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ABSTRACT

Systematic uncertainties that have been subdominant ilgrgs-scale structure (LSS) sur-
veys are likely to exceed statistical uncertainties of enriand future LSS data sets, poten-
tially limiting the extraction of cosmological informatio Here we present a general frame-
work (PCA marginalizatiopto consistently incorporate systematiteets into a likelihood
analysis. This technique naturally accounts for degemesametween nuisance parameters
and can substantially reduce the dimension of the pararsedee that needs to be sampled.
As a practical application, we apply PCA marginalizatioratount for baryonic physics
as an uncertainty in cosmic shear tomography. Specificatiyise ©smoLIke to run simu-
lated likelihood analyses on three independent sets of rioatsimulations, each covering
a wide range of baryonic scenariostdring in cooling, star formation, and feedback mecha-
nisms. We simulate a Stage Il (Dark Energy Survey) and Stddearge Synoptic Survey
Telescopfeuclid) survey and find a substantial bias in cosmologicakt@ints if baryonic
physics is not accounted for. We then show that PCA margiatidin (employing at most 3
to 4 nuisance parameters) removes this bias. Our study d#rates that it is possible to ob-
tain robust, precise constraints on the dark energy equafistate even in the presence of
large levels of systematic uncertainty in astrophysicatpsses. We conclude that the PCA
marginalization technique is a powerful, general tool fddi@ssing many of the challenges
facing the precision cosmology program.
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1 INTRODUCTION key role in removing biases and reducing the error bars omces
logical parameters; this will be even more crucial for thecass of
future ground- and space-based endeavors such as the lyage S
tic Survey Telescope (LSS, Euclic® and the Wide-Field Infrared
Survey Telescope (WFIRST

Cosmological analyses of imaging surveys difecied by a
variety of systematic uncertainties. The most importasteyat-
ics for contemporary and next generation (Stage Il and &oed-
ing to Albrecht et al. (2006); Weinberg et al. (2013)) sus/eye
photometric redshift errors, shear calibration, galaxasbbaryonic

The increased quality and size of data sets from ongoing-wide
field imaging surveys, such as Kilo-Degree Survey (KiD$Hy-

per Suprime Cam (HSY, and Dark Energy Survey (DES will
shift the focus of cosmological analyses from the statisfceci-
sion with which a signal is measured to the robustness ofdke c
mological constraints that are derived from the measuréné&ur
ability to understand, constrain and model systematickpldly a
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physics, intrinsic alignments, and modeling the non-lin@alu- A potentially significant source of systematic error for wea
tion of the density field. Uncertainties from these sourgesgen- lensing tomography is theoretical uncertainty in the rdidary-
erally expressed through so-callegisance parametei®er which onic physics in our Universe. Baryonic processes can réulise
one marginalizesin a likelihood analysis. The termuisance pa- matter within the Universe to a degree that is large enougtdtace

rameter refers to any parameter in a likelihood analysis except significant systematic errors in cosmological parametéestner,
those one aims to constrain. Many of the aforementionedcesur ~ Rudd & Hu 2008; Hearin & Zentner 2009; Semboloni et al. 2011;

of systematics are interesting astrophysical phenomeradnof Semboloni, Hoekstra & Schaye 2013; Zentner et al. 2013), yet
themselves, and constraining these phenomena will hemicefo the baryonic processes that drive galaxy formation anduéeol
hand in hand with any successful cosmological analysis. remain poorly understood and poorly constrainedfddent treat-

In the literature, the topic of nuisance parameters has been ments of baryonic gas cooling, star formation, and feedipaegh-
covered extensively. Most of the work to date has considered anisms can dramatically alter the predictions for shearsomea

or at most two particular systematics, outlining methodac¢orpo- ments (especially on small angular scales), and tficeintro-
rate them into a likelihood analysis. Prominent examples\aa, duces an intolerable bias in the cosmological parametienason.

Hu & Huterer (2006), Bernstein & Huterer (2010), Hearin et al In this paper, we examine ftierent baryonic scenarios from 3
(2010) for photo-z uncertainty, Hirata & Seljak (2003) orteher, independent hydrodynamical simulatidfficets: The OWLS (Over-
Keeton & Ma (2005) for shear calibration, Hirata & Seljak Q20 Whelmingly Large Simulations) project (Schaye et al. 20ddn

or Joachimi et al. (2011) for intrinsic alignment, Jing et(@006), Daalen et al. 2011), the simulations used in Rudd, Zentner &

Zentner, Rudd & Hu (2008), Semboloni et al. (2011), Zentheat.e Kravtsov (2008), and a yet unpublished set of Hydro simoiesti
(2013), and Semboloni, Hoekstra & Schaye (2013) for the ohpa further described in Sect. 3.1. We simulate a DES and |/5&dlid
of baryonic physics (a topic of immediate interest for thegant likelihood analysis in a 7-dimensional cosmological pagten
paper), Zehavi et al. (2011), Cacciato et al. (2012), Kraatsal. space using the PCA marginalization scheme to take baryonic
(2013), Zentner, Hearin & van den Bosch (2013), and Reddick certainties into account.
et al. (2014) for galaxy bigdalo Occupation Distribution mod-
eling. This list is far from complete; defining and constmagnnui-
sance parameters is an active research topic. 2 MARGINALIZATION OF BARYONIC EFFECTS

Some of these parameterizations are physically motivaidd a . ) .
address specificfiects (e.g., halo concentration for baryons, red- 21 Likelihood Analysis Basics

shift scaling and power spectrum amplitude for intrinsigrainent, Given a data vectob we calculate the posterior probability for a
multiplicative and additive shear bias, etc). In the abseoicin- point in the joint parameter space of cosmological pararagig
formation on the functional form of the nuisance paramegion and nuisance parametegg, via Bayes’ theorem

one must rely on introducing distinct nuisance parametetsns

of redshift and scale (Bernstein 2009; Joachimi & Bridle @) %o P(Pco> PrulD) o Pr(Peos Pru) L(DIPco, Pru), )
as to absorb a variety of possible systematic errors, agrethe where P, (pco, Pny) denotes the prior probability and(Dlpeo, Pry)
data to calibrate these nuisance parameters. When cawying is the likelihood. The data vector includes, for exampley-point

combined probes analysis (as in Eifler et al. 2014, for exenpl  functions in the form of power spectra, which depend on boéties

where not one but all of these nuisance parameters must be con gnd redshift. The likelihood is often assumed to be Gaussidahat
sidered simultaneously, the shear number of nuisance péeesn

challenges the limit of computationally feasibility. L(DIpcos Pnu) = N % ex;{—% [(D -M)'ct(D- M)D- (2

In this paper, we develop &@rincipal Component Analysis
(PCA) marginalizatiorframework that poses afffeient method to
incorporate many nuisance parameters and many systematis e~ We abbreviateM = M (pco, Pnu), i-€. the model vectoM is a

X2(Pco.Pnu)

within a likelihood analysis. This framework identifies fncipal function of cosmology and nuisance parameters. The nazesali
components (PCs) that capture the impact of nuisance pegesne tion constaniN = (2r)2|C|"? in Eq. (2) can be neglected under
on the quantity that enters the likelihood analysis (egwer spec-  the assumption that the covariance is constant in pararseaee.
tra, correlation functions, etc.). The marginalizationgedure can ~ We note that assuming a constant, known covariance matis
then be carried outfgciently in the PC basis. an approximation to the correct approach of a cosmology rdepe
We apply this framework to a specific example, namely the dent or estimated covariance (see Eifler, Schneider & Ha2(0®9,
impact of various baryonic scenarios on cosmological cairss for further details). The impact of this assumption on coemgical

from weak lensing tomography. Weak lensing tomography ésafn constraints is more severe for deep, small surveys andrigssri
the core cosmological probes of photometric surveys; iadepnt tant for wide, shallow surveys.

of any assumptions about the relationship between darkwand |
nous matter, weak lensing tomography provides valuabte rimé-
tion about the geometry and structure growth of the Univarse
thereby allows us to constrain cosmology (Hoekstra, Yee &Gl Consider an experiment that provides a data vetavhich in our
ders 2002; van Waerbeke, Mellier & Hoekstra 2005; Jarvid.et a case is the set of all auto- and cross-spe@jl‘aof cosmic shear
2006; Schrabback et al. 2010; Lin et al. 2012; Heymans efaR2 across redshift bins with indicesj. For any set of cosmologi-
Huff et al. 2014). In combination with accurate redshift informa  cal parameters, dissipationless N-body simulations dfemnt to
tion, weak lensing tomography has been identified as oneeof th produce an accurate prediction for this data vector if dastten

2.2 ModeRemoval - PCA marginalization

most powerful tools to constrain the dark energy equatiostate alone were responsible for the lensing. Let us call this iptieah,
and thereby reveal the nature of the acceleration of thenskpa of Mo(peo), Where agaiM is a vector with all auto- and cross-spectra
the Universe (Albrecht et al. 2006; Peacock et al. 2006; Yéim and the subscript denotes that the prediction is genera®aha
etal. 2013). ing the Universe contained only dark matter and no barydres; t
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Accounting for baryonicfcts on cosmic shear tomography3

prediction, of coursewoulddepend on the set of cosmological pa-
rametergco.

The true prediction for this set of cosmological parameiters
cluding the &ects of baryons is far more challenging to make. In
principle, such a prediction involves a whole new suite abpae-
ters,pny, that encode thefiects of baryons on large-scale structure.
If it were possible to specify those parameters and easitgigae
a prediction for weak lensing power spectra for each paranset,
then we could calculate the likelihood function for the cosmgi-
cal parameters by marginalizing over the nuisance paramete

LOP:) = [ 8P X~ 5(0-M (P Pr) CH(O-M (PP
©

where C is the covariance matrix (which we approximate to be
independent of any of the parameters). Several groups higee t
to implement this idea, most successfully by parametritiagy-
onic dfects with severahalo modelparameters (Zentner, Rudd &
Hu 2008; Semboloni et al. 2011; Zentner et al. 2013; Semiolon
Hoekstra & Schaye 2013).

We introduce an alternative way to carry out the marginaliza
tion, which does not require detailed understanding of thaet
lying phenomenology, nor an analytical model associatet thie
parameters encoding thfects. Rather, this marginalization is over
the linear combinations of observables that are most syonfiu-
enced by the baryonidlects (or, more generally, by the systematic
of interest). If these modes can be identified, they canyebsiin-
tegrated out. So, even without any explicit parametrizatibthe
underlying physics, one can account for the associate@rsyic
effects.

To identify the dfending modes, we start with a suite of
hydrodynamic simulations, each of which generates a piedic
M.(Pco)- The subscriptr refers to the considered numerical sim-
ulation and ranges up to the total number of baryonic scesari
Nsce Which is of order 15 in in our analysis. There is also a dark
matter only simulation which, as mentioned above, is idieatiby
a = 0. The components of thdifference matrixA between the hy-
drodynamical simulations and the dark matter only simatatire
obtained as

Ave = Myy — Mo, (4)

where the indeX here covers all for all auto- and cross-spectra
(that is,k runs over all observables). Thefldirence between the
parametric and non-parametric approach is beginning togamin
the parametric approachy, would be a function of the nuisance
parameters; here it is simply a number that captures thertante
ties due to baryonicfeects.

More generally, a given mode will depend on all the elemefiise
auto- and cross-spectra, and there could be more than orethraid
is marginalized over.

The only remaining dficulty is to identify the modes that are
most damaging. There are several ways to approach this.vi#ere
choose to remove modes that have the largest variance iinthe s
ulations. To identify the modes with the largest variance,asl-
lect theA,’s from all the simulations into a single matri To be
concrete, we consider 14 (for DES) and 12 (for L@Iclid) sim-
ulations s has 14 (12) columns. We assume five redshift bins so
that the total number of auto- and cross-spectra«i§/2 = 15. We
bin so that each spectrum is sampled at 20 valugsoéaning that
there are a total of 300 data points. So the matrbxas 14 (12 for
LSST/Euclid) columns and 300 rows.

The matrix producAA' is proportional to the covariance of
the observables among all of thefdrent baryonic simulations (the
My.) with respect to the DM-only simulatioiM). Identifying the
linear combinations of observables most susceptible ttaooina-
tion from baryonic processes amounts to diagonalizing thgirm
AA! and choosing the eigenvectors (which are linear combingtio
of observables) with the largest eigenvalues (the large&inces).
The matrix we aim to diagonalize is the produat' and we will
need to project observables onto the eigenvectors of thisxnso
it is convenient to proceed using the (full) singular valeea@mpo-
sition (SVD) ofA,

A =UZV'. (5)

The PCs ofA are the columns of the orthogonal matti)x which
in our example is 30& 300. The mean squared deviations of the
observables from the DM-only predictions are

1 AAL = 1
Nsce— 1

Nsce_ 1

whereE = Nscleﬁlz‘.):‘ is a diagonal matrix whose (300) entries are
the eigenvalues of Cau

We can project the observables onto the PQs.ie can then
identify the linear combinations (or “modes”) most susdaptto
baryonic éfects as those with the largest entiigsn E and remove
them from the analysis (equivalent to marginalizing overea fam-
plitude for them). In this way, we simply discard the infotina
contained within these modes just as we discarded the ifitom
in the observabl& = 1 (C},,,) in our pedagogical example above.

Proceeding further requires a bit of care, because the mode
must be removed from both the data and the model, so we ex-
plicitly walk through our algorithm. At each point in cosnogly
sampled by the MCMC we compute the mattixand obtain the
corresponding projection matrbf via SVD as in Eq. (5). Since

CovA = UXx'u'=UEU',

(6)

Before proceeding to the general procedure we propose here,is an orthogonal matrix, which implies= UU' = U'U, we rewrite

consider first a trivial, but instructive example. Suppdss 8ll the
hydro simulations predict that all the spectra are idehticahe
DM-only spectrum except at a single valueGf, so thatA, = 0
for all @ and allk except fork = 1 (SOAy, « &1, and this first ob-
servable corresponds to, Sa§, ). A very simple way to deal with
the systematic would simply be to remove that single measemng
This is equivalent to settin§! (Pco, Pnu) = Mo(Peo) + 1. A, Where
Alis an arbitrary amplitude, and integrating over all possilalues
of A.

In other words, instead of integrating over paramepgrswe
are integrating over amplitudes offending modes, whereraode
is a linear combination of all th€;' (all the observables). In this
simple example, there is only one mode and thefagents in the
linear combination that define that mode are all zero exceprfe.

© 0000 RAS, MNRAS0O00, 000—-000

X?(Pcos Pru) S

Xz(pcm prw) = (D - M)lUUlCdUUt(D -M) (7)

We can then insert a projection matBx= P? into Eq. (7) to restrict
attention to a subset of the observables, yielding aypco, Pru),

Y?(Peo, Prw) = (PU'D — PU'M){(PU'CUP)"}(PU'D — PU'M). (8)

If P = 1 we recovery’?(Peo, Pru) = X°(Peo, Pru) as defined in Eq.

(2); setting some of the diagonal element®ito zero projects onto

a subspace of the PCs. Below, we experiment with the number of
modes that need to be removed such that the nuisance paramete
need no longer be accounted for explicitly in the model: wk wi
see that very few are needed in order to eliminate the sysieofa
baryonic dfects.
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Table 1. Survey parameters

Table 2. Summary of the baryonic physics in the OWLS simulations.

Survey area [deél Te Ngal  Zmax Zmean Zmed
DES 5,000 Q26 10 2.0 0.84 0.63
LSST/Euclid 15,000 Q26 31 3.5 1.37 0.93

Before showing our results, we make two general remarks.
First, our choice of which modes to remove is not necesstrdy
optimal choice. Another well-motivated choice would résubne
were to weight the covariance in Eq. (6) with the inverse efdhta
covariance matriXC. Returning to our simple example of a single
observable ¢}, ) comprising a mode, if the noise in a particular
survey at that mode were very large, it would not make sense (o
be necessary) to remove the mode. That is, the large variatia
mode alone does not guarantee that it will produce pararbetsr
If the mode is not well measured, it is not necessary to rertiowe

Simulation Description
DM No Baryons, CDM only
REF Chabrier (2003) IMF, Wind mass loading- 2,
Vy = 600 kms?t
AGN Includes AGN (in addition to SN feedback)
NOSN No SN energy feedback
NOSN.NOZCOOL No SN energy feedback and
cooling assumes primordial abundance
NOZCOOL Cooling assumes primordial abundance
WDENS Wind mass loading and velocity depend on
gas density (SN energy as REF)
WML1V848 Wind mass loading = 1, velocity
Vi = 848kms? (SN energy as REF)
WML4 Wind mass loading = 4 (SN energy as REF)

DBLIMFV1618

mode. Yet another example would be to choose to remove modes )
that most &ect the inferred cosmological parameters of interest. inZentner etal. (2013) and Semboloni, Hoekstra & Schay&3P0

Some modes may exhibit little degeneracy with the parameter
interest and consequently, removing those modes shoultblea
priority.

The second comment is that, while we focus here on the
systematic of baryonicfiects on the lensing spectrum, the PCA
marginalization approach can be applied generally to aolygand
any number of systematics. We will address both issues in 6ec

3 UNCERTAINTIESIN BARYONIC PHYSICS

In the following we consider the uncertainties in modelirayyb
onic physics in weak lensing. We examine various baryong& sc
narios from diferent sets of simulations and calculate shear to-
mography power spectra for each scenario considering a DES a
a LSSTEuclid like survey (see Table 1 for details). The values
for DES stem from DES documents and internal communication
within the DES collaboration; for LSSEuclid we rely on spec-
ifications outlined in Chang et al. (2013). Although Changlet
(2013) aims at LSST only, Euclid survey parameters are aimil
(15000 deg, 30 nga;, according to Laureijs et al. 2011).

The main dfference between Euclid and LSST (aside from ob-
servational systematics) is the redshift distributionmfrse galax-
ies, where Euclid is shallower compared to LSST. It is howeve
unlikely that this dfference qualitativelyféects the outcome of the
analysis presented here, hence we believe that the LSS&rszen
very well resembles the Euclid survey as well.

3.1 Simulation Set

OWLS simulations From the OWLS project we obtain matter
power spectra for nine fierent scenarios corresponding to
various hydrodynamical recipes thatffdir in their treatment

(2011) for a detailed description of the implemented phy/sic

and the observations that motivated these recipes. The OWLS

simulations were conducted in cubic simulation volumeshwit

have been tabulated by van Daalen et al. (2011) and are valid

for wave numbers 814 < k/hMpc™ < 10. These simulations
were analyzed for a similar application using &efient technique

Top-heavy IMF at high pressure,
extra SN energy in wind velocity

Rudd simulations The simulations of Rudd, Zentner & Kravtsov
(2008) track the formation of structure in a cubic volume
60h~*Mpc on a side in a flatACDM cosmological model with

Qu = 0.3, Qgh? =

0.021,h = 0.7, andog = 0.9. The simu-

lation set consists of three simulations all starting frdva same
initial conditions. The first simulation (labeled “DMO” inRId,
Zentner & Kravtsov 2008) is purely dissipationless andudek a
collisionless dark matter component only. The second sitiar
(labeled “DMQNR”) follows both dark matter and baryons. How-
ever, the baryonic component is not permitted to cool radibtin
DMG_NR. The baryonic component in DMGR is treated in the
non-radiative (or “adiabatic”) regime and neither stars galax-
ies form in DMGNR. The third simulation (labeled “DMGF")
treats the baryonic component including radiative coading heat-
ing, star formation, and feedback from supernovae. Theigich
of these processes in DMGF allows for the formation of galax-
ies in the DMGSF simulation. The cool gas forms a condensed
component, a fraction of which is converted into stars aticor
to a relatively standard, observationally-motivated $tamation

recipe.

The dissipationless DMO simulation is performed using the
Adaptive Refinement Tree (ART) N-body code (Kravtsov, Kiypi
& Khokhlov 1997; Kravtsov 1999). In the DMBIR and DMGSF
simulations, the gaseous baryonic component is simulasetyu
using an Eulerian hydrodynamics solver on the same adaptive
mesh of the N-body ART code using the techniques described by
Kravtsov, Klypin & Hoffman (2002). However, the two simula-
tions that included baryons are performed with the newritlistied-
memory version of the N-boehgas dynamics ART code.

A common problem in studies of this kind is that simulations
that resolve galaxy formation necessarily model fairly §mwal-
umes. The Rudd et al. simulations are among the smaller aimul
of cooling, SN- and AGN feedback. Please see Table 2 for a tions (computational cube with a side length off68Mpc) used

brief summary and Schaye et al. (2010), and van Daalen et al.for these purposes. Consequently, cosmic variance and fioi¢
ume efects are significant at scaleslog 0.11hMpc 2.

Gnedin simulations’ Four new sets of simulations are performed
sides of length. = 100h~*Mpc and the simulation power spectra  with the Adaptive Refinement Tree (ART) code (the same code

7 publicly available at httg/astro.uchicago.egugnedinWL/
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Figure 1. The assumed redshift distribution with 5 tomography bins fo
DES (top) and LSSTEuclid (botton).

used for Rudd simulations). Each set includes 8edgnt ran-
dom realizations with dierent values for the DC mode (Gnedin,
Kravtsov & Rudd 2011) of a 200* comoving Mpc box with 512
dark matter particles and a factor of several larger numbadap-
tively refined cells (which are dynamically created and iystd
in the course of the simulation to maintain required spa&ablu-
tion). Spatial resolution (the size of the most refined gaifsall
simulations is set tol8* comoving kpc. The first set of simula-
tions is dissipationless and treats dark matter only. Therskset
(AD) includes only "adiabatic” (i.e. non-radiative) hyatgnamic
processes. The third set (CW) includes radiative cooling (o
radiative heating) with primordial abundances of hydroged he-
lium. The fourth set (CX) includes radiative cooling wittethool-
ing function that corresponds to solar-metallicity gasit ttooling
function is applied to all gas in the simulation, even to teemt
est voids, and, hence, is physically unrealistic. The CXsketild,
therefore, be considered as an extreme limit of gas cooling.

3.2 Projected shear power spectrafrom the baryonic
scenarios

The three sets of simulations described in Sect. 3.1 hdtereint
input cosmologies. In order to create a coherent set of bérygze-
narios we assume that the cosmology dependence enterglthrou
the dark matter power spectrum only and “re-normalize” tbe 3
density power spectra for each baryonic scenario via

Pbary,sim(k’ Z)

barytheory, _ 6 DM theory,
P = B P D)

©)

P2k 7) denotes the joint darkbaryonic power spec-

where

trum from a given simulationP{'f”"Sim is the corresponding dark

matter only power spectrum, ai§"""**”is the dark matter power

spectrum calculated fromdsmoL ke (see Sect. 4.1 for details) as-

suming a PlanckWMAP polarization best-fit cosmology.
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Figure 2. The shear tomography power spectra for the five auto z-bims co
puted at the fiducial cosmological model. The black line esponds to the
dark matter scenario, the shaded area spans the range ofaimgefrom
baryonic physics.
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Figure 3. The ratio of shear tomography power spectra &fedent baryonic
scenarios with respect to the dark matter only scenarichfotdwest auto-
correlation tomography bin.

limited resolutions, so the simulated spectra alone do uffice

to cover the entire range of wave numbers needed. As sud, it i
necessary to extrapolate simulation results using a péatithe-
oretical model. The Rudd et al. (2008) simulations pose thetm
stringent constraints on the rangekaindz, i.e. matter power spec-
tra are accurate over a rangelof [0.3;10]hMpct, where the

In each case, the simulations treat finite volumes and have lower k-limit is a consequence of simulation size, and over a range

© 0000 RAS, MNRASD00, 000—-000
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of ze [0.0; 20]. Outside the&-ranges we extrapolaf®; with a the-
oretical power spectrum (see below); however, note thdirthted
redshift range of the Rudd et al. simulations prohibits oaffcom-
puting LSST shear power spectra because the LSST redghgge ra
extends ta = 3.5. Overall this give us 14 baryonic scenarios for
the DES survey and 12 for LSST.
Having obtained the density power spectra we calculate the

shear power spectra as

9’ )

-~ 9HIQZ g I

c'1|=—°”‘fd P( )

O==2 ), e "\iw?
with | being the 2D wave vector perpendicular to the line of sight,
x denoting the comoving coordinate;, is the comoving coordi-
nate of the horizora(y) is the scale factor, anf (y) the comoving
angular diameter distance (throughout sef since we assume a
flat Universe). The lensficiencyg is defined as an integral over
the redshift distribution of source galaxia§(2)) in thei® tomo-
graphic interval

iy’ = x)

g0 = [ a2

In this analysis we use two fiiérent redshift distributions
mimicking a DES and and LS3Huclid like survey and divide each
redshift range into five bins (see Fig. 1 and Table 1). For L&8T
adopt the redshift distribution suggested in Chang et 81132 and
the DES redshift distribution is modeled by a modified CFHTLS
redshift distribution (see Benjamin et al. 2007, adjustedthe
slightly lower mean redshift of DES). The exact parameggitn
for the latter reads

(2] (2]

with @ = 20,8 =10,z = 0.5.

Since we chose five tomographic bins, the resulting data vec-
tor which enters the likelihood analysis consists of 15 tgraphic
shear power spectra, each with 20 logarithmically spaced bi
(I € [30;5000]), hence 300 data points overall. The limits of the
tomographic-bins are chosen such that each bin contains a similar
number of galaxies.

(10)

(11)

(12)

Oll,

Covs (C7(1)C(12)) = (ACT (1) AC*(2)) = Zr

with
—. .. 0'2
Cl(ly) = Cl(la) +6 (14)
where the superscripts indicate the redshift biris the density of
source galaxies in thieth redshift bin; andr, is the RMS of the
shape noise.

Since non-linear structure growth at late time inducesikign

icant non-Gaussianities in the shear field, using the camaé of

d2r

2
Cows(C (. = [ 4 v Al | ©

lllely m

[CH1CT (1) + CA)CH()] .

1 jkl ’ jkl ’ ’
[ T, =11, =)+ TR (=11, =) |

In Fig. 2 we show the uncertainty range spanned by the bary-
onic scenarios (grey shaded area) with respect to the DMsmay
nario (black line) for the 5 auto-correlation redshift shpawer
spectra. In Fig. 3 we further show the ratio of baryonic tckdaat-
ter C1Y(l) shear power spectrum for a subset of the scenarios. One
can clearly see that atftrentl the range is bracketed byftérent
scenarios, with the strong AGN-feedback scenario beindptlier
extreme starting fronh ~ 400 and the extreme cooling scenario
(CX) being upper limit fod > 2000.

4 LIKELIHOOD ANALYSIS: NEGLECTING BARYONS

We first carry out likelihood analyses with shear tomograptwer
spectra from the various baryonic scenarios as the inpat\dat-
tors without accounting for baryons, i.e. using the DM pogfeec-
trum in the model vector only.

4.1 Modeling Cosmological Quantities

Shear tomography power spectra All simulated likelihood anal-
yses in this paper are computed using the weak lensing n®dule
of CosmoLike (see Eifler et al. 2014, for an early versiorffi-o
cial release paper is Krause et al. 2014 in prep). We compuete t
linear power spectrum using the Eisenstein & Hu (1999) feans
function and model the non-linear evolution of the densiydfias
described in Takahashi et al. (2012). Time-dependent deekgy
models v = wp + (1 — @) w,) are incorporated following the recipe
of icosmo (Refregier et al. 2011), which in the non-linear regime in-
terpolates Halofit between flat and open cosmological mddéde
see Schrabback et al. 2010, for more details). From the fgensi
power spectrum we compute the shear power spectrum astuscri
in Sect. 3.2.

Shear covariances Under the assumption that the 4pt-function of
the shear field can be expressed in terms of 2pt-functionsated
Gaussian shear field) the covariance of projected shearEpee-
tra can be calculated as in (Hu & Jain 2004)

(13)

Eqg. (13) in a likelihood analysis results in underestimaftese er-

rors on cosmological parameters. Therefore, the covagiamsst be
amended by an additional term, i.e. CevCovg + Cowyg. The non-
Gaussian covariance is calculated from the convergenspetri
trumT, (Cooray & Hu 2001; Takada & Jain 2009), and we include

a sample variance teri, ysv that describes scatter in power spec-
trum measurements due to large scale density modes (Takada &
Bridle 2007; Sato et al. 2009),

(15)

A AAAA SAC RAARIF A CYVAN AAA AAA
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Table 3. Fiducial cosmology, minimum and maximum of the flat prior @smmological parameters, and Planck prior information uséke analysis.

Qm Jg Ns Wo Wa Qp ho
Fiducial 0.315 0.829 0.9603 -1.0 00 0.049 0.678
Min 0.1 0.6 085 20 -25 0.04 0.6
Max 0.6 0.95 1.06 00 25 0.055 0.76
PlanckWP 1o | *2016 40012 +0.0073 - - +0.00062 +0.012
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Figure 4. Cosmological constraints for a DES survey assumitii@dint underlying baryonic scenarios for our Universe,fuee dark matterijlacksolid),
strong AGN feedbackréddashed, extreme coolinglflugdot-dasheyl and moderate coolingifeerlong-dashey] which are unaccounted for in the likelihood
analysis. The scenarios are detailed in Sect. 3.1. The akasa'np” labeling each model indicate that the analysipagformed with no priors on the
parameters.

with A(l;) = L‘eli d?l ~ 2xl;Al; the integration area associated The convergence trispectrufif’ is, in the absence of finite
with a power spectrum bin centeredaand widthAl;. volume dfects, defined as

i 3H2 \* 4 Il |
TLJ,ISI(|1,|2,|3,|4)Z(——OQm) f dy (L) dog'dd X)(’GTﬁ,o(—l, z 3
0

2 2 aly) Y )_( )_( ,Z()()) ) (16)

la
X

with T;o the matter trispectrum (again, not including finite jak 2000; Cooray & Sheth 2002), which assumes that all mitter
volume dfects), and where we abbreviatgid= g'(y). bound in virialized structures that are modeled as biasexbts of
We model the matter trispectrum using the halo model (Sel- the density field. Within this model the statistics of the slgnfield

© 0000 RAS, MNRAS0O00, 000—-000
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Figure 5. Cosmological constraints for a LSEuclid survey assuming flerent underlying baryonic scenarios for our Universe, puire dark matter
(blacksolid), strong AGN feedbackréddashed, extreme coolingfluedot-dashelyl and moderate coolingyfeerlong-dashell which are unaccounted for
in the likelihood analysis. The scenarios are detailed Tt. 1.

can be described by the dark matter distribution within fiada Our implementation of the one-, two- and four-halo term con-
small scales, and is dominated by the clustering propesfibalos tributions to the matter trispectrum follows Cooray & Hu (40,
and their abundance on large scales. In this model, theetispn and we neglect the three-halo term as it is subdominant com-
splits into five terms describing the 4-point correlatiorihii one pared to the other terms at the scales of interest for thiy-ana
halo (theone-haloterm T"), between 2 to 4 halogvjo-, three-, sis. Specifically, we assume NFW halo profiles (Navarro, E&n
four-haloterm), and a so-called halo sample variance t&py, White 1997) with the Bhattacharya et al. (2011) fitting fotenfor
caused by fluctuations in the number of massive halos witlen t  the halo mass—concentration relatiivl, z), and the Tinker et al.
survey area, (2010) fit functions for the halo mass functi(ﬁﬁi and linear halo
T = To+ Tusy = [Tan + Ton+ Tan+ Tar] + Trsy . 17) b?as b(M) (all evalu_ate_d an = 200), neglecting terms involving

) o ) ] higher order halo biasing.
Thetwo-haloterm is split into two parts, representing correlations Within the halo model framework, the halo sample variance

between two or three points in the first halo and two or onetpoin term is described by the change of the number of massive halos

the second halo. As halos are the building blocks of the tefisid within the survey area due to survey-scale density modéeyping
in the halo approach, we need to choose models for theimatter  g5i0 et 4. (2009) it is calculated as

structure, abundance and clustering in order to build a infode
the trispectrum.

© 0000 RAS, MNRASD00, 000—-000



Accounting for baryonicfcts on cosmic shear tomography9

¢ d2v

i 3H;3
T (s, - ll,lz,—lz)_( Za, LAl

I

X

X

fo K, 2k

4.2 Likelihood Analysiswithout PCA mitigation of baryons

We have introduced the mathematical basics of likelihocalyan
ses in Sect. 2.2 and thex@ioL ke internal calculation of our data
vectors, model vectors, and covariances in Sect. 3.2 ard £&c
CosmoLike samples the parameter space using a parallel MCMC
of Goodman & Weare (2010) algorithm implemented through the
python emcee packaféForeman-Mackey et al. 2013). Altogether
we present results of 52 simulated likelihood analysesighhper;
each analysis consists of 108,000 MCMC steps (after digward
12000 steps as burn-in phase) in a seven dimensional cogicello
parameter space with flat priors at the boundaries of thenpetea
range (see Table 3). We check for convergence by runningaeve
shorter chains for all scenarios and ten chains with 4800C0/G
steps and find no qualitative change in the contours.

We have analyzed all baryonic scenarios described in Sect.

3.1, but confine our detailed results to two extreme sceséhlGN,
CX) and two moderate scenarios (AD, CW). We run analyses for a
DES and LSS}Euclid survey without prior information (except for
the flat priors at the limits of our parameter space); reduoltshe
same analysis with prior information from the Planck miestan
be found in Appendix A. All contour plots are marginalizedeov
five cosmological parameters; in addition to the ones meation
the plots we marginalize ove2, andHy. The first row of all fig-
ures with contour plots show the posterior probability riisttion
of a given cosmological parameter marginalized over theraihx
cosmological parameters.

Figures 4 and 5 compare the impact of strong AGN feed-
back (AGN, dashed re§l extreme cooling (CXdashed-dotted
blue), moderate cooling (CWong-dashed greej to the DM sce-
nario (lack solig for DES and LSS/Euclid, respective8. When
baryons are not accounted for, the parameter estimates\aneely
biased. We quantify these biases by showing the margimalipe
best-fit cosmological parameters and their &fror bars in Tables
5 and 6 (see rows with PCA orden).

Note the extremely large biases in Fig. 5. For example, the be
fit value ofwy if the baryons behaved as in the CX scenario would
be —0.316, difering from the “true” value ofv = —1 by 0.684, or
almost 6¢. This dfect is even more significant for the AGN sce-
nario. As a side-note we point out that quoting a bias as pie#iof
o assumes the posterior probability to be Gaussian, whicbrigs d
implicitly in all Fisher analyses of previous papers. Loukiat the
1D posterior probabilities in Figs. 4, 5, Al, A4, this is higrflis-
tified; all posteriors show a substantial skewness or kigtés a

8 httpy/dan.iel.fmfemcegcurrentusefpt/
9 All contours shown in this paper indicate the 68% confidemggons.
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fdM b(M)( )2 G(l1/x, c(M, Z(x))?
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(18)

consequence a quantitative comparison to previous, sianilaly-
ses that are based on Fisher matrices is not meaningful.

In any case, Fisher matrix or MCMC, it has become clear that
neglecting the #ects of baryons would lead to a catastrophic mis-
interpretation of the data and a mitigation strategy is retsalefor
Stage IV surveys. Given the significantly larger stati$gceor bars
expected in DES, the resulting bias in Fig. 4 is less sevexne fibr
the LSST case, nevertheless, even for DES a mitigation selfiem
baryons is necessary.

5 PCA MARGINALIZATION OVER BARYONIC
UNCERTAINTIES

5.1 Identifyingthe Principal Components

Recall that the PCA marginalization scheme as outlined ict.Se
2.2 starts with creating a set of model vectors at each poioco$-
mology that spans the variation under nuisance parametais.
ideal case corresponds to having a representative set afated
baryonic scenarios at each point in cosmology, which unfately

is computationally unfeasible. Here we rely on the appration
we already detailed in Sect. 3.2, namely that the cosmolotgre
through the dark matter power spectrum only.

Following Egs. (9, 10), we compute the baryonic shear power
spectrum at any given cosmology, from the set of baryonic shear
power spectra we computed in Sect. 3.2 for the fiducial cosgyol
P as

fid
bary( p I

C”M(I fid

4 CO

Clblary(I > pCO) = gM (I > pco) (19)

Wherech(I, Pco) is computed from GsmoLIKE.

For each point in parameter space sampled in the MCMC, we
use Eqg. (19) to compute 14 (12) baryonic shear power spemtra f
DES (LSSTEuclid). We concatenate the shear power spectra to a
300x 14 (300x 12 for LSSTEuclid) matrix, which defines the set
of model vectordM, that is assumed to span the uncertainty due
to baryons. We can now define theffdrence matrixA as in Eq.

(4) and perform a (full) SVD on this matrix using Eq. (5), wiic
gives the transformation matriy, with the principal components

as columns. One at a time, we remove the PCs with the largest
singular values.

This gives us the necessary ingredients to continue with the
procedure outlined in Sect. 2.2. Figure 6 shows the envetdpe
the diferent baryonic simulations for threefifidirent auto-redshift
power spectra (corresponding to the three rows), and edumno
depicts the result of removing more modes. The first colunomwsh
the uncertainties from baryonic physics if no modes wereored.
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Figure®6. This plot shows the uncertainty range spanned by the bargoenarios, centralized around the DM scenario, when @ixdwne §econd pangtwo
(third pane), and four fourth pane) PCs compared to the original uncertainty rarigé pane). The three panel rows show three tomographic autocoigelat
power spectra for LSSEuclid.

Table 4. Projection angle of the fference vectors(?(')j o - CBM(I)) onto the PCs (see Eq. 20) and fraction of thigedence vector that is captured by the

PC subspace (see Eq. 21).

ary’

DES LSST

Baryonic Scenario | |cos#| Vq | costs| Vo | cosos| V3 |cosfsl Vi | |COSOq| Vq | cosos| Vo | cosOs| V3 |cosfs| Va
AGN 0.98 0.98 0.17 1 0.002 1 0.0097 1 0.95 0.95 0.31 1 0.026 1 0.00056 1
NOSN 0.87 0.87 0.47 0.99 0.11 1 0.047 1 0.97 0.97 0.1 0.98 0.052 0.98 0.21 1
NOSNNOzZCOOL 0.88 0.88 0.46 1 0.087 1 0.04 1 0.96 0.96 0.18 0.98 0.06 0.98 0.18 1
NOZCOOL 0.43 043 0.86 0.96 0.001 0.96 0.27 1 0.99 0.99 0.085 0.99 0.078 1 0.051 1
REF 0.63 0.63 0.77 1 0.09 1 0.03 1 0.99 0.99 0.097 1 0.05 1 0.048 1
WDENS 0.99 0.99 0.12 1 0.018 1 0.024 1 0.88 0.88 0.44 0.99 0.14 1 0.0074 1
DBLIMFV1618 0.99 0.99 0.13 1 0.003 1 0.0065 1 0.95 0.95 0.31 1 0.031 1 0.0058 1
WML4 0.61 0.61 0.78 0.99 0.05 0.99 0.14 1 0.99 0.99 0.069 1 0.06 1 0.037 1
WML1V848 0.98 0.98 0.21 1 0.012 1 0.025 1 0.97 0.97 0.26 1 0.025 1 0.005 1
AD 0.98 0.98 0.21 1 0.056 1 0.013 1 0.3 0.3 095 0.99 0.002 0.99 0.086 1
CX 0.76 0.76 0.64 1 0.015 1 0.00035 1 0.99 0.99 0.16 1 0.0015 1 0.00077 1
CW 097 0.97 0.23 1 0.014 1 0.0078 1 0.87 0.87 0.49 1 0.03 1 0.031 1
A 1 1 0.079 1 0.036 1 0.026 1 - - - - - - - -
CSF 0.98 0.98 0.2 1 0.032 1 0.006 1 - — — - - — - -

The second column shows that even by removing only a single jection angle

mode, we are able to reduce the baryonic uncertainties tynif-si A. . PC:

icant amount. Removing 4 modes seems to remove any lingering cost" = WPCII , (20)

13 I

ambiguity associated with the baryons. This is a strikirgylte by

throwing away only less than 2% of the data (4 modes out of,300)
we have created a “baryon-free” subset that can be analyitbd w
the dark matter power spectrum.

In addition to the analysis in Fig. 6 we determine the number
of PCs by examining the projections offgirence vectora, onto

the PC subspaces. Recall that for each baryonic scemavimcal-
culate a diference vectoA,. We can project each of these vectors

particular we compute the absolute value of the cosine opthe

Vy =
onto the subspace spanned by the PC modes that are removed. In

(21)

© 0000 RAS, MNRASD00, 000—-000

between thex-th difference vector andth PC. The corresponding
PC captures all baryonic uncertainty of scenarii | cosg?| = 1

and none if cosé’| = 0. When removing PCs we can define the
fraction of the dfference vector that falls into the space spanned by
the PCs as

n
cog 6.
i

Table 4 shows? andV,, for all the simulations. Even removing two
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modes seems almostfBaient to remove the fierences caused by
baryonic éfects. This analysis shows impressively that the baryonic
scenarios for both DES and LS&Nclid are almost completely
captured within PCA subspaces of relatively low dimendiona
when using a four-dimensional PC space the worst scenargisl i

to 995% per cent within the PCA-volume.

5.2 Resultsof thelikelihood analyses

From Fig. 6 and Table 4 we expect that removing three or fous PC
is suficient to remove any bias from baryonic physics. We now test
this by running the likelihood analyses withfidiring numbers of
modes removed.

It is important to note that all likelihood analyses with PCA
marginalization are blind to the baryonic scenario thavesras
input data vector. More precisely, this means thatexelude the
data vector’s baryonic scenario from the matrixin order not to
have an unfair advantage over reality.

Figures 7 and 9 show the results of the likelihood analyses
after removing zeroréd, dashell three plue, dot-dashex and
four (green, long-dashgdmodes for a DES and LS$Huclid like
survey, respectively. In comparison we show a pure DM inpeat s
nario analyzed with a DM prediction codbléck, solig. All con-
tour plots are marginalized over five cosmological paramseia
addition to the ones mentioned in the plots we marginalizz Oy
and Hy. The first row of Figs. 7 and 9 show the posterior proba-
bility distribution of a given cosmological parameter masadized
over the other 6 cosmological parameters. In each cased#ia™
is taken to be the spectra from the AGN simulation, which —eas d

picted in Figs. 4 and 5 and by the red dashed curves — led to the

largest biases if baryons were not accounted for. The |/B&Tid
plot shows that, after removing 3 or 4 modes, the bias vagishe

One typically expects that a mitigation scheme that removes

the bias will loosen constraints (e.g., adding extra nuiegaram-
eters to capture thdfects of the systematic will inevitably degrade
the marginalized constraints on the cosmological parasets

our mitigation scheme, we are removing some of the data so we

similarly expect some degradation in the constraints. fieig@ and
9 show that this degradation is minimaffecting only the spectral
index ns. Again, this is an exciting result: the mitigation scheme
can be used with little cost to the overall extraction. It &haps
not surprising that the one parameter thatffected ns, is the one
that requires information from both large and small scaBysre-
moving some of the small scale information, we are necdgsari
losing information abouns.

We can quantify the extent to which the bias is removed and

the amount by which the allowed region in parameter space is

broadened by the mitigation scheme. If there were only one pa
rameter, this would be straightforward: simply report thféedence
between the best value of the parameter emerging from tke lik
lihood analysis and the “true” value used to generate thetspe

This would be the bias, and it would be compared to the statis-

tical uncertainty emerging from the likelihood analysisa8sig-
nificantly smaller than this uncertainty would be fine, whilee
larger would be a problem. That is, the relevant quantity le/de
(pPestfit — pfd)2/02, Under the assumption that thig? is drawn
from a chi squared distribution, a value larger than one dindi-

cate a problem at 68%; larger than 4 at 95%; and larger than 9 at

99.7%.
For our seven parameter case, we generalize to

fid barybest fil)t Cfl

fid barybest fi
co Pco Pco .)s

AXZ =(p (pco ~ Pco (22)

© 0000 RAS, MNRASD00, 000—-000

where the covariance matrix is determined via

N
Ceo = ﬁ 2. (<Pt = po) (Pl - pS) (23)
k=0
with (p. ) indicating the mean of theth cosmological parame-
ter (,j € [1,7]), andk € [1, N] being the index running over all
steps in the MCMC chain. Again assuming this is distributethe
seven-dimensional cosmological parameter spaceydslstribu-
tion with seven degrees of freedom, we find the critisgt values
that correspond to 68%, 95%, and 99% confidence regionsk4e 8.
14.07, and 18.48, respectively.

In Tables 5 and 6 (also see Figs. 8 and 10 ), we show the best
fit values of the individual parameters with the marginalieeror
bars and the\y? as defined in Eq. (22). This analysis illustrates the
severe biases in cosmological constraints for DES if theeexa
baryonic scenarios are analyzed. For example, when anglytze
AGN feedback scenario the probability of the fiducial cosmygl
is outside ther = 99.9999998% confidence interval. For scenarios
that only slightly difer from a pure DM Universe, such as the adia-
batic (AD) scenario the bias is substantially less severthifwthe
68% region) but still noteworthy.

As expected the impact of baryonic physics is more important
for Stage IV surveys. For example, the analysis of the AD aden
for an LSSTEuclid-like experiment rejects the fiducial cosmology
more strongly (outside the = 99.9999999% confidence interval)
than the AGN scenario does for DES. When analyzing the AGN
scenario for a LSSEuclid survey, the fiducial cosmology is out-
side thea = exp(=5 x 107%") (a number that is considered 1 by
almost any calculator) interval.

Focusing on the LSSEuclid case, we see that - in accord
with the 2D projections shown in the figures - the biases are ex
tremely large for all baryonic scenarios if no mitigatiomeme is
used. As more modes are removed, the fits get significanttgrbet
e.g.,Ay? drops from 55.8 to 1.58 and 2.27 for the AD scenario
when removing 3 and 4 PCs, respectively. For the AGN scenario
we find a similar behavior fony?, i.e. it drops from 142 to 3.55,
4.85 when removing 3 and 4 PCs, respectively. For all consite
scenarios the bias is well within thedl.error bars, hence we con-
clude that the mitigation scheméectively removes the baryonic
bias even for Stage IV surveys such as LSST and Euclid. Tins is
distinct contrast to phenomenological models, such astbhsl-
ied in Zentner et al. (2013) and Semboloni, Hoekstra & Schaye
(2013), which are adequate for Stage Il surveys such as b#&sS,
leave significant systematic error in the inferred cosmickdgpa-
rameters from Stage IV experiments.

In Appendix A, we rerun all likelihood analyses described in
this section and in Sect. 4 but include prior informationnfrthe
Planck mission. Figures to compare are Figs. 4 and 5 to Figjs. A
and A4 for the impact of baryonic physics on constraints atith
any mitigation and Figs. 7 and 9 to Figs. A2 and A5 for the likel
hood analyses with PCA marginalization. We also repeat tiaé a
yses of Tables 5, 6 and Figs 8, 10, which are mirrored in Takles
A2 and Figs. A3, A6, respectively.

The inclusion of Planck information (which in our implemen-
tation does not act owp, w,) mitigates the magnitude of the bias
from the cosmic shear tomography analysis; however, it sldn
stantially reduces the statistical errors on cosmologieshmeters,
and this places stronger demands on the performance of any mi
igation scheme. Qualitatively, the results with and withBlanck
information are similar: First, we find significant biasesasmo-
logical constraints if baryonic physics is not accountedl floe bi-
ases are severe for DES and catastrophic for I/6&dlid. Second,
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Figure 7. Cosmological constraints for a DES survey when using the R@#&ation technique. The results shown assume that theohir physics of the
Universe follows the AGN scenario (i.e. the most extremeyaic scenario). We remove three and four PC modésetilashedand greerlong-dashed
respectively) and compare the results to the untreated AeNasio (eddashed and to a pure DM scenariblacksolid).

PCA marginalization is able to remove these biassiently. One

A sufficient but not a necessary condition for the removal of

major diference between both analyses is that the information loss the information omg would beV, ~ 1, which however is not re-

on ns is insignificant when including Planck information. In this
case, the Planck prior determines the constraimsantirely.

5.3 Degeneracy with cosmological parameters

As shown in Figs. 7-10 the PCA removal technique substédytial
reduces the information on the spectral indeindicating a strong
degeneracy of baryonic scenarios and this particular clogival
parameter. In order to investigate this degeneracy fustfeeper-
form a similar analysis as in Table 4 but replacing tein Egs.

(20, 21) with the dfference of dark matter data vectors that vary in

their underlying cosmology (see Tables 7 and 8).
Specifically, we compute the ftierence vectors between the

DM fiducial model and the 68% intervals for each of the seven

cosmological parameters considered in our likelihood yaisl A

second dierence to the analysis in Table 4 is the inclusion of the

covariance matrix of th€'i (1) when deriving the PCs. As we will
further outline in Sect. 6 (see Eq. 25) this accounts foretation
and diferent error bars on the individu@ii(1).

flected in Tables 7 (DES) and 8 (LS&uclid). Whereas for the
DES case one might argue the§ of ng has the largest value
of all cosmological parameters the other values are tooecios
draw any conclusions from this analysis. Especially sirmetlie
LSST/Euclid analysis we find that the volume@f, andog is more
prominently mapped onto the PC-space than

Our explanation for this is thats is only degenerate with the
PCs if additional cosmological parameters are at leasivatioto
vary slightly as well. We motivate this statement as follo®sp-
posens were the only parameter of interest. Under variatiomof
the power spectrum gets tilted, hence th@edlence vector has con-
tributions from small and large scales. However, baryocénarios
only act on small scales, hence when all other parametarseth
moval of baryons will not void the information aw. Given some
freedom in especiallf2n,, og, andwy, the spectral inders can in-
deed account for the tilts that are seen in most baryonicasizen

We have examined some combinations of the aforementioned pa

rameters, finding indeed th& for ng strongly increases already
when giving only little freedom targ and Q,,. We however post-
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Table 5. Marginalized 1D constraints on cosmological parametershie DM, AD, AGN, CW, and CX scenario with and without the PCAtigation for a
DES survey (no priors). The last column containsAlyé distance (see Eq. 22) between best fit and fiducial parameitet: p

Scenario  PCA order Qm g Ns Wo Wy Qp ho NG
0.0363 0.0328 0.0333 0.438 1.36 0.00516 0.0786
DM 0 0'31150.0373 0-83fo.0324 0'96{0.0334 -1'06—'.0.448 '0-18{1.37 0'0474:0,00517 0'691:0,0763 0.675
0.0351 0.0332 0.0348 0.438 1.38 0.005 0.0827
AD 0 0'299:0.0346 0.849 50354 0'9320.0353 -1'05t0,426 0.106 13 0'0475-0,00502 0'735:0.0795 3.57
0.0238 0.0416 0.0752 0.352 139 0.00506 0.0722
AD 3 0.317 0053, 08184, 0.94T0075;  -1.03g385 0234773,  0.0476q0595 0.682345717 0.574
0.0257 0.0568 0.0705 0.356 1.38 0.005 0.0795
AD 4 0.31T o508 0.83200228  0.95T 0 0eR  -1.077 5322 0.0698 0.0473 00384 0.685{0_076 0.784
0.0228 0.0326 00131 0.302 127 0.00497 0.074
AGN 0 0.26850554 08580035,  0.86 5157 -1.3%0306 0.57975 0'0463—0.00468 0.797 50755 555
0.0225 0.0467 0.0717 0378 1.28 0.00495 0.0729
AGN 3 0.31850555 0827(gu53 0.94400705 -0.996 3g4 012775, 0'04740.00499 0'6860.0764 0.702
0.0272 0.0584 0.0696 0378 133 0.00494 0.0803
AGN 4 O'315:0.027 0'8330.0557 0'955io.0713 '1to.374 -0. 0381i1.37 0'04830.00533 0'68{00797 0.599
0.0363 0.0298 00273 0.413 133 0.00501 0.0668
cw 0 0'3320.0366 0'799io.0297 1-020.0272 '1'07to,438 -0.579ﬁ1434 0'04710.00508 0'61t0.067 13
0.0224 0.0379 00731 0.353 131 0.00497 0.0697
cw 3 0'317:0.0212 0-8220.0353 0'951i0.0746 '1-03fo.351 -0.0789_&33 0'0478—0.00516 0-675io.o712 0.421
0.0243 0.0535 0.0699 0.372 136 0.00501 0.0808
cw 4 0'3160.0234 0-82633.0512 0-956fo.o739 -1.02jo_363 0. 1011,4 0-0472:0.00495 0-674io.o786 0.601
0.0413 0.028 0.0247 0.425 126 0.00509 0.0629
X 0 0'3640.0415 0-749ﬁo.0284 1'030.0255 '1-13fo,44 -ltl.16 0-04720.00514 0'551i0.0631 32.7
0.0229 0.0401 00713 0.348 133 0.00518 00735
X 3 0‘315:0.0228 0-816fo.0389 0'9410.0726 '1'1to.35 '0'1011,39 0-04740.00517 0-68:[io.o702 0.822
0.0253 0.0537 00719 0.354 141 0.005 0.0844
X 4 0'3140.0257 0-8220.0529 0-945io.o704 '1-07io,34 '0'0428f1.45 0-04720.00509 0-684io.0823 1.01

DES no priors
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Figure 8. The marginalized 1D constraints on cosmological pararedtran DES like survey without priors (see Tab. 5 for exachbars). The notation
refers to the various simulation scenarios (DM, AD, AGN, GQ¥X) and the number of principal components that have beeovethfrom the data, either
“P3” for removal of the three most significant modes or “P4” femoval of the four most significant modes.
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Figure 9. Cosmological constraints for a LS&Euclid survey when using the

PCA mitigation technique. Tdmults shown assume that the baryonic physics

of the Universe follows the AGN scenario (i.e. the most exeebaryonic scenario). We remove three and four PC mddegdashedandgreenlong-dashed
respectively) and compare the results to the untreated A@Nasio (eddashed and to a pure DM scenariblacksolid).

pone a more thorough study of the cosmological parameteespa
degeneracies to a future paper.

6 GENERALITY AND DISCUSSION OF THE METHOD

The PCA mitigation technique introduced in Sect. 2.2 is cletaby
general and can be applied to any quantity that enters éhidea
analysis and any (combinations of) systematic(s) tlfiégca said
quantity. In this section we formalize and discuss a gere@A
marginalization scheme; the mainffidrences to the method out-
lined in Sect. 2.2 are that we require the method to be (i) stimo
about the DM scenario (ii) account for multiple systemat{@§
account for correlation andftierent errors of observables, and (iv)
to be able to process prior information on a systematicsasten
(e.g., the AGN scenario being more likely to resemble the trary-
onic physics compare to the AD scenario).

The first requirement is motivated by the fact that even if one
can reference to a DM power spectrum, non-linear densitjuevo
tion models of the DM power spectrum itself aféegted by uncer-
tainties that need to be marginalized over. For example éaelat-

est Coyote Universe emulator Heitmann et al. (2014) has 6pto
uncertainties in the DM power spectrum and Eifler (2011) sftbw
that this can substantially impact weak lensing obsergablbe
CosmoL ke weak lensing module employed in this paper (i.e., Taka-
hashi et al. 2012, with a modification to include time-depand
dark energy models) is likely to exceed the 5% uncertaintyst-
old at smallk-modes. This uncertainty should be accounted for,
hence we conclude that referencing to the (weighted) meatl of
models is a more objective choice.

Consequentially, we define the components of thigedince
matrix not with respect to a DM scenario (as in Eq. 4) but to the
mean of all models

Nsce

> M.

wherek again labels the model vector bin ih#), anda refers to
the various systematic scenarios.

The diference matrix is again computed at every point of the
MCMC and theM,’s resemble uncertainties from systematics at
any given point in cosmology, i.84 (pnupPco)- IN order to account
for requirement (iii) and (iv) we have to modify tihé(pn.pco) and

Ak = My, — Mk with Mk (24)

B 1
Nsce - l
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Accounting for baryonicfects on cosmic shear tomography15

Table 6. Marginalized 1D constraints on cosmological parametershie DM, AD, AGN, CW, and CX scenario with and without the PCAtigation for a
LSST/Euclid survey (no priors). The last column contains 4} distance (see Eq. 22) between best fit and fiducial parameiter p

Scenario  PCA order Om g Ns Wo Wy Qp ho Ax?
0.00982 0.00894 0.00784 0.0936 0318 0.00483 0.0274
DM 0 0.315500005 082900057  0-96Lggo75- -0-99450g53 -0.045643;5  0.0479550,5; 0.6685057  0.33
0.00998 0.00959 0.00816 0.0951 0.27 0.005 0.0378
AD 0 0.29 000088 0-857 000030  0-93Lg00ge3  1-1875 0051 0.70% 0.0473 500204 0-742 0038 55.8
0.00989 0.0117 0.0473 0112 0.396 0.0047 0.0454
AD 3 031900853  0-81870176 09374055  -0.9484757 02470334 004760045, 0.6790,2, 1.8
0.0119 0.0204 0.0474 013 0555 0.00454 0.0504
AD 4 0.318 50155 08260705  0-936 553 -0.99257; 003355503 0.0473500481 0-68%50565  2.27
0.00658 0.00995 0.00331 0.0782 0.29 0.00165 0.0347
AGN 0 0.242 500775 0-888 0055  0-846 000508 148700854 1275564 0042500163 0-85250p6s 142
0.00858 0.0103 0.0411 0.0927 0.362 0.00476 0.042
AGN 3 0.318500587 082500105  0.93%50s5;  -1.03 500z 0.09735355 0.047Lgq0ug, 0.68634535;, 355
0.0103 0.017 0.041 0111 0.449 0.00425 0.0408
AGN 4 0.3175010s 082300173  0.94T 50, o107 -0.05935,5 0.0483550,5° 0.68L505 4.85
0.0126 0.00864 0.0092 0.125 0.429 0.00495 0.0201
cw 0 036400116 078500056 102505704 0.597473 164058 0.0474 50050, 055230503  71.5
0.00958 0.0116 0.0429 0.105 0.401 0.0047 0.0457
cw 3 0.318500024 0828730175 0.94T 50,5 -0.989 57 0.0054%5,5; 0.0476000453 0-679%G0.y; 0219
0.00977 0.017 0.0502 0.105 0.42 0.00463 0.0403
cw 4 0-315:0.00952 0'83:0,0174 0'9620.0506 '0-989:0,103 '0'0353-0,443 0'0478:0,0048 0'66&0.0385 0.651
0.0159 0.00385 0.00878 0.102 0.0701 0.0049 0.0112
X 0 04350080, 0-724G00s01  1-0L000765  0-316 00458 -2.3%182 0.0473 500491 04720074 86.9
0.00995 0.0121 0.0405 0116 0472 0.00461 0.0492
X 3 0.3180; 0818505175  093Lgg47;  -0.974575¢ 0215059  0.048300s5, 0.69255,,5 369
0.0104 0.0154 0.0436 0117 0.465 0.00448 0.0416
X 4 0.32%5010s 081200135 091750450  -0.936 0738 03220453 00477000068 0-69200419 411
LSST no priors
0.41 =
o
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Figure 10. The marginalized 1D constraints on cosmological pararmdteran LSST like survey without priors (see Tab. 6 for exashhers). The notation
refers to the various simulation scenarios (DM, AD, AGN, G¥%) and the number of principal components that have beeovechfrom the data, either
“P3” for removal of the three most significant modes or “P4” femoval of the four most significant modes.
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Table 7. Projection angle of the dark matterfidgirence vectors onto the PCs (see Eq. 20) and fraction of tfezatice vector contained by the PC subspace

(see Eqg. 21). Results shown are for the DES case.

Cosmology | coso| Vq | cosos| Vo | cosos| V3 | cOSOy4| V4

Qn =0.313 50541 0.32 032 045 055| 0017 055| 022 06
og =0.832033° 0.18 0.18| 049 052| 014 054 02 058
ns =0.9642933, 026 0.26| 055 061 05 079| 0044 0.79
wo =-0.9722353 0.14 0.14| 061 062 028 068 014 07
Wy =0.372133 0.22 022 061 065 03 072 014 0.73
Qp =0.041°25118, 0.36 0.36| 038 053] 052 074| 0.029 0.75
ho =0.672 59274 037 037 041 055| 052 076 0.043 0.76

Table 8. Projection angle of the dark matterfidgirence vectors onto the PCs (see Eq. 20) and fraction of tfezatice vector contained by the PC subspace

(see Eqg. 21). Results shown are for the LAESTlid case.

Cosmology | cosoq| V1 | costy| Vo | costs| V3 | cOSO4] V4

Oy =0.315501%2 | 0.099 0.099| 059 059| 032 067 013 0.69

og =0.82959950 0.15 0.15 0.49 051 015 053 028 0.6

ns =0.961390771 0.13 013| 0063 015/ 015 021 0.4 0.5

wo =-1.01°21L_ 0.14 0.14 0.37 04| 0081 041| 032 052

Wa =0.04022232 0.14 0.14 0.44 046| 012 048] 019 052

Qp =0.04863.3537 013 013 | 0054 014 026 03 0.43 0.52

ho =0.673 59232 0.13 013| 0.038 0.14| 024 028 043 051
define theM,’s as explicitly including baryonic fects in simulations for a wide range
M, =W, L M(pmibe) (25) of cosmological models, is so prohibitive as to be entirafeasi-

where thew,’s allow the analyst to weigh the fiiérent nuisance
parameter scenarios relative to each otherlamcomputed from
the inverse data covariance mat@ix* = LL! in order to account
for correlation and dferent error bars of data points. We note that
strictly speaking the covariance is a functiorpgf andp., and that
this dependency should be incorporated in a high precisiatya
sis.

In order to fulfill requirement (ii), it must be possible torme
pute the &ect of the systematic under a wide range of possible
circumstances. This computation involves informatiomfrabser-
vations, simulations and theoretical considerationss itécessary
for our calculations to span the range of reasonable re@liraof
the systematicféect. PCA mitigation does not eliminate the need
to produce simulations of the systematics that one aimsnove.
The procedure also requires that the systematic not belyaige
generate with the parameters we aim to infer from the data; ho

ever, this same requirement must be met for more commonplace

“self-calibration” exercises to beffective (e.g., such as Huterer
etal. 2006; Zentner, Rudd & Hu 2008; Bernstein 2009; Semtiplo
Hoekstra & Schaye 2013; Zentner et al. 2013).

There are substantial advantages of this technique over oth
nuisance parameter approaches. First and foremost, thegzrs
bound to &ectively incorporate degeneracies between models of
systematic uncertainties. This is not true if indepengedgvel-
oped nuisance parameter models, e.g., baryons as in Zettaker
(2013) and intrinsic alignment as in Joachimi et al. (201 a
combined in an analysis. Second, if systematics can beratdit
against dark matter only simulation, this procedure ersabie to
perform a cosmological analysis using phenomenologicaleiso
that require relatively little computationaffert. This advantage
should not be underestimated. The computational expenseyof

ble. Third, the technique to remove contaminated modestauts
tially reduces the dimensionality of the parameter spaaertbeds

to be sampled. Instead of sampling a high-dimensional noesa
parameter space at every step of the MCMC, mode removal sllow
the analyst to sample cosmological parameters only.

In the presence of strong degeneracies between PCs and cos-
mology the mode removal technique might need to be replaged b
marginalizing over the PCs with priors (recall that mode oeat is
equivalent to marginalizing without priors). This changles for-
malism outlined in Sect. 2.2. Instead of removing the coimatad
modes as in Eqg. (8) we have to carry out a full marginalization
PC space.

Defining data and model vector and covariance in the nuisance
parameter sensitive PC space, Dge = U'D, M, = U'M, and
C,e = U'C'U, we can define the marginalization integral that
needs to be solvgcbmputed at every step of the MCMC as

LOIPw) = f d'pc Pr(pc) (26)

X eX[{—% [(Dpc -M pc)tCF_)g-(DpC -M pc)]) ’

wherePr(pd) accounts for prior information on thieth PC. Such
information can be obtained from the eigenvalues of thetanee
matrix in Eq. (6) or from the so-callezignalsof the extremeM,,’s,

i.e. their projection onto the PC’s. These extreme sigrafsserve
as upper and lower integration limit of the marginalizatiotegral.

We note however that even in this scenario the PC mitiga-
tion technique has substantial advantages: (i) the degendre-
tween nuisance parameters is automatically accountechtb(ig
the number of nuisance parameters and hence the dimerisional
of the integral is greatly reduced.
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7 CONCLUSIONS

We analyze cosmic shear tomography power spectra obtaioed f
14 hydro-simulations with dierent underlying baryonic processes
(e.g., AGN feedback, SN feedbackffdrent cooling mechanisms,
and combinations thereof). These simulations span theerahg
modeling uncertainties in the matter density field whiclmaf ac-
counted for, severely impact cosmological constraints.

Using the covariance and weak lensing module of thevG-
Like analysis framework, we simulate Stage Il (DES) and Stage
IV (LSST/Euclid) likelihood analyses for each of the 14 scenar-
ios. The quantity of interest is the bias in the inferred paeter
(e.g.,Wo, Wy, og) caused by baryonicfiects compared to the sta-
tistical uncertainties in the inferred parameter. In agreet with
previous, similar analyses (e.g., Semboloni et al. 201t®doni,
Hoekstra & Schaye 2013; Zentner et al. 2013), we find severe bi
ases in cosmological constraints inferred from cosmic rshresa-
surements of DE¥ the true Universe is described by one of the
extreme baryonic scenari@d baryonic éfects are neglected in
the analysis. For scenarios thaffdr only slightly from a pure DM
Universe, such as the adiabatic (AD) scenario the bias istanb
tially less severe (within the 68% region) but still non-hgigle.
Unfortunately, detailed studies of the OWLS simulationalgred
here suggest that some of the more extreme scenarios besbdes
observed galaxy properties (e.g., McCarthy et al. 2010).

The Stage IV experiments LSST and Euclid will measure cos-
mic shear spectra with smaller statistical error bars anthsae-
quirement to reduce systematics is significantly more génihthan
for DES. In our analyses in which we use baryonic simulations
to simulate an observed LS&uclid cosmic shear data set, but
do not account for baryonicffects, the systematic errors on in-
ferred cosmological parameters are always severe. In tesle
yses, biases in dark energy equation of state parameteld lbeu
as large as- 70, while biases in other parameters could be even
larger. In the AD scenario, in which the baryons are treatem n
radiatively and in which the alterations of cosmic sheacspeare
mild, our analysis that does not include specific mitigatbbary-
onic dfects rejected the true, fiducial cosmology at greater than th
a = 99.9999999% confidence interval. When analyzing the AGN
scenario for an LSSEuclid survey the rejection probability of the
fiducial cosmology is fi the charts. We repeat all likelihood anal-
yses including prior information from the Planck missior dimd
no qualitative change in the severity of théeet (see Appendix A).
There is no doubt then that a mitigation scheme will be neagss
to analyze both Stage Ill and certainly Stage IV data.

As a potential remedy we present PCA marginalization which
aims to mitigate biases on parameters inferred from obbkya
that may be partly compromised by poorly-understood syatiem
errors. The technique consists of: (i) identifying a ranfjpassible
effects that the systematic may have on the observable of sttere
(ii) determining linear combinations of observables, gsinprin-
cipal component analysis, that are most compromised byythie s
tematic according to the templates identified in step (9jgmting
the data onto a subspace that removes the linear combisaifon
observables that are modtected by the systematic; and (iii) per-
forming a likelihood analysis on this data subspace.

We apply PCA marginalization to the simulation data and re-
peat the likelihood analyses for all baryonic scenariosfiMethat
removing 3-4 principal components isfBaient to account fully for
biases from baryonic physics, even for the most extremedbary
scenarios, and even for the Stage IV L$S0clid surveys. This is
a clear improvement over phenomenological models (as itngen

© 0000 RAS, MNRAS0O00, 000—-000

et al. 2013; Semboloni, Hoekstra & Schaye 2013), which remov
biases from baryonic physics for Stage Ill, but leave sigaift sys-
tematic error in the inferred cosmological parameters f@tage

IV experiments.

As a consequence of the PCA mode removal, our constraining
power on cosmology is only slightly reduced, with only therco
straints on the spectral index noticeably degraded. Even this loss
in cosmological information is recaptured if Planck priarg in-
cluded. Accounting for both the statistical and systemetiors on
inferred cosmological parameters (suchwgsandw,), it is clear
that mitigation is strongly preferred over neglecting lwanig pro-
cesses. For example, in the LSEiiclid AGN scenario in which
the baryonic systematic is not explicitly mitigated, thetsynatic
error onwg is 6wy ~ 0.5, while the statistical error is(wp) ~ 0.08
(see Table 6). Upon applying PCA mitigation to this scenarid
removing the three most important modes, the systematic exr
reduced taswy ~ 0.03 and the statistical error increased to only
o(wp) ~ 0.09.

Itis our hope that these techniques will be adopted andegbpli
to mitigate systematic errors, not only in cosmic shear @bsgy,
but in a variety of future data analyses.
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APPENDIX A: RESULTSWITH PLANCK PRIORS

In this appendix we repeat all likelihood analysis desdfile
the text but include external information from the Planckeka
lite (Planck Collaboration et al. 2013). There are good aaago
look at the no-prior likelihoods first. Before combining uéts, we
would need to see whether they are consistent, and — wererizary
neglected —the Planck results would not be consistent hétkens-
ing results. There is also the danger that including exteasalts
would force the likelihood to the correct region, therebylerstat-
ing the magnitude of the problem and the need to fix it.

The analysis methods used in this appendix are exactly the
same as in the main text; the results are described in S&ct. 5.
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Figure Al. Cosmo-
logical constraints
for a DES survey
assuming dterent
underlying bary-
onic scenarios for
our Universe, i.e.
pure dark mat-
ter (black, solid)

strong AGN feed-
back (red, dashed)
extreme cooling
(blue, dot-dashed)
and moderate
cooling (green,

long-dashed) The

scenarios are de-
tailed in Sect. 3.1.
Results shown here
include priors front
the Planck mission.

Figure A2. Cosmo-
logical constraints
for a DES survey
with Planck priors
when using the
PCA mitigation
technique. The re-
sults shown assume
that the baryonic
physics of the Uni-
verse follows the
AGN scenario (i.e.
the most extreme
baryonic scenario).
We remove three
and four PC modes
(blugdashed and
greenlong-dashed
respectively)  and
compare the results
to the untreated
AGN scenario
(regdashed and to
a pure DM scenario
(blacksolid).
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Table ALl. Marginalized 1D constraints on cosmological parametarshi® DM, AD, AGN, CW, and CX scenario with and without the PCAtigation for a
DES survey (with Planck priors). The last column contaires/th? distance (see Eq. 22) between best fit and fiducial parameitet p

Scenario  PCA order Qm oy Ns Wo Wy Qp ho NG
0.00856 0.0104 0.00687 0.24 0.974 0.000602 0.0118
DM 0 031550082 0-82800103 0.96Lgqngss 099955,  -0.08365595 0.04875550607 067350176 0.0428
0.00815 0.0105 0.00695 0.226 0.98 0.000617 0.0118
AD 0 0.3087000515 08300104 095800708  -0-974%%3 -0.5287 ¢, 0.0487 500616 0-673 00117 2.82
0.00872 0.0109 0.00712 0.22 0.647 0.00063 0.0107
AD 3 0313000886 082700100  0-96' (00702 -1.05%55%1 0.07993¢6s,  0.04875 500535 0-67Zg107  0.148
0.0108 0.0106 0.00687 0.249 0.702 0.000628 0.0107
AD 4 031450107 0828505108 0:96%50g0 -1.03%%51 0.03355703  0.04875 500609 0-673gg107  0.258
0.00791 0.00975 0.0068 0.229 107 0.000614 0012
AGN 0 0.274 5 00844 0'825:0.00967 0'949:0,00674 -1.29°5% -1.22%5 088 0'0486—0.000623 0.67L 50118 60.5
0.0107 0.0109 000712 0.255 0.794 0.000623 00114
AGN 3 0.3165010s  0-82700109  0-967500701 -1.0L5%;  -0.0336,74 0.0487 500062  0-674gg11,  0.797
00102 0.0107 0.00699 0.255 0.708 0.000611 0.0103
AGN 4 03185010,  0.828G5107  0.967500708 -1.03%%57 0.108 703 0.0487 5000614 0-673gg105 0-538
0.00882 0.00994 0.00702 0.236 0.95 0.000613 00114
cw 0 0.326000874 0822500083  0-966 000608  ~1-050523 0.504% 5g 0.0487 5000612 0-674 0113 5.28
0.00904 0.0107 0.00699 0.223 0.657 0.000612 0.0107
cw 3 0.314000017 082800100 096 g00ses  -1.0405%5 0.0996¢gz5  0.04875500516  0-672401) 0.115
00114 0.0109 0.00728 0.263 0.769 0.000608 0.0109
cw 4 0.31850175  0.82840;; 0.961'50072 -1.030%68 0.0669 75,  0.0487 000597  0-673 0011 0.1
0.00881 0.00997 0.00686 0.234 0.86 0.000625 0.0115
X 0 0317000881 0-800102 0.968 50508 ~1-3670224 1.2555g7 0.0487 000621 0-67450113 11.8
0.00836 0011 0.0072 0.207 0.62 0.000611 0.0108
12 3 0.312500529 08280011, 096500717 1075500 0.0629 g1,  0.04870005g9 0-673gp109 0324
0.0108 0.0108 0.00682 0.26 0731 0.000605 0.0108
cX 4 031300108 08270011 0-96T 000600 -1-050%6; 0.073Lo75;  0.0486 000508 0-673 50100 0478
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Figure A3. The best fit and marginalized 1D error bars on cosmologicalmpaters for an DES survey with Planck priors (see Table Agxact numbers).
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Table A2. Marginalized 1D constraints on cosmological parametarshi® DM, AD, AGN, CW, and CX scenario with and without the PCAtigation for a
LSST/Euclid survey (with Planck priors). The last column consaineAy? distance (see Eq. 22) between best fit and fiducial parameiter. p

Scenario  PCA order Qm g Ng Wo Wy Qp hg A)(éA
0.00577 0.00604 0.00519 0.0638 0.26 0.000608 0.0096
DM 0 O'3]'5t0.00584 O'828—+0.00591 O'9620.00513 -0'99:{0_0635 -0'0449:0.258 O'0486—L0.0006()4 0'673:0.0098 0.096
0.00561 0.00643 0.0053 0.0604 0.258 0.00061 0.0103
AD 0.30L 500565 0-846 500500 0944500539  -1.0450507 0.245 359 0.04855 500501 0-683 50103 60.7
0.00506 0.0064 0.00623 0.0608 0.216 0.000624 0.00911
AD 3 0.315000306 08267500538  0-96g00aa5  -0-997 00625 -0.11%5%, 0.0487¢ 000621  0-67Lgg0gps  2:66
0.00474 0.00712 0.00636 0.0651 0.204 0.000624 0.00977
AD 4 0315000452  0-828500658  0-96 (00656 1700501 -0.045255;,  0.0488¢. ", 0.673 0003, 0643
0.00559 0.00808 0.00433 0.0905 0.517 0.000686 0.0128
AGN 0.2795 00555  0-845 000812  0-878500775  -1.0200879 045023 0.04780 000624  0-70Z o083 207
0.00517 0.00626 0.00619 0.0631 0.222 0.000623 0.00891
AGN 3 0.31850051"  0-827g00s35  0-967000646 -1.04% 5625 0.07185505  0.04874500613 0-674G 000  2:85
0.00479 0.00745 0.00638 0.0658 0.216 0.000605 0.00937
AGN 4 0.315500505s 0-8270n07,°  0-96L55055  -1.047 0683 0.0448 507 0.0487 000623 0-674 00038 6.6
0.00694 0.00594 0.00577 0.074 0.304 0.000634 0.0107
cw 0.34L500671 0797000500 098900081,  -0-924 075, 0477 5508 0.04% 000633 9-65200113 75.1
0.00477 0.00629 0.00655 0.0559 0.203 0.000608 0.00885
cw 3 0313000469 0-82%000531  0-98g0ogss  “0-995g05ar 919803550,  0.0487500060s 0-672p0ger  1.64
0.00477 0.00728 0.00643 0.0564 0.203 0.00061 0.00927
cw 0.3130_00477 O'829fo.00717 0'9q0.0064 '0'99{0,0573 '0'0112:0.199 O'0487:0.000604 0'6720.00942 0.244
0.00885 0.00607 0.00549 0.0995 0.368 0.000647 0.0107
CX 0 0'36—'—0.00793 O'762—'.0.00731 O'99—'—0.00481 -0'95t0.0982 _0'806:0.368 O'0492——0.000625 0'62{0.0125 154
0.00486 0.00605 0.00664 0.0599 0.215 0.000609 0.00896
CX 3 0'315—0.00476 O'82{0_00612 O'96t0.00663 -1'01t0.0601 _0'14&0.22 0'04810.000601 0'6720.0091 222
0.00507 0.00672 0.0068 0.0635 021 0.000596 0.00947
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Figure A6. The best fit value and marginalized 1D error bars on cosmedbgiarameters for an LS@uclid survey with Planck priors (see Tables A2 for
exact numbers).
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