay widths

[1, 2]. Here we calculate the charm decay constants for the first time using physical values

for the light sea-quark mass. We obtain fD+ and fDs to about 0.5% precision and their

ratio fDs/fD+ to about 0.3% precision; we also update our earlier calculation of fK+/fπ+

[3] to almost 0.2% precision. This is the most precise lattice calculation of the charm decay

constants to date, and improves upon previous results by a factor of two to four. We also

compute the quark-mass ratios mc/ms and ms/ml, which are fundamental parameters of

the Standard Model.

We use the lattice ensembles generated by the MILC collaboration with four flavors (nf =

2 + 1 + 1) of dynamical quarks using the highly improved staggered quark (HISQ) action,

and a one-loop tadpole improved Symanzik improved gauge action [4–7]. The generation

algorithm uses the fourth-root procedure to remove the unwanted taste degrees of freedom

[8–20]. Our data set includes ensembles with four values of the lattice spacing ranging from

approximately 0.15 fm to 0.06 fm, enabling good control over the continuum extrapolation.

The data set includes both ensembles with the light (up-down), strange, and charm sea-

masses close to their physical values (“physical-mass ensembles”) and ensembles where either

the light sea-mass is heavier than in nature, or the strange sea-mass is lighter than in nature,

or both.

The physical-mass ensembles enable us to perform first a straightforward analysis that

does not require chiral fits. This analysis, which we refer to as the “physical-mass analy-

sis” below, gives our results for fK+/fπ+ , as well as ratios of physical quark masses. The

quark-mass ratios are then used as input to a more sophisticated analysis of the charm

decay constants that includes the ensembles with unphysical sea-quark masses. In this sec-

ond analysis, referred to as the “chiral analysis,” we analyze our complete data set within
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the framework of staggered chiral perturbation theory (SχPT) for all-staggered heavy-light

mesons [21, 23, 24]. The inclusion of the unphysical-mass ensembles gives us tighter control

on discretization effects because SχPT connects the quark-mass and lattice-spacing depen-

dence of the data, reducing the statistical errors on the decay constants significantly, and

allowing us to make more refined adjustments for mistuning of masses. We therefore take

our final central values for fD+ , fDs , and fDs/fD+ from the chiral analysis. The physical-

mass analysis provides a cross check of the chiral analysis and is used in our final estimate

of systematic uncertainties.

An earlier result for fK+/fπ+ was presented in Ref. [3]. Here we update this analysis

with slightly more statistics and improved estimates for the systematic errors. Preliminary

results for the charm decay constants and quark masses were presented in Ref. [25].

This paper is organized as follows. Section II gives details about the lattice ensembles

used in our calculation and the method for extracting the decay constants from two-point

correlation functions. As discussed in Sec. III, the first stage in our analysis is to fit the

two-point correlators to determine the meson masses and decay amplitudes for each pair of

valence-quark masses. Section IV presents the main body of our analysis, which proceeds in

two stages. In the first stage, described in Sec. IV A, we use the physical-mass ensembles to

compute quark-mass ratios and fK+/fπ+ , as well as some additional intermediate quantities

required for the later chiral analysis of the D-meson decay constants. In the first part of the

physical-mass analysis, Sec. IV A 1, we fit the valence-quark mass dependence of the masses

and amplitudes, and evaluate the decay amplitudes at the resulting tuned valence masses.

Next, in Sec. IV A 2, we adjust the quark-mass ratios and decay amplitudes to account for the

slight sea-quark mass mistuning and extrapolate these results to the continuum. In the last

part of the physical-mass analysis, Sec. IV A 3, we consider systematic errors from finite-

volume and electromagnetic effects. In the second analysis stage described in Sec. IV B,

we use heavy-light staggered chiral perturbation theory to combine the unphysical light-

and strange-quark mass ensembles with the nearly-physical quark mass ensembles to obtain

the charm-meson decay constants. We first present the chiral perturbation theory for all-

staggered heavy-light mesons in Sec. IV B 1. We then discuss the required mass-independent

scale setting in Sec. IV B 2, where we take care to correct for effects on the scale and quark-

mass estimates of mistunings of the sea-quark masses. We present the chiral-continuum fits
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in Sec. IV B 3, and discuss the systematic errors from the continuum extrapolation, as well

as from other sources, in Sec. IV B 4. We present our final results for the decay constants

and quark-mass ratios with error budgets in Sec. V, in which we also compare our results

to other unquenched lattice calculations. Finally, we discuss the impact of our results on

CKM phenomenology in Sec. VI. Appendix A gives details about the inclusion of nonleading

heavy-quark effects in our chiral formulas.

II. LATTICE SIMULATION PARAMETERS AND METHODS

Table I summarizes the lattice ensembles used in this calculation. Discussion of the

parameters relevant to the lattice generation, such as integration step sizes and acceptance

rates, choice of the RHMC or RHMD algorithm, and autocorrelations of various quantities

can be found in Ref. [7]. In particular, we find that the effects of using the RHMD algorithm

rather than the RHMC algorithm in some of our ensembles are negligible. The dependence

of error estimates for the decay constants in this work on the jackknife block size is consistent

with the more general results on autocorrelations in Ref. [7]. Reference [7] also shows the

molecular dynamics time evolution of the topological charge for many of these ensembles

and histograms of the topological charge. We have since also verified that on the a ≈ 0.06 fm

physical quark mass ensemble the autocorrelation time for the topological charge is much

shorter than the topological charge autocorrelation time on the a ≈ 0.06 fm m′l = m′s/5

ensemble shown in Fig. 2 of Ref. [7]. The dependence on the light-quark mass can be

understood by thinking of the decorrelation process as a random walk in the topological

charge.

Our extraction of the pseudoscalar decay constants with staggered quarks follows that

used for asqtad quarks [2, 26] and for fK+ with the HISQ action [3, 27]. The decay constant

fPS is given by the matrix element of ψ̄γ5ψ between the vacuum and the pseudoscalar meson.

For staggered fermions, using the pion taste corresponding to the axial symmetry broken

only by quark masses, this becomes the operator

OP (~x, t) = χ̄a(~x, t)(−1)x+y+z+tχa(~x, t) , (1)

where a is a color index. The desired matrix element can be obtained from the amplitude
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TABLE I: Ensembles used in this calculation. The first column is the gauge coupling β = 10/g2,

and the next three columns are the sea-quark masses in lattice units. The primes on the masses

indicate that they are the values used in the runs, and in general differ from the physical values

either by choice, or because of tuning errors. The lattice spacings in this table are obtained

separately on each ensemble using fπ+ as the length standard, following the procedure described

in Sec. IV A 1. (In Sec. IV B we use a mass-independent lattice spacing, described there.) The

lattice spacings here differ slightly from those in Ref. [7] since we use fπ+ as the length scale, while

those in Ref. [7] were determined using Fp4s (discussed at the beginning of Sec. IV A). Values of the

strange quark mass chosen to be unphysical are marked with a dagger (†); while the asterisk (*)

marks an ensemble that we expect to extend in the future.

β am′l am′s am′c (L/a)3 × (T/a) Nlats a (fm) L (fm) MπL Mπ (MeV)

5.80 0.013 0.065 0.838 163 × 48 1020 0.14985(38) 2.38 3.8 314

5.80 0.0064 0.064 0.828 243 × 48 1000 0.15303(19) 3.67 4.0 214

5.80 0.00235 0.0647 0.831 323 × 48 1000 0.15089(17) 4.83 3.2 130

6.00 0.0102 0.0509 0.635 243 × 64 1040 0.12520(22) 3.00 4.5 299

6.00 0.00507 0.0507 0.628 243 × 64 1020 0.12085(28) 2.89 3.2 221

6.00 0.00507 0.0507 0.628 323 × 64 1000 0.12307(16) 3.93 4.3 216

6.00 0.00507 0.0507 0.628 403 × 64 1028 0.12388(10) 4.95 5.4 214

6.00 0.01275 0.01275† 0.640 243 × 64 1020 0.11848(26) 2.84 5.0 349

6.00 0.00507 0.0304† 0.628 323 × 64 1020 0.12014(16) 3.84 4.3 219

6.00 0.00507 0.022815† 0.628 323 × 64 1020 0.11853(16) 3.79 4.2 221

6.00 0.00507 0.012675† 0.628 323 × 64 1020 0.11562(14) 3.70 4.2 226

6.00 0.00507 0.00507† 0.628 323 × 64 1020 0.11311(19) 3.62 4.2 230

6.00 0.0088725 0.022815† 0.628 323 × 64 1020 0.12083(17) 3.87 5.6 286

6.00 0.00184 0.0507 0.628 483 × 64 999 0.12121(10) 5.82 3.9 133

6.30 0.0074 0.037 0.440 323 × 96 1011 0.09242(21) 2.95 4.5 301

6.30 0.00363 0.0363 0.430 483 × 96 1000 0.09030(13) 4.33 4.7 215

6.30 0.0012 0.0363 0.432 643 × 96 1031 0.08779(08) 5.62 3.7 130

6.72 0.0048 0.024 0.286 483 × 144 1016 0.06132(22) 2.94 4.5 304

6.72 0.0024 0.024 0.286 643 × 144 1166 0.05937(10) 3.79 4.3 224

6.72 0.0008 0.022 0.260 963 × 192 583* 0.05676(06) 5.44 3.7 135
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of a correlator using this operator at the source and sink,

PPP (t) =
1

Vs

∑
~y

〈OP (~y, 0)OP (~0, t)〉 = CPP e
−Mt + excited state contributions , (2)

where Vs is the spatial volume, M is the pseudoscalar meson mass and the sum over ~y

isolates the zero spatial momentum states. Then the decay constant is given by [28, 29]

fPS = (mA +mB)

√
Vs
4

√
CPP
M3

, (3)

where mA and mB are valence quark masses and M is the pseudoscalar meson mass.

In our computations, we use a “random-wall” source for the quark propagators, where

a randomly oriented unit vector in color space is placed on each spatial site at the source

time. Then quark and antiquark propagators originating on different lattice sites are zero

when averaged over the sources. We use three such source vectors for each source time slice.

We also compute pion correlators using a “Coulomb-wall” source, where the gauge field

is fixed to the lattice Coulomb gauge, and then a uniform color vector source is used at each

spatial site. In practice these vectors are the “red”, “green,” and “blue” color axes. The

Coulomb-wall source correlators are somewhat less contaminated by excited states than the

random wall source correlators, so by simultaneously fitting the correlators with common

masses we are able to determine the masses better, and hence get a better determined

amplitude for the random-wall source correlator.

Four source time slices are used on each lattice, with the exception of the 0.06 fm physical

quark-mass ensemble where, because these lattices are longer in the Euclidean time direction,

six source time slices are used. The location of the source time slices on successive lattices is

advanced by an amount close to one half of the spacing between sources, but incommensurate

with the lattice time size, so that the source location cycles among all possible values.

In each lattice ensemble, two-point correlators are computed for a range of valence-quark

masses. The complete set of valence-quark masses is given in Table II. The lightest valence

mass used is one-tenth the strange quark mass for the coarser ensembles with heavier sea-

quark masses, 1/20 the strange quark mass for the a ≈ 0.06 fm ensembles with heavier than

physical sea-quark mass, and the physical light-quark mass for the ensembles with physical

sea-quark mass. The valence masses chosen then cover the range from this lightest mass up

to the estimated strange-quark mass. We then choose additional masses at the estimated

charm-quark mass (the same as the charm-quark mass in the sea), as well as nine-tenths
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TABLE II: Valence-quark masses used in this project. Correlators with random wall and Coulomb-

wall sources are computed for each possible pair of valence-quark masses. Light valence masses mv

are given in units of the (ensemble value of the) sea strange quark mass m′s. Note that for the four

ensembles with near-physical sea-quark mass, the lightest valence mass is the same as the light

sea mass. The two heavy valence masses are in units of the charm sea-quark mass m′c. For the

ensembles with unphysical strange quark mass (included in “all” at β = 6.0), the valence masses

are given in units of the approximate physical strange quark mass, 0.0507.

β sea quark masses light valence masses charm valence masses

am′l am′s am′c mv/m
′
s mv/m

′
c

5.80 0.013 0.065 0.838 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

5.80 0.0064 0.064 0.828 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

5.80 0.00235 0.0647 0.831 0.036,0.07,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.00 0.0102 0.0509 0.635 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.00 0.00507 all 0.628 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.00 0.00184 0.0507 0.628 0.036,0.073,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.30 0.0074 0.037 0.440 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.30 0.00363 0.0363 0.430 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.30 0.0012 0.0363 0.432 0.033,0.066,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.72 0.0048 0.024 0.286 0.05,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.72 0.0024 0.024 0.286 0.05,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.72 0.0008 0.022 0.260 0.036,0.068,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

of that value, so that we can make adjustments for mistuning of the charm-quark mass.

For these last two quarks, the coefficient of the three-link term in the fermion action (the

“Naik term”) is adjusted to improve the quark’s dispersion relation [30]. Specifically, the

expansion resulting from combining Eqs. (24) and (26) of Ref. [30] is used; the improvement

has been checked in HISQ simulations [6, 30].
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III. TWO-POINT CORRELATOR FITS

To find the pseudoscalar masses and decay amplitudes, the random-wall and Coulomb-

wall correlators are fitted to common masses but independent amplitudes. With staggered

quarks the Goldstone-taste pseudoscalar correlators with unequal quark masses contain con-

tributions from opposite-parity states, which show up as exponentials multiplied by an al-

ternating sign, (−1)t. For valence-quark masses up to and including the strange quark mass

these contributions are small, and good fits can be obtained while neglecting them. In fact,

in our previous analyses with the asqtad quark action, these states were not included in

the two-point fits. However, with these data sets, slightly better fits are obtained when an

opposite-parity state is included in the light-light fits, and so we include such a state in the

unequal quark mass correlators.

The light-charm correlators (where “light” here includes masses up to the physical strange

quark mass ms) are more difficult to fit than the light-light correlators for several reasons.

First, because the difference in the valence-quark mass is large, the amplitude of the opposite-

parity states is not small. Second, the mass splitting between the ground state and the lowest

excited single particle state is smaller. For the light-light correlators, the approximate chiral

symmetry makes the ground state mass smaller than typical hadronic scales, which has the

side effect of making the mass gap to the excited single particle states large, and these

excited states can be suppressed by simply taking a large enough minimum distance. For

the charm-light correlators we include an excited state in the fit function. (In principle,

multiparticle states also appear in these correlators. For example, the lowest excited state

in the pion correlator would be a three-pion state. Empirically these states do not enter

with large amplitudes, and the important excited states correspond more closely to single

particle states.)

To make the fits converge reliably, it is necessary to loosely constrain the masses of the

opposite-parity and excited states by Gaussian priors. The central value of the gap between

the ground state and opposite parity states is taken to be 400 MeV, motivated by the 450

MeV gap between the D mass and the 0+ light-charm mass, and the 350 MeV gap between

the Ds mass and a poorly established 0+ strange-charm meson [31]. The central value for the

gap between the ground state and excited state masses is taken to be 700 MeV, motivated

by the 660 MeV gap between the ηc and the corresponding 2S state. In most cases the
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widths of the priors for the opposite-parity and excited state gaps are taken to be 200 MeV

and 140 MeV respectively, although in some cases these need to be adjusted to get all of the

jackknife fits to converge.

Another factor that makes the light-charm correlators more difficult to fit is the faster

growth of the statistical error. The time dependence of the variance of a correlator is

expected to depend on time as e−E2t, where E2 is the energy of the lowest lying state created

by OO†, where O is the source operator for the correlator itself, with the proviso that quark

and antiquark lines all go from source to sink, rather than coming back to the source [32].

For the pion correlator, the state created by OO† is just the two pion state, leading to the

expectation that the fractional statistical error on the pion correlator is roughly independent

of distance. However, for the light-charm correlator, the quarks and antiquarks created by

OO† can pair up to form an ηc and a pion. Then, the reduction of the pion’s mass from chiral

symmetry makes this state much lighter than 2MD, so the fractional error of the propagator

grows rapidly with distance. This makes it essential to use smaller minimum distances in

the fit range for the light-charm correlators, which of course makes the problem of excited

states discussed in the previous paragraph even more serious.

Table III shows our expectations for the states controlling the growth of statistical errors

for the various pseudoscalar correlators. Figure 1 shows the fractional errors for the random-

wall correlators for the 0.09 fm physical quark-mass ensemble, with comparison to the slopes

expected from Table III. With the exception of the charm-charm correlator, the behavior of

the statistical error agrees with our theoretical expectations.

Figures 2 and 3 show the masses in the 2+1 state fits for the light-charm correlators

in the a ≈ 0.09 fm physical quark-mass ensemble as a function of the minimum distance

included in the fit, where the light-quark mass is the physical (mu +md)/2 (Fig. 2) and ms

(Fig. 3). Fit ranges are chosen from graphs like this for all the ensembles, and analogous

graphs for the light-light and charm-charm correlators. We show this ensemble because it,

together with the a ≈ 0.06 fm physical mass ensemble, is the most important to the final

results. In these graphs the error bars on the right show the central values and widths of

the priors used for the opposite-parity and excited masses. At short distances, these masses

are more accurately determined by the data, while at larger Dmin the input prior controls

the mass. The linear sizes of the symbols in these figures are proportional to the p value of

the fit, with the size of the symbols in the legend corresponding to 50%. In the two-point
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TABLE III: States expected to control the statistical errors on the correlators, for the pseudoscalars

with physical valence-quark masses. The second column shows the state expected to control the

growth of the statistical error on the correlator, the third column the mass gap between half the

mass of the error state and the particle mass, and the fourth column the length scale for the growth

of the fractional statistical error. Here s̄s is the unphysical flavor nonsinglet state, with mass 680

MeV.

State Error Energy
gap (MeV)

Growth
length (fm)

π 2π 0 ∞

K π + s̄s 90 2.26

ηc 2ηc 0 ∞

Ds ηc + s̄s 140 1.42

D ηc + π 310 0.64

correlator fits used to choose the fit types and ranges, as in Figs. 2 and 3, autocorrelations

among the lattices are minimized by first blocking the data in blocks of four lattices, or 20 to

24 molecular dynamics time units. However, statistical errors on results in later sections are

obtained from the jackknife procedures described in Secs. IV A and IV B. In these analyses

the two-point fits are repeated in each jackknife resampling. From these and similar graphs

for other ensembles and different numbers of excited states, keeping the minimum distance

in physical units reasonably constant, the minimum distances and fit forms in Table IV are

chosen. The need for using a smaller minimum distance and including an excited state in

the heavy-light fits is consistent with our expectations from Table III and Fig. 1. Because

the statistical errors increase with distance from the source, the fits are much less sensitive

to the choice of maximum distance. In most cases the maximum distance is taken to be one

less than the midpoint of the lattice. However, in the a ≈ 0.09 and 0.06 fm ensembles, the

light-charm and charm-charm fits used a smaller maximum distance because having fewer

points in the fit gave a better conditioned covariance matrix. These maximum distances are

also included in Table IV.
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FIG. 1: Fractional errors for pseudoscalar correlators as a function of distance from the 0.09 fm

physical quark-mass ensemble. The line segments show the slope expected from the states in

Table III, which give a good approximation to the observed growth of the errors with the exception

of the charm-charm correlator.
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FIG. 2: Fits for the light-charm pseudoscalar correlator (mass M) in the ensemble with a ≈ 0.09

fm and physical sea-quark masses. We plot the ground state, alternating state (opposite parity) and

excited state masses as a function of minimum distance included in the fit. The size of the symbols

is proportional to the p value of the fit, with the size of the symbols in the legend corresponding

to 0.5. The two bursts on the right show the priors and their errors for the alternating and excited

masses. The vertical arrows at Dmin = 15 indicate the fit that is chosen. Further discussion is in

the text.

14



FIG. 3: Fits for the strange-charm correlator in the ensemble with a ≈ 0.09 fm and physical

sea-quark masses. The format and symbols are the same as in Fig. 2.
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TABLE IV: Fit forms and minimum distance included for the two-point correlator fits. Here the

fit form is the number of negative parity (i.e., pseudoscalar) states “plus” the number of positive

parity states. When the valence quarks have equal masses, the opposite-parity states are not

included. In this work the charm-charm fits are needed only for computing the mass of the ηc

meson, used as a check on the quality of our charm physics.

light-light light-charm charm-charm

form Dmin Dmax form Dmin Dmax form Dmin Dmax

a ≈ 0.15 fm 1+1 16 23 2+1 8 23 2+0 9 23

a ≈ 0.12 fm 1+1 20 31 2+1 10 31 2+0 12 23

a ≈ 0.09 fm 1+1 30 47 2+1 15 37 2+0 18 35

a ≈ 0.06 fm 1+1 40 71 2+1 20 51 2+0 21 50
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IV. DETERMINATION OF DECAY CONSTANTS AND QUARK-MASS RATIOS

This section describes the details of the analyses that produce our results for light-light

and heavy-light decay constants and the ratios of quark masses. We perform two versions

of the analysis. The first, the “physical-mass analysis” described in Sec. IV A, is a straight-

forward procedure that essentially uses only the physical-quark mass ensembles. On these

ensembles, a chiral extrapolation is not needed: only interpolations are required in order

to find the physical quark-mass point. The physical-mass analysis produces our results for

quark-mass ratios and fK+/fπ+ , as well as some additional intermediate quantities required

for the chiral analysis of the D meson decay constants, described in Sec. IV B. The second

analysis of charm decay constants, described in Sec. IV B, uses chiral perturbation theory

to perform a combined fit to all of our physical-mass and unphysical-mass data, and to

thereby significantly reduce the statistical uncertainties of the results. We take the more

precise values of fD+ , fDs , and their ratio from the chiral analysis as our final results, and

use those from the simpler physical-mass analysis only as a consistency check, and to aid in

the estimation of systematic errors.

In the physical-mass analysis of Sec. IV A, we first determine the lattice spacing and

quark masses separately for each ensemble, using, in essence, the five experimental values of

fπ+ , Mπ0 , MK0 , MK+ and MDs , as explained in Sec. IV A 1. In order to adjust for mistuning

of the sea-quark masses, we perform a parallel scale-setting and quark-mass determination

on the unphysical-mass ensembles; there, however, an extrapolation in the valence-quark

mass is generally required. We extrapolate the quark-mass ratios to the continuum, after

small sea-quark mistuning adjustments, in Sec. IV A 2. We follow the same procedure on

the physical-mass ensembles to also obtain values for decay constants. In particular, we

update our result for fK+/fπ+ from Ref. [3]. Although the results for charm decay constants

from the physical-mass analysis are not taken as our final values, they are used as additional

inputs in the estimation of systematic errors from the continuum extrapolation. Finally,

the physical-mass analysis allows us to make straightforward estimates of systematic errors

coming from finite-volume and electromagnetic (EM) effects on the decay constants and

quark-mass ratios, as described in Sec. IV A 3.

The values of the physical quark-mass ratios mc/ms, ms/ml, and (to a lesser extent, in

order to take into account isospin-violating effects) mu/md obtained in Sec. IV A are used
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in the subsequent chiral analysis in Sec. IV B. Further, in the physical-mass analysis, we

determine the useful quantity Fp4s [7], which is the light-light pseudoscalar decay constant

F evaluated at a fiducial point with both valence masses equal to mp4s ≡ 0.4ms and physical

sea-quark masses. The meson mass at the same fiducial point, Mp4s, as well as the ratio

Rp4s ≡ Fp4s/Mp4s, are similarly determined. The unphysical decay constant Fp4s provides

an extremely precise and convenient quantity to set the relative scale in the chiral analysis

(see Sec. IV B 2), while we use Rp4s to tune the strange sea-quark mass.

The chiral analysis of the decay constants of charm mesons is described in detail in

Sec. IV B. With chiral perturbation theory, one can take advantage of all our data by in-

cluding both the physical-mass and unphysical-mass ensembles in a unified procedure. In

particular, the statistical error in ΦD+ is slightly more than a factor of two smaller with the

chiral analysis than in the physical-mass analysis of Sec. IV A. In addition, the use of the

relevant form of staggered chiral perturbation theory for this case, heavy-meson, rooted, all-

staggered chiral perturbation theory (HMrASχPT) [24], allows us to relate the quark-mass

and lattice-spacing dependence of the data, and thereby use the unphysical-mass ensembles

to tighten the control of the continuum extrapolation. Our final central values for the charm

decay constants given in the conclusions are taken from the chiral analysis. We increase some

of the systematic uncertainties, however, to take into account differences with the results of

the physical-mass analysis.

A. Simple analysis from physical quark-mass ensembles

Here we determine the quark-mass ratios and decay constants employing primarily the

physical quark-mass ensembles. First, in Sec. IV A 1, we determine the lattice spacing, quark

masses, and decay constants separately for each ensemble. Next, in Sec. IV A 2, we adjust

the quark masses and decay constants for slight sea-quark mass mistuning, and extrapolate

to the continuum. Finally, we estimate the systematic uncertainties in the quark-mass ratios

and decay constants in Sec. IV A 3. We present results and error budgets for these quantities

obtained from the physical mass analysis in Table VI.
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1. Valence-quark mass interpolation

In this stage of the analysis we determine tuned quark masses and the lattice spacing

(using fπ+ to fix the scale) for each ensemble, and then find the decay constants by interpo-

lation or extrapolation in valence-quark mass to these corrected quark masses. There are a

number of possible choices for the procedure used, and we include the differences among a

few sets of choices in our systematic error estimate. It is important to remember that there

is inherent ambiguity in defining a lattice spacing for ensembles with unphysical sea-quark

masses, but all sensible choices should have the same limit at zero lattice spacing and physi-

cal sea-quark masses. For example, in the ensemble-by-ensemble fitting procedure described

in this section, we take the value of fπ+ on each ensemble to be 130.41 MeV, independent

of sea-quark masses, while for the chiral perturbation theory analysis we take the lattice

spacing to be independent of the sea-quark masses.

Figure 4 illustrates some of the features of our procedure, and referring to it may help

clarify the following description. Since the decay amplitude F depends on valence-quark

mass, and we wish to use fπ+ = 130.41 MeV to set the lattice scale, we must determine

the lattice spacing and tuned light-quark mass simultaneously. To do so, we find the light

valence-quark mass where the mass and amplitude of the pseudoscalar meson with degen-

erate valence quarks have the physical ratio of M2
π/f

2
π+ . (Actually we adjust this ratio for

finite size effects, using the pion mass and decay constant in a 5.5 fm box. This correc-

tion is discussed in Sec. IV A 3.) This light-quark mass is the average of the up and down

quark masses, ml = (mu + md)/2. Here we use the mass of the π0, since it is less affected

by electromagnetic corrections than the π+. Since the π+ contains one up and one down

quark, the error in fπ+ from using degenerate light valence quarks is negligible. This tun-

ing is illustrated in the upper left panel of Fig. 4, which shows this ratio as a function of

light valence mass for the 0.09 fm physical quark-mass ensemble, one of the two ensembles

that are most important in our analysis. The octagons in this panel are the ratio at the

valence-quark masses where we calculated correlators, with error bars that are too small to

be visible. The horizontal red line is the desired value of this ratio, and the green vertical line

shows the light-quark mass where the ratio has its desired value. With the tuned light-quark

mass determined, we use the decay amplitude at this mass, fπ+ , to fix the lattice spacing.
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FIG. 4: Illustration of the “fπ” tuning for the a ≈ 0.09 fm physical quark mass ensemble. F is

the decay constant of a generic pseudoscalar meson. The procedure illustrated is described in the

text.
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In performing the interpolation or extrapolation of M2
π/f

2
π we use points with degenerate

light valence-quark mass mv and employ a continuum, partially quenched, SU(2) χPT form

[22, 23],

M2
π

f 2
π

=
B2mv

f 2

{
1 +

1

16π2f 2

[
B(4mv − 2m′l) log(2Bmv/Λ

2
χ)

+4B(mv +m′l) log(B(mv +m′l)/Λ
2
χ)
]

+ Cmv

}
fπ = f

{
1− 2B(mv +m′l)

16π2f 2
log(B(mv +m′l)/Λ

2
χ) + Cmv +Dm2

v

}
, (4)

where m′l is the light sea-quark mass and Λχ is the chiral scale. In applying Eq. (4), we fix

the low energy constants B and f in the coefficients of the logarithms to values determined

from lowest order χPT using the smallest valence-quark mass. We then fix the coefficients

of mv and m2
v in M2

π/f
2
π using the smallest two valence-quark masses available, and we fix

the analytic coefficients in fπ using the three smallest valence-quark masses. In the physical

quark-mass ensembles, such as the one shown in Fig. 4, this is only a small correction to

the quark mass. On the other hand, in most of the ensembles with m′l/m
′
s = 0.1 or 0.2,

the lightest valence-quark mass is 0.05m′s or 0.1m′s, and a significant extrapolation is made.

However, these unphysical-mass ensembles are used only in the analysis of this section to

correct the results of the physical-mass ensembles for small mistunings of the sea masses in

the physical-mass ensembles.

We then fix the tuned strange quark mass to the mass that gives the correct 2M2
K −M2

π .

This is illustrated in the upper right panel of Fig. 4. In all of our ensembles, we use valence

“strange” quark masses at the expected strange quark mass and at 0.8 times this mass.

The two data points shown in the figure have these strange masses and the lightest available

light-quark valence mass. A linear interpolation or extrapolation is performed through these

two points. Again, the horizontal red line shows the desired value of this mass difference, and

the vertical green line the resulting value of ms. In this stage of the tuning the kaon mass

is corrected for finite volume effects, electromagnetic effects and isospin breaking effects,

where again we defer the details to the discussion of systematic errors in Sec. IV A 3.

Next we determine the up-down quark mass difference, and hence the up and down quark
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masses. We use the difference in K0 and K+ masses,

md −mu =
M2

K0
adj
−M2

K+
adj

∂M2
K

∂ml

. (5)

Here the kaon masses are adjusted for finite volume and electromagnetic effects, and again

we defer the details to Sec. IV A 3. We note that the electromagnetic corrections are a small

effect on the strange quark mass tuning, but are absolutely crucial in the determination of

md − mu. To estimate the derivative ∂M2
K/∂ml, we use the masses of kaons containing a

valence quark near the strange quark mass and a second valence quark that is one of the

two lightest valence quarks we have.

Then the tuned charm quark mass is determined from the experimental value of MDs .

We use MDs rather than MD because it has much smaller statistical errors. In all of our

ensembles we have correlators with valence-quark masses at the expected charm quark mass

and at 0.9 times this mass. Using linear interpolations in ms of the Ds meson mass at these

two “charm” masses to the strange quark mass found earlier, and a linear interpolation in

mc between these, we find a tuned charm quark mass.

Now that we have found the lattice spacing and tuned quark masses, we can find de-

cay constants and masses of other mesons by interpolating or extrapolating to these quark

masses. The bottom panel of Fig. 4 illustrates this process. The lower set of points in

this graph are the decay constants at each light valence mass, interpolated using the two

“strange” valence masses to the tuned strange quark mass. Then fK+ is found by extrapolat-

ing these points to the tuned mu, illustrated by the red octagon at the lower left. Similarly,

the upper set of data points is the decay constant at each light-quark mass, linearly interpo-

lated or extrapolated using the two “charm” valence masses to the tuned mc. This graph is

then interpolated or extrapolated to the tuned md to find fD+ , shown in the red octagon at

the upper left, or to the tuned ms to find fDs , shown by the red octagon at the upper right.

As checks on our procedure, we also similarly interpolate or extrapolate in the meson

masses to find MD0 , MD+ and Mηc .

2. Sea-quark mass adjustment and continuum extrapolation

In this stage we combine the results from the individual ensembles and fit to a function

of the lattice spacing to find the continuum limit. We use the ensembles with unphysical
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TABLE V: Tuned lattice spacings (using fπ+ to set the scale) and quark masses for the physical

quark-mass ensembles. The quark mass entries show the light, strange and charm quark masses in

units of the lattice spacing. The column labeled am′ gives the run values of the sea quark masses.

aapprox(fm) atuned(fm) am′ amtuned

0.15 0.15089(17) 0.00235/0.0647/0.831 0.002426(8)/0.06730(16)/0.8447(15)

0.12 0.12121(10) 0.00184/0.0507/0.628 0.001907(5)/0.05252(10)/0.6382(8)

0.09 0.08779(8) 0.0012/0.0363/0.432 0.001326(4)/0.03636(9)/0.4313(6)

0.06 0.05676(6) 0.0008/0.0220/0.260 0.000799(3)/0.02186(6)/0.2579(4)

sea-quark masses to make small adjustments for the fact that the sea-quark masses in the

physical quark-mass ensembles were fixed after short tuning runs, and inevitably turned out

to be slightly mistuned when the full runs are done. The amount of mistuning is shown

in Table V, which gives the sea-quark masses and the tuned quark masses for the physical

quark-mass ensembles.

Fitting to the lattice spacing dependence is straightforward, because the results from

each ensemble are statistically independent. We have performed continuum extrapolations

for the ratios of quark masses, mu/md, ms/ml, and mc/ms, which come automatically from

the fitting for each ensemble described in Sec. IV A 1. Figures 5, 6, and 7 show the results

for each ensemble, together with fits to the lattice spacing dependence. In these plots the

abscissa is a2αS, where αS is an effective coupling constant determined from taste violations

in the pion masses. The relative value of αS at a given coupling β, compared to its value at

a fixed, fiducial coupling β0, is given by

αS(β)

αS(β0)
=

√
(a2∆̄)β a2(β0)

(a2∆̄)β0 a
2(β)

, (6)

where (a2∆̄)β is the mean squared taste splitting at coupling β, and a(β) is the lattice

spacing given below in Table VIII. Equation (6) assumes that a2∆̄ is proportional to α2
Sa

2,

its leading behavior. We use β0 = 5.8 in these plots, and scale αS to agree with the coupling

αV at β0 = 5.8, which in turn may be determined from the plaquette [33] as explained after

Eq. (9) of Ref. [7].

In these figures the fit used to determine the central value is shown in black. This is

a quadratic polynomial fit through the four physical quark-mass points. In this fit, small
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FIG. 5: The tuned ratio of strange quark mass to light-quark mass, ms/ml, on each ensemble,

for the physical quark-mass ensembles (red octagons), for m′l/m
′
s = 0.1 (blue squares) and for

m′l/m
′
s = 0.2 (green bursts). The fits shown in this and subsequent figures are described in the

text. The diamonds at the left indicate the continuum extrapolations of the various fits.
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FIG. 6: The tuned ratio of charm quark mass to strange quark mass, mc/ms, on each ensemble.

The notation and choice of fits is the same as in Fig. 5.
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FIG. 7: The ratio of up quark mass to down quark mass, mu/md, on each ensemble. The notation

and choice of fits is the same as in Fig. 5.
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adjustments have been made to compensate for sea-quark mass mistuning. To make these

adjustments, the derivative of each quantity with respect to sea-quark mass is found from

a fit including both the physical quark-mass ensembles and the 0.1m′s ensembles, and this

derivative is used to adjust each point in the fit. The resulting adjustments are too small

to be visible in Figs. 5, 6, and 7. Other fits shown in these figures are used in estimating

the systematic error resulting from our choice of fitting forms. The blue lines in each figure

show the fit including the 0.1m′s points, where the fit is quadratic in a2 and linear in m′l/m
′
s.

Here the solid line is the fit evaluated at the physical sea-quark mass, and the dashed line

is the fit evaluated at m′l = 0.1m′s. The red lines are extrapolations using only the finer

lattice spacings, while the curved solid line is a quadratic through the 0.06, 0.09 and 0.12 fm

ensembles, and the dashed straight line a line through the finest two points. The diamonds

at αSa
2 = 0 indicate the continuum extrapolations of the various fits. It is clear from the

curvature in Figs. 5, 6, and 7 that a quadratic term is needed. However, it makes only a

negligible difference whether this quadratic term is taken to be (αSa
2)2, as is done here for

convenience, or simply (a2)2. Other continuum extrapolations not shown here use αV a
2,

where αV is the strong coupling constant computed from the plaquette, or simply a2 as the

abscissa.

The four extrapolations in Figs. 5, 6, and 7, together with quadratic fits to the physical

mass points using αV a
2 or a2 as the abscissa, make a set of six continuum extrapolations for

these and other quantities. The six versions are used to estimate the systematic errors of

the quark mass ratios and light-meson decay constants, and to inform the systematic error

analysis of Sec. IV B 4.

In Fig. 5 and, to a lesser extent in Figs. 6 and 7, the points at small lattice spacing

with unphysical light sea quark masses deviate strongly from the physical sea quark mass

points. This is mostly a partial quenching effect that shows up for valence quark masses

small compared to the light sea quark mass. In particular, the squared pseudoscalar meson

mass is increased by a partially quenched chiral log, which means that a smaller tuned

light valence quark mass is needed to give the desired M2/F 2. This has the direct effect

of increasing ms/ml, with smaller effects on all other quantities. This is mostly seen at

the smallest lattice spacing because at larger lattice spacings taste violations smear out the

chiral logs. Note that this partial quenching effect has negligible effect on our results for

ms/ml and mc/ms, which depend almost exclusively on the data from the physical-mass
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ensembles.

We perform similar continuum extrapolations for the ratios of decay constants Fp4s/fπ+ ,

fK+/fπ+ , fD+/fπ+ , fDs/fπ+ , and fDs/fD+ , and for Mp4s and Rp4s = Fp4s/Mp4s. Figure 8

shows the individual ensemble value and the same set of continuum extrapolations for the

ratio fK+/fπ+ . As an example of a quantity involving a charm quark, Fig. 9 shows values and

continuum extrapolations for the ratio fDs/fπ+ . The resulting continuum values for Mp4s,

Fp4s/fπ+ and Rp4s are used in the later analysis in Sec. IV B, and the extrapolated value

for fK+/fπ+ is our result for this quantity. The values for the charm-meson decay constants

provide consistency checks on the analysis in Sec. IV B, and the spread in continuum values

among the different extrapolations is included in our estimates of the systematic uncertainty

from the continuum extrapolation. Finally, as a check, we extrapolate the mass of the ηc

meson. These continuum extrapolations and their statistical errors are shown in Table VI.

Statistical errors on these quark mass ratios and decay constants are estimated with a

jackknife method, where for each ensemble we perform the entire fitting procedure elimi-

nating one configuration at a time. Autocorrelations are handled by estimating the final

error from the variance of the jackknife resamples, after first blocking the jackknife results in

blocks of 20 (eliminated) lattices, which corresponds to 100 molecular dynamics time units

for the a ≈ 0.15 and 0.12 fm ensembles and 120 time units for the a ≈ 0.09 and 0.06 fm

ensembles.

3. Finite volume and electromagnetic uncertainties

Our treatment of finite volume effects on the pion and kaon masses and decay constants

is the same as described in Ref. [3], and we refer the reader to the discussion there. To

summarize very briefly, we adjust these masses and decay constants to their values in a

5.5 fm box, the size of our physical quark mass lattices, and use these adjusted values in the

tuning procedure described above. After the tuning and continuum extrapolation, at which

point we have determined fK+ in a 5.5 fm box, the adjustment is removed to get our result

for fK+ in infinite volume. As an estimate of the remaining finite size uncertainty we use the

difference between results using staggered chiral perturbation theory and continuum chiral

perturbation theory (NNLO for Mπ and fπ+ , NLO for MK and fK+) [3]. This difference,

along with other systematic effects, is tabulated in Table VI. Finite size effects on the
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FIG. 8: The ratio fK+/fπ+ on each ensemble, The notation and choice of fits is the same as in

Fig. 5.
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FIG. 9: The ratio fDs/fπ+ on each ensemble. The notation and choice of fits is the same as in

Fig. 5.
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TABLE VI: Values for various physical quantities evaluated at zero lattice spacing, as well as

statistical and systematic errors, obtained from the simple physical-mass ensemble analysis. Here

ΦD+ ≡ fD+

√
MD+ etc. We also include the p value of the central fit of this analysis. For the

systematic errors, we tabulate the amount by which the central values change. Finite size errors

are the difference between results using staggered chiral perturbation theory and continuum chiral

perturbation theory (NNLO for Mπ and fπ+ , NLO for MK and fK+) [3]. “EM1” is the effect of

varying ε by 0.021, or one standard deviation. “EM2” is the effect of subtracting 450 MeV2 from

M2
K . “EM3” is the effect of lowering the Ds meson mass by 1 MeV. “Cont. extrap.” is the full

amount of variation among the alternative continuum extrapolation fits. “Priors” is the effect of

using narrower priors for the mass gaps in the 0.09 and 0.06 fm physical quark mass correlator fits.

More details on these systematic effects are in the text.

Quantity Central stat. p val. Finite EM1 EM2 EM3 Cont. Priors
value size extrap.

Mηc 2982.33 0.35 0.18 0.29 0.11 0.35 −1.81 +1.41
−0.88 0.01

fK+/fπ+ 1.1956 0.0010 0.025 −0.0010 −0.0003 −0.0004 0.0000 +0.0023
−0.0014 0.0002

Fp4s 153.90 0.09 0.10 −0.15 −0.02 −0.05 0.00 +0.14
−0.23 0.00

Mp4s 433.24 0.17 0.11 −0.02 −0.12 −0.41 0.00 +0.01
−0.33 −0.01

Rp4s 0.35527 0.00024 0.035 −0.00030 0.00007 0.00023 0.00000 +0.00052
−0.00015 0.00001

mu/md 0.4482 0.0048 0.025 0.0001 −0.0156 0.0000 0.0000 +0.0021
−0.0115 0.0000

ms/ml 27.352 0.051 0.72 −0.039 −0.015 −0.053 0.000 +0.080
−0.020 −0.001

mc/ms 11.747 0.019 0.010 −0.006 0.009 0.025 −0.010 +0.052
−0.032 0.001

fDs/fD+ 1.1736 0.0036 0.97 0.0003 −0.0003 −0.0003 0.0000 +0.0004
−0.0015 −0.0002

fD+/fπ+ 1.6232 0.0057 0.59 −0.0016 0.0003 0.0000 −0.0001 +0.0097
−0.0034 0.0006

fDs/fπ+ 1.9035 0.0017 0.010 −0.0015 −0.0001 −0.0004 −0.0001 +0.0089
−0.0050 −0.0001

ΦD+ 9161.5 33.7 0.61 −9.3 1.6 0.6 −3.1 +16.1
−44.9 3.0

ΦDs 11012.9 9.7 0.007 −8.9 −0.7 −2.6 −3.4 +51.6
−28.8 −0.1

charm-meson masses and decay constants are, as expected, quite small. Figure 10 shows the

charm-meson masses and decay constants on the three ensembles differing only in spatial

size, showing no detectable finite size effects.
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FIG. 10: Spatial size effects on MD, MDs , fD and fDs . To show the magnitude of the effects,

green error bars show an arbitrary value ±1 MeV, and magenta error bars ±1%.
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Our treatment of EM effects also follows Ref. [3], which in turn follows Ref. [2]. The

current analysis uses updated inputs for the electromagnetic effects, so we repeat some of

the discussion. Because our sea quarks are isospin symmetric, we adjust the experimental

inputs to what they would be in a world without electromagnetism or sea-quark isospin

violation before matching the simulation data to experiment to find the strange quark mass

ms and the average light-quark mass m̂ = (mu + md)/2. Specifically, we do not adjust the

neutral pion mass because the leading-order isospin correction to M2
π0 is ∝ (mu−md)

2/Λ2
χ in

χPT and therefore small, and the electromagnetic corrections vanish in the chiral limit for

neutral mesons and are thus also small. For the kaon, we consider the isospin-averaged mass

M2
K̂

= (M2
K++M2

K0)QCD/2, where the subscript “QCD” indicates that the leading EM effects

in the masses are removed from the experimental masses [31]. To remove these effects we

use results from our ongoing lattice QED+QCD simulations with asqtad sea quarks [34, 35]

for the parameter ε that characterizes violations of Dashen’s theorem:

(M2
K± −M2

K0)γ = (1 + ε)(M2
π± −M2

π0)γ , (7)

where the superscript γ denotes the EM contribution to the splittings. In Refs. [34, 35], we

found ε = 0.65(7)(14)(10), but this result did not yet adjust for finite volume effects on the

photon field. A recent preliminary result [36] including finite volume effects is ε = 0.84(21),

and we use that here.

We estimate the uncertainty due to EM effects by varying the values of the EM-subtracted

meson masses used in the quark-mass tuning; this affects mu the most. We vary the parame-

ter ε by its error. We also consider possible EM effects on the neutral kaon mass itself, which

are less well understood than the EM effects on the K+–K0 splitting that are described by

ε. In Ref. [35], the EM contribution to the squared K0 mass was estimated to be about

900 MeV2. However, this estimate did not take into account the effects of EM quark mass

renormalization, which should be subtracted from the result. A rough calculation of the

renormalization effect (using one-loop perturbation theory) suggests it is of order of half

the size of the contribution. We thus include as a systematic error the effect of shifting the

squared K0 mass by 450 MeV2. We do not consider direct EM effects on the weak matrix

elements fπ+ , fK+ , fD+ and fDs , which are by definition pure QCD quantities [31]. Such

direct EM effects, however, are relevant in the extraction of CKM elements by comparison

with experimental rates, as described in Sec. VI.
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The shifts in various quantities resulting from these electromagnetic uncertainties are

also tabulated in Table VI. The two effects labeled “EM1” and “EM2” are combined in

quadrature to give our quoted EM systematic errors for ms/ml and fK+/fπ+ . The “EM3”

column in Table VI shows the effect of lowering the input Ds meson mass by 1 MeV, an

order-of-magnitude estimate for the electromagnetic effect on this mass, which affects the

tuning of the charm-quark mass. This effect has not been directly determined in QCD+QED

simulations. Although this affects ΦD and ΦDs through the factor of M
1/2
D or M

1/2
Ds

in

these quantities, it has only a small effect on the decay constants. It leads to a significant

uncertainty on mc/ms, and we include it in our systematic error estimate for this quantity.

B. Chiral perturbation theory analysis of fD and fDs including unphysical quark-

mass ensembles

In this section, we present the combined chiral extrapolation/interpolation and continuum

extrapolations used to obtain the physical values of the D+ and Ds meson decay constants.

We first discuss chiral perturbation theory for all-staggered heavy-light mesons in Sec. IV B 1,

giving the formulas used for the chiral fits and describing our method for incorporating

discretization effects into the extrapolation. An explanation of our method for setting the

lattice scale follows in Sec. IV B 2. Chiral perturbation theory assumes a mass-independent

scale-setting procedure. In practice, we use Fp4s to set the scale and Fp4s/Mp4s to tune

the strange sea-quark mass. We take these values from the physical quark-mass analysis in

Sec. IV A. This means that the absolute scale comes ultimately from fπ+ , which is used to

set the scale in Sec. IV A.

The chiral fits themselves are presented in Sec. IV B 3, while systematic errors in the chi-

ral analysis are described in Sec. IV B 4. Chiral/continuum extrapolation errors are found

by considering a large number (18) of alternative chiral fits, as well as six versions of the

continuum extrapolation of the inputs, resulting in 108 possibilities. We also estimate finite

volume and EM errors within the chiral analysis by propagating the errors in the correspond-

ing inputs through the chiral fits. Equations (28)–(30) show our results for the charm decay

constants from the self-contained chiral analysis with complete systematic error budgets.
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1. Chiral perturbation theory for fD+ and fDs

The quark-mass and lattice-spacing dependence of the decay constant has been derived

at one loop in heavy-meson, rooted, all-staggered chiral perturbation theory (HMrASχPT)

in Ref. [24]. At fixed heavy-quark mass mQ, one may argue following Ref. [37] that inclusion

of hyperfine splittings (e.g., M∗
D−MD) and flavor splittings (e.g., MDs −MD), but no other

1/mQ effects, constitutes a systematic approximation at NLO in HMrASχPT. The argument

is based on the power counting introduced by Boyd and Grinstein [38]. With v denoting

the light valence quark, Y the vv̄ valence meson, and ΦDv ≡ fDv

√
MDv , Ref. [24] obtains

for the pseudoscalar-taste heavy-light meson:

ΦDv = Φ0

{
1 +

1

16π2f 2

1

2

(
− 1

16

∑
S,Ξ

`(M2
Sv,Ξ)− 1

3

∑
j∈M(3,v)

I

∂

∂M2
Y,I

[
R

[3,3]
j (M(3,v)

I ;µ
(3)
I )`(M2

j )
]

−
(
a2δ′V

∑
j∈M(4,v)

V

∂

∂M2
Y,V

[
R

[4,3]
j (M(4,v)

V ;µ
(3)
V )`(M2

j )
]

+ [V → A]
)

− 3g2
π

1

16

∑
S,Ξ

J(MSv,Ξ,∆
∗ + δSv)− g2

π

∑
j∈M(3,v)

I

∂

∂M2
Y,I

[
R

[3,3]
j (M(3,v)

I ;µ
(3)
I )J(Mj,∆

∗)
]

− 3g2
π

(
a2δ′V

∑
j∈M(4,v)

V

∂

∂M2
Y,V

[
R

[4,3]
j (M(4,v)

V ;µ
(3)
V )J(Mj,∆

∗)
]

+ [V → A]
))

+ Ls(xu + xd + xs) + Lvxv + La
x∆̄

2

}
, (8)

where Φ0, Ls, Lv, and La are low-energy constants (LECs); the indices S and Ξ run over

sea-quark flavors and meson tastes, respectively; ∆∗ is the lowest-order hyperfine splitting;

δSv is the flavor splitting between a heavy-light meson with light quark of flavor S and one

of flavor v; and gπ is the D-D∗-π coupling. In infinite volume, the chiral logarithm functions

` and J are defined by [23, 37]

`(m2) = m2 ln
m2

Λ2
χ

[infinite volume], (9)

J(M,∆) = (M2 − 2∆2) log(M2/Λ2) + 2∆2 − 4∆2F (M/∆) [infinite volume], (10)

with [39]

F (1/x) ≡

−
√

1−x2
x

[
π
2
− tan−1 x√

1−x2

]
, if |x| ≤ 1,

√
x2−1
x

ln(x+
√
x2 − 1), if |x| ≥ 1.

(11)
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The residue functions R
[n,k]
j are given by

R
[n,k]
j ({m};{µ}) ≡

∏k
i=1(µ2

i −m2
j)∏n

r 6=j(m
2
r −m2

j)
. (12)

The sets of masses in the residues are

µ(3) = {m2
U ,m

2
D,m

2
S} , (13)

M(3,v) = {m2
Y ,m

2
π0 ,m2

η} , (14)

M(4,v) = {m2
Y ,m

2
π0 ,m2

η,m
2
η′} . (15)

Here taste labels (e.g., I or V for the masses) are implicit. We define dimensionless quark

masses and a measure of the taste splitting by

xu,d,s,v ≡
4B

16π2f 2
π

mu,d,s,v , and x∆̄ ≡
2

16π2f 2
π

a2∆̄ , (16)

where B is the LEC that gives the Goldstone pion mass M2
π = B(mu + md), and a2∆̄ is

the mean-squared pion taste splitting. The xi are natural variables of HMrASχPT; the

LECs Ls, Lv, and La are therefore expected to be O(1). All ensembles in the current

analysis have degenerate light sea quarks: xu = xd ≡ xl. The taste splittings have been

determined to ∼ 1–10% precision [7] and are used as input to Eq. (8), as are the taste-

breaking hairpin parameters δ′A and δ′V , whose ranges are taken from chiral fits to light

pseudoscalar mesons [40].

To include the finite-volume effects for a spatial volume L3 in Eq. (8), we replace [37]

`(m2) → `(m2) +m2δ1(mL) [finite volume], (17)

J(m,∆) → J(m,∆) + δJ(m,∆, L) [finite volume], (18)

where

δJ(m,∆, L) =
m2

3
δ1(mL)− 16π2

[
2∆

3
JFV (m,∆, L) +

∆2 −m2

3
KFV (m,∆, L)

]
, (19)

with

KFV (m,∆, L) ≡ ∂

∂∆
JFV (m,∆, L), (20)

and with δ1(mL) and JFV (m,∆, L) defined in Refs. [41, 42].

Because we have data with ∼1% to less than 0.1% statistical errors and 314 to 366 data

points (depending on whether a ≈ 0.15 fm is included), NLO HMrASχPT is not adequate
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to describe fully the quark-mass dependence, in particular for masses near ms. We therefore

include all NNLO and NNNLO mass-dependent analytic terms. There are four independent

functions of xv, xl and xs at NNLO and seven at NNNLO, for a total of eleven additional

fit parameters. It is not necessary to keep all the seven terms appearing at NNNLO to get

a good fit, nevertheless we include all of them to make it a systematic approximation at the

level of analytic terms.

While Eq. (8) is a systematic NLO approximation for the decay constant at fixed mQ,

we have data on each ensemble with two different values of the valence charm mass: m′c

and 0.9m′c, where m′c is the value of the charm sea mass of the ensembles, and is itself

not precisely equal to the physical charm mass mc because of tuning errors, which are in

some cases as large as this difference (i.e., 10% of m′c). Since such changes in the value of

the charm mass lead to corrections to decay constants that are comparable in size to those

from the pion masses at NLO, Eq. (8) needs to be modified in order to fit the data. We

therefore allow the LEC Φ0 to depend on mQ as suggested by HQET. For acceptable fits

to the highly correlated data at valence charm masses m′c and 0.9m′c, we need to introduce

both 1/mQ and 1/m2
Q terms. (For more details see Appendix A.) Furthermore, Φ0 has

generic lattice-spacing dependence that must be included to obtain good fits. With HISQ

quarks, the leading generic discretization errors are O(αSa
2). But because the high degree

of improvement in the HISQ action drastically reduces the coefficient of these leading errors,

formally higher O(a4) errors are also apparent, as can be seen from the curvature in Figs. 5

– 9. In Eq. (8), we thus replace

Φ0 → Φ0

(
1 + k1

ΛHQET

mQ

+ k2

Λ2
HQET

m2
Q

)(
1 + c1αS(aΛ)2 + c2(aΛ)4

)
, (21)

where the ki are new physical LECs, ci are additional fit parameters, ΛHQET is a physical

scale for HQET effects, and Λ is the scale of discretization effects.

In cases where the valence and sea values of the charm quark mass differ, mQ in Eq. (21)

is taken equal to the valence mass. This is based on the expectation from decoupling [43]

that effects due to variations in the charm sea mass on low-energy physical quantities are

small. Note that HQET tells us that heavy-light decay constants come from the physics of

the light-quark at scale ΛQCD, despite the presence of the heavy valence quark. Thus we

do not introduce extra terms corresponding to the charm sea mass here. As discussed in

Sec. IV B 4, however, such terms are included in alternative fits used to estimate systematic
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errors.

Generic dependence on a is also allowed for the physical LECs Ls, Lv, k1 and k2. However,

because these parameters first appear at NLO in the chiral or HQET expansions, it is

sufficient to include at most the leading a-dependence, for example:

Lv → Lv + Lvδ αS(aΛ)2 (22)

Thus we add 4 fit parameters related to generic discretization effects: Lvδ, Lsδ, k1δ, and k2δ.

There are also 3 parameters related to taste-violation effects: La, δ
′
A and δ′V . These param-

eters are taken proportional to the measured average taste splitting a2∆̄, which depends on

a approximately as α2
Sa

2 [7]. In addition, we find that mQ-dependent discretization errors

must be considered if data at the coarsest lattice spacing (a ≈ 0.15 fm) is included in the

fits. This is not surprising because amphys
c ≈ 0.84 at this lattice spacing, which by the power

counting estimates of Ref. [4] suggests ∼ 5% discretization errors (although this may be

reduced by dimensionless factors). We therefore add c3αS(amQ)2 + c4(amQ)4 to the analytic

terms in Eq. (8), where mQ is taken to denote the valence charm mass. If the a ≈ 0.15 fm

data is omitted, good fits may be obtained with c3 and c4 set to zero. As discussed below,

one can also add similar terms for the charm sea mass.

For the LEC gπ, a reasonable range is gπ = 0.53(8), which comes from recent lattice

calculations [44, 45]. When this central value and range are included as Bayesian priors,

fits to our full data set tend to pull gπ low, several sigma below 0.53. Hence, we simply fix

gπ = 0.45, 1-sigma below its nominal value, in our central fit. This problem is ameliorated

for alternative fits, used to estimate the systematic errors, that drop the data at a ≈ 0.15

fm or that use the experimental value of fK+ , rather than that of fπ+ , for f in Eq. (8).

Other alternatives considered in the systematic error estimates are to allow gπ to be a free

parameter, or to keep it fixed at its nominal value.

2. Setting the Relative Lattice Scale

Relative scale setting in the combined chiral analysis is done using Fp4s. The value of

Fp4s in physical units, which is only needed at the end of this analysis, has been obtained by

comparison with fπ+ in Sec. IV A, as are the other needed inputs: Rp4s ≡ Fp4s/Mp4s and the

quark-mass ratios mc/ms, ms/ml and mu/md. All those quantities are listed in Table VI.
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We use Fp4s in the chiral analysis, rather than fπ+ itself, for several reasons. First of

all, Fp4s gives highly-precise relative lattice spacings between ensembles. Precision scale

setting is required in order to get good chiral fits to our large partially-quenched data set

(366 points) with large correlations of the points within each ensemble. Second, Fp4s can be

accurately adjusted for mistunings in the sea-quark masses using unphysical-mass ensembles

for which the physical valence-quark mass values needed to find fπ+ can only be reached

by extrapolation. Finally, and perhaps most importantly, there are no logarithms of light

pseudoscalar masses (∼mπ) in the SχPT expression for the decay constant [23] evaluated

at the relevant quark masses for Fp4s. The lightest meson that enters is a valence-sea meson

for quark masses 0.4ms and ml, which has mass ∼325 MeV (for the Goldstone taste). This

means that Fp4s should be well approximated by its Taylor series in a2, and we do not need

to modify Eq. (8) to take into account chiral logarithms that enter through the scale-setting

procedure. We have checked this assumption by performing a more complicated three-step

analysis: (1) The degenerate light-light decay-constant data for all ensembles are fit to the

NLO SχPT form of Ref. [23]. (2) From the fit, we determine Fp4s as a function of a2. (3)

The data for ΦDv/F
3/2
p4s are fit to Eq. (8) divided by the 3/2 power of Fp4s(a

2). The results

of this procedure differ from the results reported in Table IX below by less than half of the

statistical errors, and the systematic errors are essentially the same in both approaches.

We use a mass-independent scale-setting scheme. We first determine aFp4s and amp4s

on the physical-mass ensembles; then, by definition, all ensembles at the same β as a given

physical-mass ensemble have a lattice spacing a and value of amp4s equal to those of the

physical-mass ensemble. Since we do not know the correct strange-quark mass until after

the lattice spacing is fixed, aFp4s and amp4s must be determined self-consistently. We find

amp4s and aFp4s on a given physical-mass ensemble by adjusting amv until aF/(aM) has

the expected physical ratio Rp4s.

To determine aFp4s and amp4s accurately, data must be adjusted for mistunings in the sea-

quark masses. The sea-quark masses of the physical-mass ensembles are tuned relatively well

(especially at 0.09 and 0.06 fm), and adjustments are small. Nevertheless, the adjustments

may change the final results of fD+ and fDs by more than the size of the statistical errors.

To make these adjustments, we first find an approximate value of amp4s on each physical-

mass ensemble by passing a parabola through (M/F )2 as a function of mv, for the three

values of mv closest to mp4s. The sea-quark masses are kept fixed (initially, to their values
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in the run) in this process. We use (M/F )2 here rather than F/M , since we expect M2

to be approximately linear in mv, and F 2 to be approximately constant. The value of

amv where the ratio takes its expected value 1/R2
p4s is the tentative value of amp4s, and

the corresponding value of aF is the tentative value of aFp4s. The procedure also gives

tentative values of the physical sea-quark masses in lattice units: ams
∼= 2.5 amp4s, aml

∼=
2.5 amp4s/(ms/ml), and amc

∼= 2.5 amp4s(mc/ms). We then adjust the data for aF and aM

to the values they would have at the tentative new sea-quark masses, and iterate the whole

process until it converges.

The adjustment of the data requires a determination of the following derivatives

∂F 2

∂m′l
,
∂F 2

∂m′s
,
∂F 2

∂m′c
,
∂M2

∂m′l
,
∂M2

∂m′s
,
∂M2

∂m′c
,

∂2M2

∂m′l∂mv

,
∂2M2

∂m′s∂mv

,
∂2M2

∂m′c∂mv

, (23)

where the derivatives should be evaluated at mv = mp4s, and with m′l, m
′
s and m′c at their

physical values. All quantities here are in “p4s units”, which are (semi-) physical units in

which aF and aM have been divided by (the tentative value of) aFp4s, and quark masses

in lattice units have been divided by (the tentative value of) amp4s (and therefore do not

require renormalization). The mixed partial derivatives with mv are needed because we

must adjust the data at different values of mv in order to iterate the process. Because M2

is approximately linear in mv, the effect of the mixed partials in Eq. (23) is non-negligible,

while mixed partials of F 2 may be neglected. Since the effects of mistunings are already not

much larger than our statistical errors, we expect that we may neglect discretization errors

and any mistuning effects in the derivatives themselves. This means that we may use, at

all lattice spacings, the values determined for the derivatives in Eq. (23) at any one lattice

spacing. This expectation is confirmed by alternative determinations of the derivatives,

which give results in agreement with the method we now describe.

Many of the derivatives may be calculated using the twelve ensembles that we have at

a ≈ 0.12 fm. Figure 11 shows the light and strange sea masses of these ensembles. Most of

the ensembles have the same charm sea masses, which allows us to determine the derivatives

with respect to m′l and m′s accurately. We first convert the lattice data to p4s units using

(tentative values of) amp4s and aFp4s. Ensembles in which the light sea mass is tuned

close to 0.1m′s, shown inside the dashed blue ellipse in Fig. 11, are then used to determine

∂F 2/∂m′s, ∂M
2/∂m′s and ∂2M2/∂m′s∂mv. The three derivatives with respect to m′s are

found by fitting a quadratic function to the corresponding quantities of these ensembles, as
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FIG. 11: Values of m′s and m′l of the ensembles at β = 6.0. At one value of m′s and m′l, indicated by

the black cross, we have three ensembles with different volumes; the intermediate volume ensemble,

which is equal in volume to all the other ensembles shown here, is used in our calculation of the

derivatives. Five ensembles inside the blue ellipse are used to calculate ∂F 2/∂m′s, ∂M
2/∂m′s, and

∂2M2/∂m′s∂mv. These five ensembles have the same charm sea masses. Three ensembles inside the

red ellipse are used to calculate ∂F 2/∂m′l, ∂M
2/∂m′l, and ∂2M2/∂m′l∂mv. One of these ensembles

has a slightly different charm sea mass, which is adjusted before calculating the derivatives.

shown in Fig. 12.

To calculate ∂F 2/∂m′l, ∂M
2/∂m′l and ∂2M2/∂m′l∂mv, we use the three ensembles with

strange sea mass close to its physical value, the ensembles inside the red ellipse in Fig. 11.

We fit straight lines to the corresponding data, as shown in Fig. 13. Note that there are

small differences in the charm and strange sea masses of these ensembles, but they are taken

into account by a small adjustment using the derivatives with respect to m′s and m′c.

The derivatives with respect to m′c cannot be calculated directly, because we do not have

a group of ensembles with different charm sea masses but equal light and strange sea masses.

So we have to determine the charm-mass derivatives indirectly, by investigating ensembles

with different charm sea masses after adjusting for their differences in strange and light sea

masses. This procedure can be carried out using the three ensembles available at ≈0.06 fm.

Since m′s and m′c vary by about 10% on these three ensembles, the lever arm is large enough

to calculate the derivatives with respect to m′c. We first use the derivatives with respect to

m′s obtained at ≈ 0.12 fm to adjust the data at ≈ 0.06 fm for mistuning of the strange sea
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FIG. 12: Data from the a ≈ 0.12 fm, m′l/ms ≈ 0.1 ensembles, which are shown inside the blue

ellipse in Fig. 11. Fp4s and Mp4s are the light-light pseudoscalar decay constant and mass for

mv = mp4s; quantities are expressed in p4s units, as described in the text. The needed derivatives

are given by the slope of the tangent line at m′s/mp4s=2.5
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FIG. 13: Data from three ensembles with strange sea masses tuned close to ms, the ensembles

inside the red ellipse in Fig. 11.

masses, so only m′l and m′c dependence remains. Then we calculate the m′c derivatives by

passing a function linear in both m′l and m′c through the three data points for each quantity.

The m′c derivatives thus found feed back into the small adjustments needed at a≈ 0.12 fm

in order to calculate m′l derivatives, as discussed in the preceding paragraph. Our estimates

of all the needed derivatives are tabulated in Table VII.

It is noteworthy that we can analytically determine the first order derivatives with respect

to m′c by integrating out the charm quark for processes that occur at energies well below its

mass. By decoupling [43], the effect of a heavy (enough) sea quark on low-energy quantities

occurs only through the change it produces in the effective value of ΛQCD in the low-energy

(three-flavor) theory [46]. (For a pedagogical discussion see Sec. 1.5 of Ref. [47].) Thus,
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TABLE VII: The values of derivatives needed for adjusting the data for mistunings. All the

derivatives are in p4s units, and are evaluated at the valence mass mv = mp4s and at physical

values of sea masses ml, ms, and mc. Derivatives are found using 0.12 fm and 0.06 fm ensembles,

as described in the text.

∂F 2

∂m′l
0.1255(32) ∂M2

∂m′l
0.266(15) ∂2M2

∂m′l∂mv
0.182(55)

∂F 2

∂m′s
0.0318(17) ∂M2

∂m′s
0.0810(85) ∂2M2

∂m′s∂mv
0.060(30)

∂F 2

∂m′c
0.00554(85) ∂M2

∂m′c
0.0209(41) ∂2M2

∂m′c∂mv
0.023(13)

assuming m′c is heavy enough, we may calculate the m′c derivatives of any quantity that is

proportional to ΛQCD, where the proportionality constant is some pure number, independent

of the light quark masses. Examples of such quantities are the LEC B in Eq. (16) and

the light-light decay constant in the chiral limit, f . At leading order in weak-coupling

perturbation theory, one then obtains (see Eq.(1.114) in Ref. [47]),

∂B

∂m′c
=

2

27

B

m′c
,

∂f

∂m′c
=

2

27

f

m′c
. (24)

At the nonzero values of mv, m′l, and m′s at which we need to evaluate the derivatives

in Eq. (23), there are corrections to these expressions. However, chiral perturbation theory

suggests that such corrections are relatively small. At the relevant light masses, we therefore

expect

∂F 2

∂m′c
= 2F

∂F

∂m′c
≈ 4

27

F 2

m′c
= 0.00504 [p4s units], (25)

∂M2

∂m′c
≈ 2mp4s

∂B

∂m′c
≈ 2

27

M2

m′c
= 0.01998 [p4s units], (26)

which agree with our numerical results within 10%; see Table VII. Indeed, the fact that the

agreement is this close is probably due to chance, especially for the derivative of the decay

constant: Our argument has neglected the difference between f and Fp4s, but that difference

is ∼40%.

Having the required derivatives, we now iteratively adjust for mistunings. We first com-

pute amp4s and aFp4s, then adjust the data, and repeat the entire process two more times.

The values of amp4s and aFp4s have then converged to well within their statistical errors.

The results for the lattice spacing a and ams are listed in Table VIII. The error estimates

of these quantities will be discussed below. Our investigation shows that the errors in the

43



TABLE VIII: Lattice spacing a and ams, as a function β, in the p4s mass-independent scale-setting

scheme.

β = 5.8 a = 0.15305(17)stat(
+46
−23)a2 extrap(29)FV(4)EM fm

ams = 0.06863(16)stat(
+43
−24)a2 extrap(26)FV(7)EM [Lattice Units]

β = 6.0 a = 0.12232(14)stat(
+36
−19)a2 extrap(23)FV(3)EM fm

ams = 0.05304(13)stat(
+33
−18)a2 extrap(20)FV(6)EM [Lattice Units]

β = 6.3 a = 0.08791(10)stat(
+26
−13)a2 extrap(17)FV(2)EM fm

ams = 0.03631(9)stat(
+23
−13)a2 extrap(14)FV(4)EM [Lattice Units]

β = 6.72 a = 0.05672(7)stat(
+17
−9 )a2 extrap(11)FV(1)EM fm

ams = 0.02182(5)stat(
+14
−8 )a2 extrap(8)FV(2)EM [Lattice Units]

derivatives change a and ams by less than their statistical errors, so those errors are not

included in the analysis.

Comparing Table VIII with Table V, which uses fπ+ to set the scale, we see significant

differences at the coarser lattice spacings, but not at the finest spacing. This is as expected

for two different schemes, which should only agree exactly in the continuum limit.

3. Chiral-continuum fits to D system

So far, we have introduced eight fit parameters related to discretization effects (c1, c2,

c3, c4, Lvδ, Lsδ, k1δ, and k2δ) and three parameters related to taste-violation effects (La,

δ′A, and δ′V). The latter parameters appear at NLO in SχPT and must be kept since our

expansion is supposed to be completely systematic through NLO. This is not the case for

the former parameters; several of them (c2, c3, c4, Lvδ, Lsδ, and k2δ) are formally NNLO and

may be dropped. We indeed get acceptable fits when some of these parameters are dropped,

especially if the a ≈ 0.15 fm data is omitted. In order to see the effects of these parameters,

we present the results of two fits, with different sets of parameters, to data at the three finer

lattice spacings, and we study the extrapolation of the chiral fit back to the coarsest lattice

spacing (a ≈ 0.15 fm, β = 5.8).

Figure 14 shows a fit to partially quenched data at the three finer lattice spacings. (The

a ≈ 0.15 fm data is omitted.) Among the introduced fit parameters related to discretization

effects, only c1 in Eq. (21) and k1δ in Eq. (22) are taken as free parameters in this fit,
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FIG. 14: Simultaneous chiral fit to ΦD as a function of mv, the valence-quark mass (in units of

mp4s), at the three finer lattice spacings. The a ≈ 0.15 fm (β = 5.8) data is not included in the

fit, although the data and the extrapolation of the chiral fit to it are shown at the left in the top

row. At the right of the top row we show the a ≈ 0.12 fm (β = 6.0) data, and in the bottom

row are a ≈0.09 fm (β = 6.3, left) and a ≈0.06 fm (β = 6.72, right). The colors denote different

light sea-quark masses, as indicated. For each color there are two lines, one for heavy valence-

quark mass ≈ m′c (higher line), and one for ≈ 0.9m′c. In this fit, gπ is fixed to 0.53. The fit has

χ2/dof = 339/293, giving p = 0.033.

and the others are set to zero. This fit gives p = 0.033, and as illustrated in Fig. 14, the

extrapolation of the fit to the coarsest lattice spacing does not follow the corresponding data

points. We note that this fit and all other chiral fits in this paper include additional data

(not shown) from ensembles at a ≈ 0.12 fm (β = 6.0) either with m′s lighter than physical,

or with volumes 243 × 64 and 403 × 64, which were generated to check finite volume effects.

(See Table I.) Moreover, it is important to realize that the biggest source of variation in the
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FIG. 15: Simultaneous chiral fit to ΦD as a function of mv at the three finer lattice spacings.

Similar to the fit in Fig. 14, but with three extra fit parameters: c2, c3, and c4. This fit has

χ2/dof = 239/290, giving p = 0.986.

data in the four plots shown in Fig. 14 is not discretization errors, but mistunings of the

strange and, most importantly, charm-quark masses.

Adding c3αS(amQ)2 + c4(amQ)4 to the analytic terms in Eq. (8), as well as including

c2 in Eq. (21), we get a new fit to the partially quenched data at the three finer lattice

spacings. By including these three extra parameters, an excellent fit is achieved, as shown

in Fig. 15, and extrapolation of the fit to the coarsest lattice spacing gives lines that pass

relatively well through the corresponding data points. This comparison makes clear that

higher-order discretization errors are important for the HISQ data, in which the leading-

order discretization effects are suppressed.

We have a total of 18 acceptable (p > 0.1) versions of the continuum/chiral fits. Five of

the fits drop the a ≈ 0.15 fm ensembles; the rest keep those ensembles. The chiral coupling
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f is generally set to fπ+ , except for two fits with the coupling constant set to fK+ . The LEC

gπ is usually fixed to either its nominal value or to 1σ below its nominal value, however it

is allowed to be a free parameter in four of the fits. The LEC B in Eq. (16) is generally

determined for each lattice spacing separately by fitting all data for the squared meson mass

M2 vs. the sum of the valence masses to a straight line. (At a ≈ 0.12 fm only the ensembles

with strange sea masses close to its physical mass are included in the fit.) However, in two

versions of the chiral fits, B is determined from just the data on the physical-mass ensembles

at each lattice spacing.

Another difference among the fits is how we determine the strong coupling αS in dis-

cretization terms such as those with coefficients c1 and c3. Since the coefficients are free

parameters, all that we actually need in the fits is the relative value of αS at a given cou-

pling β compared to its value at a fixed, fiducial coupling β0. In most of the fits, we have

used measured light-light pseudoscalar taste splittings to fix this relative value, as in Eq. (6).

An alternative, which is used in two of our fits, is to use for αS the coupling αV , determined

from the plaquette [33]. The scale for αV is taken to be q∗ = 2.0/a. Note that the NLO

perturbative corrections to αV have not been calculated for the HISQ action, so we use the

result for the asqtad action. Since the nf dependence of the NLO result is small, we expect

the difference to have negligible effects on the results of the fit. This expectation can be

tested by, for example, flipping the sign of the nf term in the asqtad result, which is likely a

much bigger change than would actually come from changing from asqtad to HISQ. When

we do this, we find that the results change by amounts comparable to or smaller than the

statistical errors, and significantly smaller than the total systematic errors. Similar, but

usually smaller, changes result from replacing q∗ = 2.0/a with q∗ = 1.5/a, which is another

reasonable choice, as discussed in Ref. [7].

We have introduced eight fit parameters related to discretization effects (c1, c2, c3, c4,

Lvδ, Lsδ, k1δ, and k2δ), but it is not necessary to keep all of them to get an acceptable fit.

Dropping some of these parameters, we have different continuum/chiral fits with the number

of parameters ranging from 23 to 28. We may also choose to constrain, with priors, the LECs

in higher-order (NNLO and NNNLO) analytic terms to beO(1) in natural units (as explained

following Eq. (16)). (Through NLO, where we have the complete chiral expression, including

logarithms, we always leave the LECs Φ0, Ls, Lv, and La completely unconstrained, while gπ,

δ′A, and δ′V are constrained by independent analyses as discussed above.) We may similarly
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constrain the coefficients of discretization terms to be O(1) when the terms are written in

terms of a reasonable QCD scale (which we take, conservatively, to be 600 MeV). Among the

18 fits we consider, some have higher-order chiral terms and discretization terms completely

unconstrained, and others constrain either the chiral terms, or the discretization terms, or

both.

In Eq. (21), mQ denotes the valence charm mass. To take into account the physical effects

of the charm sea masses we can introduce a parameter k′1 to Eq. (21):

Φ0 → Φ0

(
1 + k1

ΛHQET

mQ

+ k2

Λ2
HQET

m2
Q

+ k′1
ΛHQET

m′c

)(
1 + c1αS(aΛ)2 + c2(aΛ)4

)
, (27)

where m′c is the mass of the charm mass in the sea. One of our 18 fits adds the parameter

k′1. Further, discretization errors coming from the charm sea masses can be included by

adding c′3αS(am′c)
2 + c′4(am′c)

4 to the analytic terms in Eq. (8), and one of the fits makes

that addition. It is interesting to note that it is possible to obtain another acceptable fit in

which c2 in Eq. (21) is restricted by priors to be much smaller than its value in the central

fit, but the c′3 and c′4 terms are added. This shows that our lattice data cannot distinguish

in detail between various sources of higher-order discretization effects. However, the results

in the continuum limit are rather insensitive to these differences.

Since all 18 fits considered have acceptable p values and give correction terms reasonably

consistent with expectations from chiral perturbation theory and power counting, whether

or not such terms are constrained, we have no strong reason to choose one fit or groups

of fits as preferred in comparison to the rest. We therefore choose our “central fit” simply

by requiring that it be a fit to all ensembles and that it give results for ΦD+ and ΦDs that

are as close as possible to the center of the histograms for these quantities from all the fits

and from all systematic variations in the inputs (i.e., from the “continuum extrapolation”

column in Table VI). This central fit has 27 free parameters, with gπ fixed to 1-sigma below

its nominal value, and with the k′1, c′3, and c′4 terms discussed in the previous paragraph

dropped, but all discretization terms aside from c′3 and c′4 kept. In the central fit, c2 in

Eq. (21) is equal to 1.3 with Λ = 600 MeV; while the HQET parameters are k1 = −1.0 and

k2 = 0.5, with ΛHQET = 600 MeV.

Figure 16 shows our central fit to partially quenched data at all four lattice spacings.

Extrapolating the parameters to the continuum, adjusting the strange sea-quark mass and

charm valence- and sea-quark masses to their physical values, and setting the light sea-
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quark mass equal to the light valence mass (up to the small difference between md and

ml = (mu + md)/2) gives the orange band. Putting in the physical light-quark mass then

gives the black burst, which is the result for ΦD+ . Note that the effect of isospin violation

in the valence quarks is included in our result. The effect of isospin violation in the sea has

not been included, but we may easily estimate its size by putting in our values for mu and

md (instead of the average sea mass ml) in Eq. (8) and in the NNLO and NNNLO analytic

terms. This results in a change of only 0.01% in fD+ , and a still smaller change in fDs .

The width of the band shows the statistical error coming from the fit, which is only part

of the total statistical error, since it does not include the statistical errors in the inputs

of the quark masses and the lattice scale. To determine the total statistical error of each

output quantity, we divide the full data set into 100 jackknife resamples. The complete

calculation, including the determination of the inputs, is performed on each resample, and

the error is computed as usual from the variations over the resamples. (For convenience,

we kept the covariance matrix fixed to that from the full data set, rather than recomputing

it for each resample.) Each jackknife resample drops approximately ten consecutive stored

configurations (50 to 60 trajectories) from each ensemble with ≈1000 configurations. This

procedure controls for autocorrelations, since all our measures of the autocorrelations of these

quantities indicate that they are negligible after four or eight consecutive configurations. For

the physical-mass 0.06 fm ensemble with 583 configurations, we are forced to drop only about

six consecutive stored configurations at a time. Our expectation is that the effect of any

remaining autocorrelations, while perhaps not completely negligible, is small compared to

other sources of error. The total statistical errors computed from the jackknife procedure

are only about 10% larger than the statistical error from the chiral/continuum fit, indicating

that the inputs are statistically quite well determined. The same procedure is performed to

find the total statistical error of a and ams at each lattice spacing.

Figure 17 illustrates how data for ΦD+ and ΦDs depend on lattice spacing after adjustment

to physical values of the quark masses (blue circles). There is a 2–3% variation between these

points and the continuum value (green square at a2 = 0). Note that there is clear curvature

in the plot, evidence of significant a4 terms in addition to the formally leading αSa
2 terms.

Both the small absolute size of the errors, and the competition between formally leading and

subleading terms, are typical of highly improved actions such as the HISQ action. The red

stars show the contribution from the chiral logarithms (with known taste splittings) to the a2
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FIG. 16: Simultaneous chiral fit to ΦD as a function of mv, the valence-quark mass (in units of

mp4s), at all four lattice spacings: a ≈ 0.15 fm and 0.12 fm (top row), and 0.09 fm and 0.06 fm

(bottom row). This fit has χ2/dof = 347/339, giving p = 0.36. In the fit lines for each ensemble,

the light valence-quark mass varies, with all sea-quark masses held fixed. The orange band, labeled

as “unitary/continuum,” is identical in each panel. It gives the result after extrapolating to the

continuum, setting the light valence-quark and sea-quark masses equal (up to the small difference

between md and ml = (mu+md)/2), and adjusting the strange and charm masses to their physical

values. The width of the band shows the statistical error coming from the fit. The black bursts

indicate the value of ΦD+ at the physical light-quark mass point.

dependence of the chiral fit function. The green squares show the corresponding contribution

from the analytic fit parameters. The two effects are of comparable magnitudes but the

relative sign changes with lattice spacing; both are needed to describe the a2 dependence of

the data.
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FIG. 17: Lattice spacing dependence of ΦD+ and ΦDs . The blue circles show the lattice data, after

adjustment for mistunings of valence- and sea-quark masses. The red stars show the modification

of each continuum value by the a2 dependence of the chiral logarithms, while the green squares

show the corresponding modification by the a2 dependence induced by the fit parameters. Red

stars and green squares overlap at a2 = 0 (only the green square is visible). Neglecting small cross

terms, the deviation of the blue circles from the continuum value are given by the algebraic sum

of the deviations of the red stars and the green squares.

4. Continuum extrapolation and systematic uncertainties

To determine the systematic error associated with the continuum extrapolation (and

chiral interpolation) of the charm decay constants in the chiral perturbation theory analysis,

we rerun the analysis with alternative continuum/chiral fits, and with alternative inputs

that come from different continuum extrapolations of the physical-mass analysis, listed in

the “continuum extrapolation” column in Table VI.

As mentioned above, we have a total of 18 acceptable versions of the continuum/chiral

fits. We also have the six versions of the continuum extrapolations used in the physical-mass
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FIG. 18: Histograms of ΦD+ and ΦDs values obtained from various versions of the contin-

uum/chiral extrapolation and various inputs of quark masses and scale values from the physical-

mass analysis. Our central fit gives ΦD+ = 9191 MeV3/2 and ΦDs = 11046 MeV3/2; those values

are marked with vertical black lines. At the top of each histogram, we show the range taken as the

systematic error of the self-contained chiral analysis of the current section.

analysis that leads to the inputs of quark masses and the lattice scale. This gives a total

of 108 versions of the analysis. Histograms of the 108 results for ΦD+ and ΦDs are shown

in Fig. 18. Conservatively, we take the maximum difference seen in these results with our

central values as the “self-contained” estimate of the continuum extrapolation errors within

this chiral analysis. The central fit is chosen to give results that are close to the centers

of the histograms, which results in more symmetrical error bars than in the preliminary

analysis reported in Ref. [25]. Note that the “acceptable” fits entering the histograms all

have p > 0.1. If the cutoff is instead taken to be p > 0.05, the additional fits allowed would

not change the error estimates. However a cutoff of 0.01 or lower would give some additional

outliers that would increase the width of the histograms.

In practice, the NLO finite volume corrections are included in our fit function, Eq. (8),

when it is applied to the data, and the volume is sent to infinity when the continuum

results are extracted. We may conservatively estimate the residual finite volume error in

the heavy-light data either by turning off all finite volume corrections and repeating the

fit, or by using the current fit to find the size of the NLO finite volume correction on our
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most-important, 0.06 fm physical-mass ensemble. Yet another way to make the estimate

is by direct comparison of our results on the 323 × 64, β = 6.0, m′l/m
′
s = 0.1 ensemble

(which is similar in physical size to our other m′l/m
′
s = 0.1 ensembles) and the 403 × 64,

β = 6.0, m′l/m
′
s = 0.1 ensemble. All three methods indicate that there are negligible direct

finite volume effects in the heavy-light lattice data. Nevertheless, there are non-negligible

finite volume effects in our final answers, which appear due to the scale setting in the light-

quark sector through, ultimately, fπ+ . (The value of Fp4s in physical units that we use

comes by comparison with fπ+ .) We then propagate the errors in the inputs through our

analysis. Electromagnetic errors in the light quark masses are similarly propagated through

our analysis.

Results for ΦD+ , ΦDs and their ratio at various values of the mass ratio of light to strange

sea quarks are shown in Table IX; only the top subsection of the table gives physical results.

To quantify the effect of isospin violations, we also report ΦD and ΦD+ − ΦD, where ΦD is

the value of Φ in the isospin limit, when the light valence mass is equal to ml = (mu+md)/2

instead of md. Note that the valence masses do not vary in the three different subsections

of the table, so changes in results show only the effects of the light sea mass.

In Table X, we report additional results for the case when the light valence mass is kept

equal to the light sea mass and m′l/ms = 0.1 or 0.2. These unphysical results may be useful

for normalizing other calculations, such as those of B-system decay constants, as described

in Sec. V.

At each β value, we have reported, in Table VIII, the values for the lattice spacing a and

the strange mass in lattice units ams, which come from our scale-setting procedure using

Mp4s/Fp4s and aFp4s. For the estimates of the extrapolation errors in these quantities, we

have used the six versions of the continuum extrapolation for the inputs, which are the

quark-mass ratios, Mp4s/Fp4s, and Fp4s in physical units. Finite volume and electromagnetic

errors come simply from propagating the errors in fπ+ and the light quark masses through

the analysis.
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TABLE IX: Results for Φ from the chiral analysis, for three choices of the light sea mass m′l.

ΦD is the value of Φ when the light valence mass mv = ml ≡ (mu + md)/2. Valence masses here

are always taken to be the physical values md, ms or ml, independent of the value of m′l, and

the strange sea mass is always physical (m′s = ms). The negative central value of ΦD+ − ΦD for

m′l/ms = 0.2 is an effect of partial quenching, but note that the systematic errors are large in this

case.

m′l = ml ΦD+ = 9191± 16stat
+38
−36|a2 extrap ± 13FV ± 1EM MeV3/2

ΦDs = 11046± 12stat
+42
−38|a2 extrap ± 12FV ± 4EM MeV3/2

ΦDs/ΦD+ = 1.2018± 0.0010stat
+0.0024
−0.0032|a2 extrap ± 0.0004FV ± 0.0005EM

ΦD = 9168± 16stat
+39
−40|a2 extrap ± 13FV ± 1EM MeV3/2

ΦD+ − ΦD = 23.6± 0.3stat
+4.7
−1.6|a2 extrap ± 0.1FV ± 1.0EM MeV3/2

m′l/ms = 0.1 ΦD+ = 9412± 16stat
+46
−86|a2 extrap ± 13FV ± 1EM MeV3/2

ΦDs = 11128± 13stat
+36
−42|a2 extrap ± 12FV ± 4EM MeV3/2

ΦDs/ΦD+ = 1.1824± 0.0010stat
+0.0078
−0.0036|a2 extrap ± 0.0004FV ± 0.0003EM

ΦD = 9402± 16stat
+48
−95|a2 extrap ± 13FV ± 1EM MeV3/2

ΦD+ − ΦD = 10.4± 0.3stat
+9.4
−2.4|a2 extrap ± 0.1FV ± 0.5EM MeV3/2

m′l/ms = 0.2 ΦD+ = 9709± 19stat
+53
−140|a2 extrap ± 13FV ± 2EM MeV3/2

ΦDs = 11250± 15stat
+44
−47|a2 extrap ± 12FV ± 4EM MeV3/2

ΦDs/ΦD+ = 1.1588± 0.0011stat
+0.0140
−0.0038|a2 extrap ± 0.0003FV ± 0.0002EM

ΦD = 9714± 19stat
+56
−154|a2 extrap ± 13FV ± 2EM MeV3/2

ΦD+ − ΦD = −5.3± 0.3stat
+15.0
−3.3 |a2 extrap ± 0.1FV ± 0.0EM MeV3/2

The self-contained chiral analysis of the current section gives:

fD+ = 212.6± 0.4stat
+0.9
−0.8|a2 extrap ± 0.3FV ± 0.0EM ± 0.3fπ PDG MeV (28)

fDs = 249.0± 0.3stat
+1.0
−0.9|a2 extrap ± 0.2FV ± 0.1EM ± 0.4fπ PDG MeV (29)

fDs/fD+ = 1.1712(10)stat(
+24
−31)a2 extrap(3)FV(5)EM (30)

fD+ − fD = 0.47(1)stat(
+11
− 4)a2 extrap(0)FV(2)EM MeV , (31)

where fD is the decay constant in the isospin limit, mu = md = ml. In finding fD+−fD from

ΦD+−ΦD in Table IX, we use the experimental value for MD+ and our result, MD+−MD0 =

2.6 MeV, obtained from the pure-QCD analysis in Sec. IV A. Note that the experimental
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TABLE X: Results for Φ for two choices of light sea masses. Here the valence mass for ΦD is

taken equal to the light sea mass: mv = m′l. The quantities denoted by “phys” are those tabulated

in Table IX for the case m′l = ml.

m′l/ms = 0.1 ΦD = 9477± 15stat
+39
−66|a2 extrap ± 13FV ± 2EM MeV3/2

ΦDs = 11128± 13stat
+36
−42|a2 extrap ± 12FV ± 4EM MeV3/2

ΦD/Φ
“phys”
D = 1.0338± 0.0005stat

+0.0009
−0.0031|a2 extrap ± 0.0000FV ± 0.0001EM

ΦD/Φ
“phys”
D+ = 1.0311± 0.0004stat

+0.0010
−0.0036|a2 extrap ± 0.0000FV ± 0.0002EM

ΦDs/Φ
“phys”
Ds

= 1.0075± 0.0003stat
+0.0005
−0.0006|a2 extrap ± 0.0000FV ± 0.0000EM

m′l/ms = 0.2 ΦD = 9870± 17stat
+39
−71|a2 extrap ± 13FV ± 2EM MeV3/2

ΦDs = 11250± 15stat
+44
−47|a2 extrap ± 12FV ± 4EM MeV3/2

ΦD/Φ
“phys”
D = 1.0766± 0.0011stat

+0.0017
−0.0038|a2 extrap ± 0.0001FV ± 0.0002EM

ΦD/Φ
“phys”
D+ = 1.0738± 0.0011stat

+0.0017
−0.0043|a2 extrap ± 0.0001FV ± 0.0002EM

ΦDs/Φ
“phys”
Ds

= 1.0185± 0.0007stat
+0.0014
−0.0010|a2 extrap ± 0.0000FV ± 0.0000EM

mass difference MD+ −MD0 = 4.8 MeV includes EM effects.

V. RESULTS AND CONCLUSIONS

Our main results are for the charm decay constants and their ratio. We take the more

precise determinations from the self-contained chiral perturbation theory analysis using the

full set of sea-quark ensembles, Eqs. (28)–(30), for our best estimate of the central values

and statistical errors. We then use the results of the simpler physical-mass analysis to

help estimate the systematic uncertainties. For the continuum extrapolation error, we con-

sider the differences in the central values of fD+ , fDs , and fDs/fD+ , obtained with various

continuum-extrapolation Ansätze in the physical-mass analysis, and take those differences as

the uncertainty whenever they are larger than the error from the chiral analysis. Figure 19

shows the histograms from Fig. 18 overlaid with the results from the various continuum

extrapolations considered in Sec. IV A (vertical red lines), as well as our final estimates for

the systematic errors of the continuum extrapolation. The analysis on the physical-mass

ensembles also gives alternative, and comparably-sized, estimates for the finite-volume and

EM errors to those in Eqs. (28)–(30) (see Table VI), and we take the larger value as the
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FIG. 19: Same as Fig. 18, but the histograms of ΦD+ and ΦDs from the chiral analysis have been

overlaid with results from various continuum extrapolations in the physical-mass analysis, shown

as vertical red lines. We take the full ranges shown at the top of each plot as the final estimates of

the systematic errors coming from the continuum extrapolation.

uncertainty in each case. This procedure yields our final results for fD+ , fDs and fDs/fD+ :

fD+ = 212.6± 0.4stat
+0.9
−1.1|a2 extrap ± 0.3FV ± 0.1EM ± 0.3fπ PDG MeV (32)

fDs = 249.0± 0.3stat
+1.0
−1.4|a2 extrap ± 0.2FV ± 0.1EM ± 0.4fπ PDG MeV (33)

fDs/fD+ = 1.1712(10)stat(
+28
−31)a2 extrap(3)FV(6)EM . (34)

For the effects of isospin violation we find

fD+ − fD = 0.47(1)stat(
+25
− 4)a2 extrap(0)FV(2)EM MeV, (35)

where the continuum-extrapolation error has been increased relative to that in Eq. (31) to

take into account the difference from the result of the physical-mass analysis.

We also update our determination of the decay-constant ratio fK+/fπ+ in Ref. [3] from

the physical-mass analysis using additional configurations on the 0.06 fm physical quark

mass ensemble, and include results for quark-mass ratios coming from the tuning procedure
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and continuum extrapolation described in Sec. IV A:

fK+/fπ+ = 1.1956(10)stat
+23
−14|a2 extrap(10)FV(5)EM (36)

ms/ml = 27.352(51)stat
+80
−20|a2 extrap(39)FV(55)EM (37)

mc/ms = 11.747(19)stat
+52
−32|a2 extrap(6)FV(28)EM . (38)

Although our analysis also determines mu/md, we do not quote a final result, because the

errors in this ratio are dominated by electromagnetic effects. If we take the results from our

preliminary study of EM effects on pion and kaon masses reported in Ref. [36] at face value,

we obtain a central value for mu/md = 0.4482(48)stat
+21
−115|a2 extrap(1)FV, where we include

the uncertainties from all sources other than EM. Once the full analysis of mu/md from

our QCD+QED simulations is complete, we expect the EM error to lie between 0.0150 and

0.0230. Even the more conservative estimate for the EM error on mu/md, however, would

not impact the uncertainties on our final results in Eqs. (32) through (38) significantly;

the electromagnetic error is subdominant for most of these quantities, and one of several

comparably sized errors in the case of ms/ml. With the charm-quark mass tuned to match

the Ds mass, our analysis gives a mass for the ηc of 2982.33(0.35)(+2.34
−2.07) MeV. While this

mass is in good agreement with the experimental value, it should be remembered that our

calculation does not include the effects of disconnected contractions or decay channels to the

ηc mass. Finally, we note that we are computing the values of the decay constants as they

are conventionally defined, in a pure-QCD world. Comparison to experiment thus requires a

matching of the decay rates between QCD and QCD+QED. The errors in such a matching

are not included in our error budgets for the decay constants, but are accounted for in our

determinations of CKM matrix elements in Sec. VI.

Figures 20, 21, 22 and 23 compare our results for ms/ml, mc/ms, fK+/fπ+ and the

charm decay constants with other unquenched calculations. Our results agree with most

determinations at the 1–2σ level. In particular, our value for fDs agrees with the second-

most-precise determination from HPQCD obtained using HISQ valence quarks on the (2+1)-

flavor MILC Asqtad ensembles [69]. We disagree slightly with HPQCD’s determination of

the ratio fDs/fD+ [72], but only by 1.2σ. Our result for fDs is more precise than previous

determinations primarily for two reasons. First, the statistical errors in our data points for

the decay amplitudes are two or more times smaller than those obtained by, for example,

HPQCD [69]. Second, our use of ensembles with the physical light-quark mass eliminates
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FIG. 20: Unquenched lattice results for ms/ml [26, 48–53] and mc/ms [48, 54–56]. Results are

grouped by the number of flavors from top to bottom: nf = 2 (green diamonds), nf = 2 + 1 (blue

circles), and nf = 2+1+1 (purple squares). Within each grouping, the results are in chronological

order. Our new results are denoted by magenta crosses and displayed at the bottom of each plot.

the significant (although not dominant) uncertainty from the chiral extrapolation. For fD+

and fDs/fD+ , we also have significantly smaller continuum-extrapolation errors due to the

use of the HISQ sea-quark action and lattice spacings down to a ≈ 0.06 fm.

The dominant source of uncertainty in our results is from the continuum extrapolation,

and will be reduced once we include a still finer ensemble in our analysis with a ≈ 0.045

fm and ml/ms = 0.2, generation of which is in progress. In fact, we already have some

preliminary data on this ensemble, albeit with small statistics, and have tried including this

data in the current chiral fits. The fits have acceptable p values and give results that are

less than one statistical sigma away from those in Eqs. (32) through (36). Once we have

ensembles with lattice spacings as fine as a ≈ 0.03 fm, we expect to be able to use the same

methods employed here to compute bottom decay constants. In the meantime, however,

our results for D-meson decay constants using HISQ charm quarks can be combined with

calculations of the ratios ΦBs/ΦDs using Fermilab heavy quarks to improve the determina-

tions of decay constants in the B system, where the use of the HISQ action is more difficult.

The ratios of continuum-extrapolated decay constants at various unphysical values of the

light-quark mass may also be useful for this approach. The analysis of B- and D-meson

decay constants with Fermilab heavy quarks on the 2+1 flavor asqtad ensembles is presently

being finalized [78].
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reviewed in [66]. Results are grouped by the number of flavors from top to bottom: nf = 2 (green

diamonds), nf = 2 + 1 (blue circles), and nf = 2 + 1 + 1 (purple squares). Within each grouping,

the results are in chronological order. Our new result is denoted by a magenta cross and displayed

at the bottom. In this plot we do not distinguish between results done in the isospin symmetric

limit (degenerate up and down quarks) and results including isospin violation. The difference is

small [66] and does not affect the qualitative picture. (Our result does include the up-down quark

mass difference, and so is for fK+/fπ+ .)

VI. IMPACT ON CKM PHENOMENOLOGY

We now use our decay constant results to obtain values for CKM matrix elements within

the Standard Model, and to test the unitarity of the first and second rows of the CKM

matrix.

The decay-constant ratio fK+/fπ+ can be combined with experimental measurements of

the corresponding leptonic decay widths to obtain a precise value for the ratio |Vus|/|Vud| [1].

Combining our updated result for fK+/fπ+ from Eq. (36) with recent experimental results

for the leptonic branching fractions [31] and an estimate of the hadronic structure-dependent

EM correction [79], we obtain

|Vus|/|Vud| = 0.23081(52)LQCD(29)BR(K`2)(21)EM . (39)
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FIG. 22: Unquenched lattice results for fD and fDs [27, 65, 67–75]. We do not include Ref. [76]

because of the small volume used, and Ref. [77] because of the lack of a continuum extrapolation.

Results are grouped by the number of flavors from top to bottom: nf = 2 (green diamonds),

nf = 2 + 1 (blue circles), and nf = 2 + 1 + 1 (purple squares). Within each grouping, the results

are in chronological order. Our new results are denoted by magenta pluses and displayed at the

bottom. Again, we do not distinguish results in the isospin symmetric limit from those with

non-degenerate up and down quarks, where we have estimated the difference in Eq. 35.

Taking |Vud| from nuclear β decay [80], we also obtain

|Vus| = 0.22487(51)LQCD(29)BR(K`2)(20)EM(5)Vud . (40)

This result for |Vus| is more precise than our recent determination from a calculation of the

kaon semileptonic form factor on the physical-mass HISQ ensembles [81], and larger by 1.8σ.

Figure 24 shows the unitarity test of the first row of the CKM matrix using our result for

fK+/fπ+ . We find good agreement with CKM unitarity, and obtain a value for the sum of

squares of elements of the first row of the CKM matrix consistent with the Standard-Model

prediction zero at the level of 10−3:

1− |Vud|2 − |Vus|2 − |Vub|2 = 0.00026(51) . (41)

Thus our result places stringent constraints on new-physics scenarios that would lead to

deviations from first-row CKM unitarity. Finally, we note that, now that the uncertainty
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in |Vus|2 is approximately the same as that in |Vud|2, it is especially important to scrutinize

the current uncertainty estimate for |Vud|.
The D+- and Ds-meson decay constants can be combined with experimental measure-

ments of the corresponding leptonic decay widths to obtain |Vcd| and |Vcs|. The values

fD+|Vcd| = 46.06(1.11) MeV and fDs|Vcs| = 250.66(4.48) MeV in the PDG [82] are ob-

tained from averaging the experimentally-measured decay rates into electron and muon

final states including an estimate of structure-dependent Bremsstrahlung effects that lowers

the D+ → µ+νµ rate by ∼ 1% [83, 84]. The PDG determinations of fD+|Vcd| and fDs|Vcs|
do not, however, take into account other electroweak corrections (c.f. Refs. [1] and [85]

and references therein). Such contributions are estimated for pion and kaon leptonic de-

cay constants to be ∼ 1–2%, and the uncertainties in these corrections, in particular from

the contributions that depend on the hadronic structure, lead to ∼ 0.1% uncertainties in

|Vus|/|Vud| and |Vus| obtained from leptonic decays. Now that the uncertainties in the charm

decay constants are at the half-a-percent level, it is timely to consider including electroweak

corrections when extracting |Vcd| and |Vcs| from leptonic D decays, and we attempt to pro-
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FIG. 24: Unitarity tests of the Cabibbo-Kobayashi-Maskawa matrix. Left: squared magnitudes

of elements of the first row of the CKM matrix. The magenta diagonal band shows (|Vus|/|Vud|)2

obtained using fK+/fπ+ from this work, the vertical orange band shows |Vud|2 from nuclear β

decay [80], and the horizontal yellow band shows |Vus|2 obtained using our recent calculation of the

kaon semileptonic form factor at q2 = 0 [81]. The diagonal black line is the unitary prediction, and

lies well within the region of overlap of the magenta and orange bands. Right: squared magnitudes

of elements of the second row of the CKM matrix. The green vertical and blue horizontal bands

show |Vcd|2 and |Vcs|2 obtained using fD+ and fDs from this work. The black diagonal line does

not intersect with the region of overlap of the two colored bands, indicating a slight tension with

CKM unitarity.

vide a rough estimate of their possible size here. We consider all of the contributions that

have been estimated for pion and kaon leptonic decays. Not all of the necessary calculations

have been performed for the charm system, however, so, where necessary, we use results for

the pion and kaon system as a guide and take a generous uncertainty.

The universal long-distance EM contribution to leptonic decays of point-like charged
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particles was calculated by Kinoshita [86]. Evaluating this contribution for leptonic D de-

cays into muons (because the experimental averages are dominated by measurements in the

muon channel), the long-distance correction lowers both the D+ and Ds decay rates by about

2.5%. The universal short-distance contribution to leptonic decays of charged pseudoscalar

mesons, which accounts for electroweak corrections not included in the definition of GF ,

was computed by Sirlin [87]. Choosing MD for the factorization scale that enters ln(MZ/µ),

the “Sirlin factor” increases the D+ and Ds leptonic decay rates by about 1.8%. Thus the

net effect of these two known corrections is a slight increase in the D+ and Ds rates by

less than a percent. Finally, we consider EM effects that depend on the mesons’ hadronic

structure. The expressions for the structure-dependent contributions to charged pion and

kaon decay rates have been computed at O(e2p2) and O(e2p4) in chiral perturbation the-

ory [88, 89]. The dominant O(e2p2) contribution takes the form c
(P )
1 α/π, and the coefficients

have been estimated numerically in the large-Nc approximation to be c
(π)
1 = −2.4(5) and

c
(K)
1 = −1.9(5) [90]. These calculations do not apply to the charm system, however, because

the D(s)-meson masses are much heavier than the pion and kaon masses, and well outside the

range of validity of the light-meson chiral expansion. We therefore consider the possibility

that the analogous coefficients for the D system are 2–5 times larger than for the pion and

kaon system. With this assumption, we find a range of the possible size for the hadronic

correction to the D+- and Ds-meson leptonic decay rates from 1.1–2.8%. Corrections of

this size would not be negligible compared to the known short-distance and long-distance

contributions; thus it is important to obtain a more reliable estimate of the contributions to

charged D decays due to hadronic structure in the future.

For the determinations of |Vcd| and |Vcs| given here, we first adjust the experimental decay

rates quoted in the PDG by the known long-distance and short-distance electroweak correc-

tions. We then add an estimate of the uncertainty due to the unknown hadronic structure-

dependent EM corrections, taking the lower estimate of 0.6%. With these assumptions, and

using our results for fD+ and fDs from Eqs. (32) and (33), we obtain

|Vcd| = 0.217(1)LQCD(5)expt(1)EM , (42)

|Vcs| = 1.010(5)LQCD(18)expt(6)EM , (43)

where “EM” denotes the error due to unknown structure-dependent EM corrections. In

both cases, the uncertainty is dominated by the experimental error in the branching frac-
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tions. Thus the significant improvement in fD+ and fDs does not, at present, lead to direct

improvement in |Vcd| and |Vcs|. Experimental measurements of the D+ decay rates have

improved recently [82], however, such that the error on |Vcd| from leptonic D+ decays is now

approximately half that of |Vcd| obtained from either neutrinos [31] or semileptonic D → π`ν

decay [91].

Our result for |Vcd| agrees with the determination from neutrinos. Our |Vcd| is 1.0σ lower

than the determination from semileptonic D decay in Ref. [91], while our |Vcs| is 1.1σ higher

than that of Ref. [92]. Figure 24 shows the unitarity test of the second row of the CKM

matrix using our results for fD+ and fDs . We obtain a value for the sum of squares of

elements of the second row of the CKM matrix of

1− |Vcd|2 − |Vcs|2 − |Vcb|2 = −0.07(4) , (44)

showing some tension with CKM unitarity. This test will continue to become more strin-

gent as experimental measurements of the D+ and Ds decay rates become more precise.

At present, even if our rough estimate of the uncertainty due to structure-dependent EM

corrections in Eqs. (42) and (43) is too small by a factor of two, the errors on |Vcd| and

|Vcs| would not change significantly. It will be important, however, to obtain a more reliable

estimate of the contributions to charged D decays due to hadronic structure in the future.
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(E.G.); by the Junta de Andalućıa (Spain) under Grants No. FQM-101, No. FQM-330, and

No. FQM-6552 (E.G.); and by European Commission (EC) under Grant No. PCIG10-GA-

2011-303781 (E.G.). A.S.K. thanks the DFG cluster of excellence “Origin and Structure of

the Universe” at the Technische Universität München for hospitality while this work was

being completed. This manuscript has been co-authored by an employee of Brookhaven

Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Depart-

ment of Energy. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No.

DE-AC02-07CH11359 with the United States Department of Energy.

Appendix A: Expansion of Φ0 in terms of 1/mQ

Equation (8) contains the effects of hyperfine splittings (e.g., M∗
D−MD) and flavor split-

tings (e.g., MDs − MD), but no other 1/mQ effects. Boyd and Grinstein [38] find some

other contributions at the same order as hyperfine and flavor splittings. However, one can

show that most of these terms only produce 1/mQ corrections to the LECs relevant to the

pseudoscalar-meson decay constants. (Some of the terms violate heavy-quark spin symme-

try, and therefore give different contributions to the pseudoscalar and vector-meson decay

constants at this order, but we are not concerned with vector-meson decay constants here.)

Following Eq. (20) of Ref. [38], at the order of O(1/mQ,m
0
q) where mq is a light quark

mass, the 1/mQ terms can be included by replacing Φ0 by Φ0(1 + const./mQ). This depen-

dence can be simply absorbed in Φ0 for a fixed value of mQ. However, in our analysis the

charm mass varies by about 10%, which leads to a correction comparable to that produced

by terms of O(mq) ∼ O(m2
π). Therefore, replacing Φ0 by Φ0(1 + const./mQ) in Eq. (8)

should be considered a NLO correction. At this order the rate for D∗ → Dπ is governed by

gπ(1 + const./mQ)) instead of gπ, which is already taken into account by incorporating the

65



range gπ = 0.53(8) in the fits. We do not allow any further dependence of gπ on mQ in our

analysis, because this dependence is formally NNLO.

On each ensemble, we have data with two different values of the valence charm mass:

m′c and 0.9m′c, where m′c is the charm sea mass of the ensemble. In Fig. 25, the ratio of

ΦD at m′c to ΦD at 0.9m′c is shown in terms of mv for our four lattice spacings. The fact

that ΦD(m′c)/ΦD(0.9m′c) does not vary much as a function of the light valence-quark mass

is evidence that the 1/mQ effects can be absorbed in the overall factor in front of the full

one-loop result as discussed above. On the other hand, ΦD computed at m′c and at 0.9m′c are

highly correlated so that their ratio is known precisely. Since our fits take the correlations

into account, the p values will be low unless the chiral form is able to reproduce the ratio to

high accuracy. Therefore, the expansion of the overall factor, Φ0, in terms of 1/mQ needs to

be taken beyond the first order; for acceptable fits we need to introduce a 1/m2
Q term as well

as the 1/mQ term, as indicated in Eq. (21). Furthermore, good fits require the LEC k1 in

Eq. (21) to have generic dependence on a; such dependence for k2 is also strongly preferred

by the fits.

Note finally that Fig. 25 shows a roughly 4% difference between ΦD at m′c and at 0.9m′c.

As claimed in the discussion above Eq. (21), this is comparable to the chiral NLO effects

of a nonzero pion mass, which may be estimated from the fits shown in Fig. 16. Indeed,

those fits imply that the difference between the physical value of ΦD+ and its value in the

(two-flavor) chiral limit is roughly 3%.
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