Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

The CMS Collaboration

Abstract

Constraints are presented on the total width of the recently discovered Higgs boson, Γ_H, using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 fb$^{-1}$ at a centre-of-mass energy $\sqrt{s} = 7$ TeV and 19.7 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of $\Gamma_H < 22$ MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass.

Submitted to Physics Letters B
The discovery of a new boson consistent with the standard model (SM) Higgs boson by the ATLAS and CMS Collaborations was recently reported [1–3]. The mass of the new boson (m_H) was measured to be near 125 GeV, and the spin-parity properties were further studied by both experiments, favouring the scalar, J^{PC} = 0^{++}, hypothesis [4–7]. The measurement was found to be consistent with a single narrow resonance, and an upper limit of 3.4 GeV at a 95% confidence level (CL) on its decay width (Γ_H) was reported by the CMS experiment in the four-lepton decay channel [7]. A direct width measurement at the resonance peak is limited by experimental resolution, and is only sensitive to values far larger than the expected width of around 4 MeV for the SM Higgs boson [8, 9].

It was recently proposed [10] to constrain the Higgs boson width using its off-shell production and decay to two Z bosons away from the resonance peak [11]. In the dominant gluon fusion production mode the off-shell production cross section is known to be sizable. This arises from an enhancement in the decay from the vicinity of the on-shell Z-boson pair production threshold. A further enhancement comes, in gluon fusion production, from the on-shell top-quark pair production threshold. The zero-width approximation is inadequate and the ratio of the off-shell cross section above 2m_Z to the on-shell signal is of the order of 8% [11, 12]. Further developments to the measurement of the Higgs boson width were proposed in Refs. [13, 14].

The gluon fusion production cross section depends on Γ_H through the Higgs boson propagator
\[
\frac{d^2\sigma_{gg\to H\to ZZ}}{dm^2_{ZZ}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{H}^2 + m_{H}^2 \Gamma_{H}^2},
\]
where g_{ggH} and g_{HZZ} are the couplings of the Higgs boson to gluons and Z bosons, respectively. Integrating in a small region around m_H, and above a mass threshold m_{ZZ} > 2m_Z, where (m_{ZZ} - m_H) ≫ Γ_H, the cross sections are, respectively,
\[
\sigma_{\text{on-shell}}^\text{gg\to H\to ZZ} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{H}},
\text{ and } \sigma_{\text{off-shell}}^\text{gg\to H\to ZZ} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{(2m_Z)^2}.
\]
From Eq. (2), it is clear that a measurement of the relative off-shell and on-shell production in the H → ZZ channel provides direct information on Γ_H, as long as the coupling ratios remain unchanged, i.e. the gluon fusion production is dominated by the top-quark loop and there are no new particles contributing.

The dominant contribution for the production of a pair of Z bosons comes from the quark-initiated process, q̅q → ZZ, the diagram for which is displayed in Fig. [1]left). The gluon-induced diboson production involves the gg → ZZ continuum background production from the box diagrams, as illustrated in Fig. [1]center). An example of the signal production diagram is shown in Fig. [1]right). The interference between the two gluon-induced contributions is significant at high m_{ZZ} [15], and is taken into account in the analysis of the off-shell signal.

Vector boson fusion (VBF) production, which contributes at the level of about 7% to the on-shell cross section, is expected to increase above 2m_Z. The above formalism describing the ratio of off-shell and on-shell cross sections is applicable to the VBF production mode. In this analysis we constrain the fraction of VBF production using the properties of the events in the on-shell region. The other main Higgs boson production mechanisms, ttH and VH (V=Z,W), which contribute at the level of about 5% to the on-shell signal, are not expected to produce a significant off-shell contribution as they are suppressed at high mass [8, 9]. They are therefore neglected in the off-shell analysis.

In this Letter, we present constraints on the Higgs boson width using its off-shell production and decay to Z-boson pairs, in the final states where one Z boson decays to an electron or a
muon pair and the other to either an electron or a muon pair, \(H \to ZZ \to 4\ell \) (4\(\ell \) channel), or a pair of neutrinos, \(H \to ZZ \to 2\ell 2\nu \) (2\(\ell 2\nu \) channel). Relying on the observed Higgs boson signal in the resonance peak region \([7]\), the simultaneous measurement of the signal in the high-mass region leads to constraints on the Higgs boson width \(\Gamma_H \) in the 4\(\ell \) decay channel. The 2\(\ell 2\nu \) decay channel, which benefits from a higher branching fraction \([16, 17]\), is used in the high-mass region to further increase the sensitivity to the Higgs boson width. The analysis is performed for the tree-level HVV coupling of a scalar Higgs boson, consistent with our observations \([4, 7]\), and implications for the anomalous HVV interactions are discussed.

The measurement is based on pp collision data collected with the CMS detector at the LHC in 2011, corresponding to an integrated luminosity of 5.1 fb\(^{-1}\) at the center-of-mass energy of \(\sqrt{s} = 7 \) TeV (4\(\ell \) channel), and in 2012, corresponding to an integrated luminosity of 19.7 fb\(^{-1}\) at \(\sqrt{s} = 8 \) TeV (4\(\ell \) and 2\(\ell 2\nu \) channels). The CMS detector, described in detail elsewhere \([18]\), provides excellent resolution for the measurement of electron and muon transverse momenta \(p_T \) over a wide range. The signal candidates are selected using well-identified and isolated prompt leptons. The online selection and event reconstruction are described elsewhere \([2, 3, 7, 16]\). The analysis presented here is based on the same event selection as used in Refs. \([7, 16]\).

The analysis in the 4\(\ell \) channel uses the four-lepton invariant mass distribution as well as a matrix element likelihood discriminant to separate the ZZ components originating from gluon- and quark-initiated processes. We define the on-shell signal region as \(105.6 < m_{4\ell} < 140.6 \text{ GeV} \) and the off-shell signal region as \(m_{4\ell} > 220 \text{ GeV} \). The analysis in the 2\(\ell 2\nu \) channel relies on the transverse mass distribution \(m_T^2 \),

\[
m_T^2 = \sqrt{p_{T,2\ell}^2 + m_{2\ell}^2} + \sqrt{E_T^{\text{miss}} - m_{2\ell}^2}^2 - \left(\vec{p}_{T,2\ell} + \vec{E}_{T}^{\text{miss}} \right)^2,
\]

where \(p_{T,2\ell} \) and \(m_{2\ell} \) are the measured transverse momentum and invariant mass of the dilepton system, respectively. The missing transverse energy, \(E_T^{\text{miss}} \), is defined as the magnitude of the transverse momentum imbalance evaluated as the negative of the vectorial sum of transverse momenta of all the reconstructed particles in the event. In the 2\(\ell 2\nu \) channel, the off-shell signal region is defined as \(m_T > 180 \text{ GeV} \).

Simulated Monte Carlo (MC) samples of \(gg \to 4\ell \) and \(gg \to 2\ell 2\nu \) events are generated at leading order (LO) in perturbative quantum chromodynamics (QCD), including the Higgs boson signal, the continuum background, and the interference contributions using recent versions of two different MC generators, \(\text{GG2VV 3.1.5} \) \([11, 19]\) and \(\text{MCFM 6.7} \) \([20]\), in order to cross-check theoretical inputs. The QCD renormalization and factorization scales are set to \(m_{ZZ}/2 \) (dynamic scales) and MSTW2008 LO parton distribution functions (PDFs) \([21]\) are used. Higher-order QCD corrections for the gluon fusion signal process are known to an accuracy of next-to-next-to-leading order (NNLO) and next-to-next-to-leading logarithms for the total cross section \([8, 9]\).
and to NNLO as a function of m_{ZZ} [14]. These correction factors to the LO cross section (K factors) are typically in the range of 2.0 to 2.5. After the application of the m_{ZZ}-dependent K factors, the event yield is normalized to the cross section from Refs. [8, 9]. For the $gg \to ZZ$ continuum background, although no exact calculation exists beyond LO, it has been recently shown [22] that the soft collinear approximation is able to describe the background cross section and therefore the interference term at NNLO. Following this calculation, we assign to the LO background cross section (and, consequently, to the interference contribution) a K factor equal to that used for the signal [14]. The limited theoretical knowledge of the background K factor at NNLO is taken into account by including an additional systematic uncertainty, the impact of which on the measurement is nevertheless small.

Vector boson fusion events are generated with PHANTOM [23]. Off-shell and interference effects with the nonresonant production are included at LO in these simulations. The event yield is normalized to the cross section at NNLO QCD and next-to-leading order (NLO) electroweak (EW) [8,9] accuracy, with a normalization factor shown to be independent of m_{ZZ}.

In both gluon fusion and VBF simulation, the Higgs boson mass is set to the measured value in the 4ℓ decay channel of $m_H = 125.6$ GeV [7] and the Higgs boson width is set to the corresponding expected value in the SM of $\Gamma_H^{SM} = 4.15$ MeV [8,9]. In order to parameterize and validate the distributions of all the components for these processes, specific simulated samples are also produced that describe only the signal or the continuum background, as well as several scenarios with scaled couplings and width. For the on-shell analysis, signal events are generated either with POWHEG [24-27] production at NLO in QCD and JHUGEN [28,29] decay (gluon fusion and VBF), or with PYTHIA 6.4 [30] (VH and ttH production).

In both the 4ℓ and 2ℓ2ν channels the dominant background is $qq \to ZZ$. We assume SM production rates for this background, the contribution of which is evaluated by POWHEG simulation at NLO in QCD [31]. Next-to-leading order EW calculations [32,33], which predict negative and m_{ZZ}-dependent corrections to the $qq \to ZZ$ process for on-shell Z-boson pairs, are taken into account.

All simulated events undergo parton showering and hadronization using PYTHIA. As is done in Ref. [7] for LO samples, the parton showering settings are tuned to approximately reproduce the ZZ p_T spectrum predicted at NNLO for the Higgs boson production [34]. Generated events are then processed with the detailed CMS detector simulation based on GEANT4 [35,36], and reconstructed using the same algorithms as used for the observed events.

The final state in the 4ℓ channel is characterized by four well-identified and isolated leptons forming two pairs of opposite-sign and same-flavour leptons consistent with two Z bosons. This channel benefits from a precise reconstruction of all final state leptons and from a very low instrumental background. The event selection and the reducible background evaluation are performed following the methods described in Ref. [7]. After the selection, the 4ℓ data sample is dominated by the quark-initiated $qq \to ZZ \to 4\ell$ ($qq \to 4\ell$) and $gg \to 4\ell$ productions.

Figure 2 presents the measured $m_{4\ell}$ distribution over the full mass range, $m_{4\ell} > 100$ GeV, together with the expected SM contributions. The $gg \to 4\ell$ contribution is clearly visible in the on-shell signal region and at the Z-boson pair production threshold, above the $qq \to 4\ell$ background. The observed distribution is consistent with the expectation from SM processes. We observe 223 events in the off-shell signal region, while we expect 217.6 ± 9.5 from SM processes, including the SM Higgs boson signal.

In order to enhance the sensitivity to the gg production in the off-shell region, a likelihood discriminant D_{gg} is used, which characterizes the event topology in the 4ℓ centre-of-mass frame.
Figure 2: Distribution of the four-lepton invariant mass in the range $100 < m_{4\ell} < 800$ GeV. Points represent the data, filled histograms the expected contributions from the reducible (Z+X) and q\bar{q} backgrounds, and from the sum of the gluon fusion (gg) and vector boson fusion (VV) processes, including the Higgs boson mediated contributions. The inset shows the distribution in the low mass region after a selection requirement on the MELA likelihood discriminant $D_{\text{bkg}}^{\text{kin}} > 0.5$ [7]. In this region, the contribution of the tH and VH production processes is added to the dominant gluon fusion and VBF contributions.

using the observables $(m_{Z_1}, m_{Z_2}, \vec{\Omega})$ for a given value of $m_{4\ell}$, where $\vec{\Omega}$ denotes the five angles defined in Ref. [28]. The discriminant is built from the probabilities $P_{\text{tot}}^{\text{gg}}$ and $P_{\text{tot}}^{\text{qq}}$ for an event to originate from either the $gg \rightarrow 4\ell$ or the $q\bar{q} \rightarrow 4\ell$ process. We use the matrix element likelihood approach (MELA) [2, 29] for the probability computation using the MCFM matrix elements for both $gg \rightarrow 4\ell$ and $q\bar{q} \rightarrow 4\ell$ processes. The probability $P_{\text{tot}}^{\text{gg}}$ for the $gg \rightarrow 4\ell$ process includes the signal ($P_{\text{tot}}^{\text{gg}}$), the background ($P_{\text{tot}}^{\text{bkg}}$), and their interference ($P_{\text{tot}}^{\text{int}}$), as introduced for the discriminant computation in Ref. [37]. The discriminant is defined as

$$D_{\text{gg}} = \frac{P_{\text{tot}}^{\text{gg}}}{P_{\text{tot}}^{\text{gg}} + P_{\text{tot}}^{\text{qq}}} \left[1 + \frac{P_{\text{tot}}^{\text{qq}}}{a \times P_{\text{tot}}^{\text{gg}} + \sqrt{a} \times P_{\text{tot}}^{\text{int}} + P_{\text{tot}}^{\text{bkg}}} \right]^{-1},$$

where the parameter a is the strength of the unknown anomalous gg contribution with respect to the expected SM contribution ($a = 1$). We set $a = 10$ in the definition of D_{gg} according to the expected sensitivity. Studies show that the expected sensitivity does not change substantially when a is varied up or down by a factor of 2. It should be stressed that fixing the parameter a to a given value only affects the sensitivity of the analysis. To suppress the dominant $q\bar{q} \rightarrow 4\ell$ background in the on-shell region, the analysis also employs a MELA likelihood discriminant $D_{\text{bkg}}^{\text{kin}}$ based on the JHUGEN and MCFM matrix element calculations for the signal and the background, as illustrated by the inset in Fig. 2 and used in Ref. [7].
As an illustration, Fig. 3(left) presents the 4\ell invariant mass distribution for the off-shell signal region (m_{4\ell} > 220 \text{ GeV}) and for D_{gg} > 0.65. The expected contributions from the q\bar{q} \rightarrow 4\ell and reducible backgrounds, as well as for the total gluon fusion (gg) and vector boson fusion (VV) contributions, including the Higgs boson signal, are shown. The distribution of the likelihood discriminant \(D_{gg} \) for \(m_{4\ell} > 330 \text{ GeV} \) is shown in Fig. 3(right), together with the expected contributions from the SM. The expected \(m_{4\ell} \) and \(D_{gg} \) distributions for the sum of all the processes, with a Higgs boson width \(\Gamma_H = 10 \times \Gamma_H^{SM} \) and a relative cross section with respect to the SM cross section equal to unity in both gluon fusion and VBF production modes (\(\mu = \mu_{ggH} = \mu_{VBF} = 1 \)), are also shown. The expected and observed event yields in the off-shell gg-enriched region defined by \(m_{4\ell} \geq 330 \text{ GeV} \) and \(D_{gg} > 0.65 \) are reported in Table 1.

The 2\ell2\nu analysis is performed on the 8 TeV data set only. The final state in the 2\ell2\nu channel is characterized by two oppositely-charged leptons of the same flavour compatible with a Z boson, together with a large E_{miss} from the undetectable neutrinos. We require \(E_{miss} > 80 \text{ GeV} \).

The event selection and background estimation is performed as described in Ref. [16], with the exception that the jet categories defined in Ref. [16] are here grouped into a single category, i.e. the analysis is performed in an inclusive way. The \(m_T \) distribution in the off-shell signal region (\(m_T > 180 \text{ GeV} \)) is shown in Fig. 4. The expected and observed event yields in a gg-enriched region defined by \(m_T > 350 \text{ GeV} \) and \(E_{miss} > 100 \text{ GeV} \) are reported in Table 2.

Systematic uncertainties comprise experimental uncertainties on the signal efficiency and background yield evaluation, as well as uncertainties on the signal and background from theoretical predictions. Since the measurement is performed in wide \(m_{ZZ} \) regions, there are sources of systematic uncertainties that only affect the total normalization and others that affect both the normalization and the shape of the observables used in this analysis. In the 4\ell final state, all the systematic uncertainties on the signal and background normalization are partially correlated...
Table 1: Expected and observed numbers of events in the 4\ell and 2\ell2\nu channels in gg-enriched regions, defined by \(m_{4\ell} \geq 330 \text{ GeV} \) and \(T_{gg} > 0.65 \) (4\ell), and by \(m_T > 350 \text{ GeV} \) and \(E_{\text{miss}}^T > 100 \text{ GeV} \) (2\ell2\nu). The numbers of expected events are given separately for the gg and VBF processes, and for a SM Higgs boson (\(\Gamma_H = \Gamma_{\text{SM}}^H \)) and a Higgs boson width of \(\Gamma_H = 10 \times \Gamma_{\text{SM}}^H \). The unphysical expected contributions for the signal and background components are also reported separately, for the gg and VBF processes. For both processes, the sum of the signal and background components differs from the total due to the negative interferences. The parameters are set to \(\mu = \mu_{ggH} = \mu_{VBF} = 1 \).

<table>
<thead>
<tr>
<th></th>
<th>4\ell</th>
<th>2\ell2\nu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>total gg ((\Gamma_H = \Gamma_{\text{SM}}^H))</td>
<td>1.8 \pm 0.3</td>
</tr>
<tr>
<td></td>
<td>gg signal component ((\Gamma_H = \Gamma_{\text{SM}}^H))</td>
<td>1.3 \pm 0.2</td>
</tr>
<tr>
<td></td>
<td>gg background component</td>
<td>2.3 \pm 0.4</td>
</tr>
<tr>
<td>(b)</td>
<td>total gg ((\Gamma_H = 10 \times \Gamma_{\text{SM}}^H))</td>
<td>9.9 \pm 1.2</td>
</tr>
<tr>
<td>(c)</td>
<td>total VBF ((\Gamma_H = \Gamma_{\text{SM}}^H))</td>
<td>0.23 \pm 0.01</td>
</tr>
<tr>
<td></td>
<td>VBF signal component ((\Gamma_H = \Gamma_{\text{SM}}^H))</td>
<td>0.11 \pm 0.01</td>
</tr>
<tr>
<td></td>
<td>VBF background component</td>
<td>0.35 \pm 0.02</td>
</tr>
<tr>
<td>(d)</td>
<td>total VBF ((\Gamma_H = 10 \times \Gamma_{\text{SM}}^H))</td>
<td>0.77 \pm 0.04</td>
</tr>
<tr>
<td>(e)</td>
<td>q\bar{q} background</td>
<td>9.3 \pm 0.7</td>
</tr>
<tr>
<td>(f)</td>
<td>other backgrounds</td>
<td>0.05 \pm 0.02</td>
</tr>
<tr>
<td>(a+c+e+f)</td>
<td>total expected ((\Gamma_H = \Gamma_{\text{SM}}^H))</td>
<td>11.4 \pm 0.8</td>
</tr>
<tr>
<td>(b+d+e+f)</td>
<td>total expected ((\Gamma_H = 10 \times \Gamma_{\text{SM}}^H))</td>
<td>20.1 \pm 1.4</td>
</tr>
<tr>
<td>(a+c+e+f)</td>
<td>observed</td>
<td>11</td>
</tr>
</tbody>
</table>

between the low- and high-mass regions.

Among the signal uncertainties, experimental systematic uncertainties are evaluated from observed events for the trigger efficiency (1.5%), and combined object reconstruction, identification and isolation efficiencies (3–4% for muons, 5–11% for electrons) \[7\]. In the 2\ell2\nu final state, the effects of the lepton momentum scale (1–2%) and jet energy scale (1%) are taken into account and propagated to the evaluation of \(E_{\text{miss}}^T \). The uncertainty in the b-jet veto (1–3%) is estimated from simulation using correction factors for the b-tagging and b-misidentification efficiencies as measured from the dijet and \(t\bar{t} \) decay control samples \[38\].

Theoretical uncertainties in the q\bar{q} background contribution are within 4–10% depending on \(m_{ZZ} \) \[7\]. The systematic uncertainty in the normalization of the reducible backgrounds is evaluated following the methods described in Refs. \[7, 16\]. In the 2\ell2\nu channel, for which these contributions are not negligible at high mass, the estimation from control samples for the Z+jets and for the sum of the \(t\bar{t}, tW \) and WW contributions leads to uncertainties of 25% and 15% in the respective background yields. Theoretical uncertainties in the high mass contribution from the gluon-induced processes, which affect both the normalization and the shape, are especially important in this analysis (in particular for the signal and interference contributions that are scaled by large factors). However, these uncertainties partially cancel when measuring simultaneously the yield from the same process in the on-shell signal region. The remaining \(m_{ZZ} \)-dependent uncertainties in the QCD renormalization and factorization scales are derived using the K factor variations from Ref. \[14\], corresponding to a factor of two up or down from the nominal \(m_{ZZ}/2 \) values, and amount to 2–4%. For the gg \(\rightarrow ZZ \) continuum background production, we assign a 10% additional uncertainty on the K factor, following Ref. \[22\] and taking into account the different mass ranges and selections on the specific final
Figure 4: Distribution of the transverse mass in the $2\ell 2\nu$ channel. Points represent the data, filled histograms the expected contributions from the backgrounds, and from the gluon fusion (gg) and vector boson fusion (VV) SM processes (including the Higgs-mediated contributions). The dashed line corresponds to the total expected yield for a Higgs boson width of $\Gamma_H = 10 \times \Gamma_{H}^{SM}$. The parameters are set to $\mu = \mu_{ggH} = \mu_{VBF} = 1$. The bin size varies from 80 to 210 GeV and the last bin includes all entries with transverse masses above 1 TeV.

State. This uncertainty also affects the interference with the signal. The PDF uncertainties are estimated following Refs. [39, 40] by changing the NLO PDF set from MSTW2008 to CT10 [41] and NNPDF2.1 [42], and the residual contribution is about 1%. For the VBF processes, no significant m_{ZZ}-dependence is found regarding the QCD scales and PDF uncertainties, which are in general much smaller than for the gluon fusion processes [8, 9]. In the $2\ell 2\nu$ final state, additional uncertainties on the yield arising from the theoretical description of the parton shower and underlying event are taken into account (6%).

We perform a simultaneous unbinned maximum likelihood fit of a signal-plus-background model to the measured distributions in the 4ℓ and $2\ell 2\nu$ channels. In the 4ℓ channel the analysis is performed in the on-shell and off-shell signal regions defined above. In the on-shell region, a three-dimensional distribution $\vec{x} = (m_{4\ell}, D_{bkg}^{\text{kin}}, p_{T}^{4\ell})$ or D_{jet} is analyzed, following the methodology described in Ref. [7], where the quantity D_{jet} is a discriminant used to separate VBF from gluon fusion production. In the off-shell region, a two-dimensional distribution $\vec{x} = (m_{4\ell}, D_{gg})$ is analyzed. In the $2\ell 2\nu$ channel, only the off-shell Higgs boson production is analyzed, using the $\vec{x} = m_{T}$ distribution.

The probability distribution functions are built using the full detector simulation or data control regions, and are defined for the signal, the background, or the interference between the two contributions, P_{sig}, P_{bkg}, or P_{int}, respectively, as a function of the observables \vec{x} discussed above. Several production mechanisms are considered for the signal and the background, such as gluon fusion (gg), VBF, and quark-antiquark annihilation ($q\bar{q}$). The total probability distri-
bution function for the off-shell region includes the interference of two contributions in each production process:

\[
P_{\text{tot}}^{\text{on-shell}}(\vec{x}) = \mu_{\text{ggH}} \times (\Gamma_H/\Gamma_0) \times \mathcal{P}_{\text{sig}}^{\text{ggH}}(\vec{x}) + \sqrt{\mu_{\text{ggH}} \times (\Gamma_H/\Gamma_0)} \times \mathcal{P}_{\text{int}}^{\text{ggH}}(\vec{x}) + \mathcal{P}_{\text{bkg}}^{\text{ggH}}(\vec{x})
\]

\[
+ \mu_{\text{VBF}} \times (\Gamma_H/\Gamma_0) \times \mathcal{P}_{\text{sig}}^{\text{VBF}}(\vec{x}) + \sqrt{\mu_{\text{VBF}} \times (\Gamma_H/\Gamma_0)} \times \mathcal{P}_{\text{int}}^{\text{VBF}}(\vec{x}) + \mathcal{P}_{\text{bkg}}^{\text{VBF}}(\vec{x})
\]

\[\text{(5)}\]

\[
+ \mathcal{P}_{\text{bkg}}^{\text{VBF}}(\vec{x}) + \ldots
\]

The list of background processes is extended beyond those quoted depending on the final state (Z+X, top, W+jets, WW, WZ). The parameters \(\mu_{\text{ggH}}\) and \(\mu_{\text{VBF}}\) are the scale factors which modify the signal strength with respect to the reference parameterization in each production mechanism independently. The parameter \((\Gamma_H/\Gamma_0)\) is the scale factor which modifies the observed width with respect to the \(\Gamma_0\) value used in the reference parameterization.

In the on-shell region, the parameterization includes the small contribution of the \(t\bar{t}H\) and VH Higgs boson production mechanisms, which are related to the gluon fusion and VBF processes, respectively, because either the quark or the vector boson coupling to the Higgs boson is in common among those processes. Interference effects are negligible in the on-shell region. The total probability distribution function for the on-shell region is written as

\[
P_{\text{tot}}^{\text{off-shell}}(\vec{x}) = \mu_{\text{ggH}} \times (\Gamma_H/\Gamma_0) \times \mathcal{P}_{\text{sig}}^{\text{ggH}}(\vec{x}) + \sqrt{\mu_{\text{ggH}} \times (\Gamma_H/\Gamma_0)} \times \mathcal{P}_{\text{int}}^{\text{ggH}}(\vec{x}) + \mathcal{P}_{\text{bkg}}^{\text{ggH}}(\vec{x})
\]

\[\text{(6)}\]

\[
+ \mu_{\text{VBF}} \times (\Gamma_H/\Gamma_0) \times \mathcal{P}_{\text{sig}}^{\text{VBF}}(\vec{x}) + \sqrt{\mu_{\text{VBF}} \times (\Gamma_H/\Gamma_0)} \times \mathcal{P}_{\text{int}}^{\text{VBF}}(\vec{x}) + \mathcal{P}_{\text{bkg}}^{\text{VBF}}(\vec{x}) + \ldots
\]

The above parameterizations in Eqs. (5, 6) are performed for the tree-level HVV coupling of a scalar Higgs boson, consistent with our observations [4, 7]. We find that the presence of anomalous couplings in the HVV interaction would lead to enhanced off-shell production and would make our constraint tighter. Further discussion can also be found in Ref. [43].

The three parameters \(\Gamma_H\), \(\mu_{\text{ggH}}\), and \(\mu_{\text{VBF}}\) are left unconstrained in the fit. The \(\mu_{\text{ggH}}\) and \(\mu_{\text{VBF}}\) fitted values are found to be almost identical to those obtained in Ref. [7]. Systematic uncertainties are included as nuisance parameters and are treated according to the frequentist paradigm [44]. The shapes and normalizations of the signal and of each background component are allowed to vary within their uncertainties, and the correlations in the sources of systematic uncertainty are taken into account.

The fit results are shown in Fig. 5 as scans of the negative log-likelihood, \(-2\Delta \ln L\), as a function of \(\Gamma_H\). Combining the two channels a limit is observed (expected) on the total width of \(\Gamma_H < 22\) MeV (33 MeV) at a 95\% CL, which is 5.4 (8.0) times the expected value in the SM. The best fit value and 68\% CL interval correspond to \(\Gamma_H = 1.8^{+1.7}_{-1.8}\) MeV. The result of the 4\ell analysis alone is an observed (expected) limit of \(\Gamma_H < 33\) MeV (42 MeV) at a 95\% CL, which is 8.0 (10.1) times the SM value, and the result of the analysis combining the 4\ell on-shell and 2/2\nu off-shell regions is \(\Gamma_H < 33\) MeV (44 MeV) at a 95\% CL, which is 8.1 (10.6) times the SM value. The best fit values and 68\% CL intervals are \(\Gamma_H = 1.9^{+1.7}_{-1.9}\) MeV and \(\Gamma_H = 1.8^{+1.4}_{-1.8}\) MeV for the 4\ell analysis and for the analysis combining the 4\ell on-shell and 2/2\nu off-shell regions, respectively. The statistical compatibility of the observed results with the expectation under the SM hypothesis corresponds to a p-value of 0.24. The statistical coverage of the results obtained in the likelihood scan has also been tested with the Feldman–Cousins approach [15] for the combined analysis leading to consistent although slightly tighter constraints. The analysis in the 4\ell channel has also been performed in a one-dimensional fit using either \(m_{4\ell}\) or \(D_{gg}\) and consistent results are found. The expected limit without using the MELA likelihood discriminant \(D_{gg}\) is 40\% larger in the 4\ell channel.
In summary, we have presented constraints on the total Higgs boson width using its relative on-shell and off-shell production and decay rates to four leptons or two leptons and two neutrinos. The analysis is based on the 2011 and 2012 data sets corresponding to integrated luminosities of 5.1 fb\(^{-1}\) at \(\sqrt{s} = 7\) TeV and 19.7 fb\(^{-1}\) at \(\sqrt{s} = 8\) TeV. The four-lepton analysis uses the measured invariant mass distribution near the peak and above the Z-boson pair production threshold, as well as a likelihood discriminant to separate the gluon fusion ZZ production from the q\(\bar{q}\) → ZZ background, while the two-lepton plus two-neutrino off-shell analysis relies on the transverse mass distribution. The presented analysis determines the independent contributions of the gluon fusion and VBF production mechanisms from the data in the on-shell region. It relies nevertheless on the knowledge of the coupling ratios between the off-shell and on-shell production, i.e. the dominance of the top quark loop in the gluon fusion production mechanism and the absence of new particle contribution in the loop. The presence of anomalous couplings in the HVV interaction would lead to enhanced off-shell production and would make our constraint tighter. The combined fit of the 4\(\ell\) and 2\(\ell\)\(\nu\) channels leads to an upper limit on the Higgs boson width of \(\Gamma_H < 22\) MeV at a 95\% confidence level, which is 5.4 times the expected width of the SM Higgs boson. This result considerably improves upon previous experimental constraints on the new boson decay width from the direct measurement at the resonance peak.

We wish to thank our theoretician colleagues and in particular Fabrizio Caola for providing the theoretical uncertainty in the gg → ZZ background K factor, Tobias Kasprzik for providing the numerical calculations on the EW corrections for the q\(\bar{q}\) → ZZ background process,
Giampiero Passarino for his calculations of the m_{ZZ}-dependent K factor and its variations with renormalization and factorization scales, and Marco Zaro for checking the independence on m_{ZZ} of higher-order corrections in VBF processes. We also gratefully acknowledge Alessandro Ballestrero, John Campbell, Keith Ellis, Stefano Forte, Nikolas Kauer, Kirill Melnikov, and Ciaran Williams for their help in optimizing the Monte Carlo generators for this analysis.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFS, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[34] D. De Florian, G. Ferrera, M. Grazzini, and D. Tommasini, “Higgs boson production at the LHC: transverse momentum resummation effects in the $H \rightarrow \gamma\gamma$, $H \rightarrow WW \rightarrow \ell\nu\ell\nu$ and $H \rightarrow ZZ \rightarrow 4\ell$ decay modes”, *JHEP* 06 (2012) 132, [doi:10.1007/JHEP06(2012)132](https://dx.doi.org/10.1007/JHEP06(2012)132) [arXiv:1203.6321v1](http://arxiv.org/abs/1203.6321v1).

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

UniversitätAntwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Gent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebegs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, M.E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev², P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.⁸

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran⁹, A. Ellithi Kamel¹⁰, M.A. Mahmoud¹¹, A. Radi¹²,¹³

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Gadrat

Institut of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany
University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidás, D. Horváth, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Bhabha Atomic Research Centre, Mumbai, India
A. Ahmad, S. Banerjee, S. Bhatnagar, V. Bhatnagar, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Bhowmik, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait, A. Gurum, G. Kole,
A. Gozzelinoa, K. Kanishcheva,c, S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Salvinia, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b,2

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,27, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,27, R. Dell’Orsoa, S. Donatoa,c, F. Fioria,c, L. Foàa,c, A. Giassia, M.T. Grippoa,27, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, C.S. Moona,28, F. Palladinia,b, A. Rizzia,b, A. Savoy-Navarroa,29, A.T. Serbana, P. Spagnoloa, P. Squillaciotia, G. Tonellia,b, A. Venturia, P.G. Verdinia, C. Vernieria,c,2

INFN Sezione di Roma a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, G. D’imperioa,b, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jordaa, E. Longoa,b, F. Margarollia,b, P. Meridia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b,c, C. Rovellia, F. Santanastasioa,b, L. Soffia,b,2, P. Traczyka,b

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b,2, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b,2, M. Costaa,b, A. Deganea,b, N. Demariaa, L. Fincoa,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monaccia,b, M. Musicha, M.M. Obertinoa,c,2, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia,b, G.L. Pinna Angionia,b, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, T. Tamponib

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Schizzia,b,2, T. Umera,b, A. Zanettia,b

Chonbuk National University, Chonju, Korea
T.J. Kim

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyunpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, S. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea
Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P. H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shaib

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futsian, A. Gilbert,

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarbrough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA
The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA
University of Puerto Rico, Mayaguez, USA
E. Brownson, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at Cairo University, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at The University of Kansas, Lawrence, USA
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at University of Debrecen, Debrecen, Hungary
20: Also at University of Visva-Bharati, Santiniketan, India
21: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
22: Now at King Abdulaziz University, Jeddah, Saudi Arabia
23: Also at University of Ruhuna, Matara, Sri Lanka
24: Also at Isfahan University of Technology, Isfahan, Iran
25: Also at Sharif University of Technology, Tehran, Iran
26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
27: Also at Università degli Studi di Siena, Siena, Italy
28: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
29: Also at Purdue University, West Lafayette, USA
30: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
31: Also at National Centre for Nuclear Research, Swierk, Poland
32: Also at Institute for Nuclear Research, Moscow, Russia
33: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
34: Also at California Institute of Technology, Pasadena, USA
35: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
36: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
37: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
38: Also at University of Athens, Athens, Greece
39: Also at Paul Scherrer Institut, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
42: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at Adiyaman University, Adiyaman, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Mersin University, Mersin, Turkey
46: Also at Izmir Institute of Technology, Izmir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Marmara University, Istanbul, Turkey
49: Also at Kafkas University, Kars, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
52: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
53: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
54: Also at Argonne National Laboratory, Argonne, USA
55: Also at Erzincan University, Erzincan, Turkey
56: Also at Yildiz Technical University, Istanbul, Turkey
57: Also at Texas A&M University at Qatar, Doha, Qatar
58: Also at Kyungpook National University, Daegu, Korea