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Recently experimentalists have discovered several charged charmonium-like hadrons Z+
c with un-

conventional quark content c̄cd̄u. We perform a search for Z+
c with mass below 4.2 GeV in the

channel IG(JPC) = 1+(1+−) using lattice QCD. The major challenge is presented by the two-
meson states J/ψ π, ψ2Sπ, ψ1Dπ, DD̄

∗, D∗D̄∗, ηcρ that are inevitably present in this channel.
The spectrum of eigenstates is extracted using a number of meson-meson and diquark-antidiquark
interpolating fields. For our pion mass of 266 MeV we find all the expected two-meson states but no
additional candidate for Z+

c below 4.2 GeV. Possible reasons for not seeing an additional eigenstate
related to Z+

c are discussed. We also illustrate how a simulation incorporating interpolators with a
structure resembling low-lying two-mesons states seems to render a Z+

c candidate, which is however
not robust after further two-meson states around 4.2 GeV are implemented.

I. INTRODUCTION

Quantum Chromodynamics (QCD) is the fundamen-
tal quantum field theory of quarks and gluons. In its
strong coupling regime it should explain the masses and
other properties of hadrons. Conventional hadrons are
composed of either a valence quark q and antiquark q̄
(mesons) or three valence quarks (baryons) on top of the
sea of quark-antiquark pairs and gluons. One of the most
notable and perhaps surprising features until recently was
the complete absence of exotic hadrons like q̄q̄qq or q̄qqqq.
This has changed due to fascinating experimental dis-

coveries over the past seven years. Most of the newly
discovered exotic states have unconventional flavor con-
tent, likely c̄cd̄u, and spin and parity quantum numbers
JP = 1+. The first of these states was the Z+(4430),
discovered in 2007 by Belle [1], remained unconfirmed
by BaBar [2], and was recently confirmed by LHCb [3].
In recent years several similar states have been found by
experiment. The Z+

c (3900) → J/ψ π+ was discovered
slightly above DD̄∗ threshold by BESIII [4], and was
confirmed by Belle [5] as well as using CLEO-c data [6].
The spin and parity of Z+

c (3900) are unclear, and it may
correspond to the same state as Z+

c (3885) → (DD̄∗)+

with JP = 1+ [7]. The pair Z+
c (4020) → hcπ

+ [8]
and Z+

c (4025) → (D∗D̄∗)+ [9], which may correspond
to the same state, was found by BESIII slightly above
D∗D̄∗ threshold. Their spin and parity are unclear and
JP = 1+ is preferred. Finally, Z+(4200)→ J/ψ π+ was
reported in 2014 by Belle [10] favoring JP = 1+. All
these states have G-parity G = +1 while their neutral
partners have charge conjugation C=−1. Therefore we
focus on the channel with IG(JPC) = 1+(1+−).
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On the theoretical side, these states have been re-
lated to mesonic molecules, diquark-antidiquark struc-
tures, hadrocharmonium [11] or Born-Oppenheimer
tetraquarks [12]. However the existence of these states
within QCD has not yet been settled. While these states
have been addressed theoretically with a number of phe-
nomenological approaches like quark models, (unitarized)
effective field theory and QCD sum rules (for reviews
with references see [13–15]), these approaches are either
not based directly on QCD or they depend on parame-
ters (i.e., low energy constants) that are not present in
the QCD Lagrangian. The existence of Z+

c has never
been established from first-principle QCD. The problem
is a large magnitude of the strong coupling constant αs
at the hadronic energy scale, hence a perturbative ex-
pansion is not successful. Lattice QCD represents the
only non-perturbative approach that is based directly on
QCD, depending only on parameters mq and αs that ap-
pear in the QCD Lagrangian.

Therefore it is an urgent theoretical task to establish
whether QCD supports the presence of an exotic state
with quark content c̄cd̄u using ab-initio lattice QCD. In
a lattice QCD simulation, the states are identified from
discrete energy-levels En and in principle all eigenstates
with the given quantum number IG(JPC) = 1+(1+−)
appear. in searching for Z+

c candidates the whole finite
volume spectrum needs to be identified. In particular
eigenstates with significant J/ψ π, ψ2Sπ, ψ1Dπ, DD̄

∗,
D∗D̄∗, ηcρ components appear which presents a major
challenge.

The first lattice simulation aimed at Z+
c (3900) focused

on the region below 4 GeV and found only two-particle
states J/ψπ and DD̄∗ and no indication for Z+

c (3900)
[16]. The second simulation studied DD̄∗ scattering near
threshold in the same channel and did not yield any in-
dication for Z+

c (3900) either [17].

In the present paper we extend the search for candi-
dates in the channel IG(JPC) = 1+(1+−) up to 4.2 GeV
(for our setup with mπ = 266 MeV). The task is to de-
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termine the discrete spectrum in this channel with the
challenging aim to establish all expected energy levels.
The main question is whether there are any extra energy
levels in addition to the number of expected two-meson
states. An additional energy level near E ≃ mZc would
be a definite signature for a Z+

c with an approximate
mass mZc .
This paper is organized as follows. Section II discusses

expected two-meson states below 4.3 GeV. Section III de-
tails how energy levels and overlaps are extracted, while
section IV is dedicated to the results. In section V we
summarize cautionary remarks and lessons which may be
useful for future lattice simulations, and we conclude in
Section VI.

II. TWO-MESON STATES IN LATTICE QCD

In lattice QCD the states are identified from discrete
energy-levels En and in principle all finite volume eigen-
states with given quantum numbers appear. The eigen-
state of interest gives an energy level at En ≃ mZc if Zc
exists and is not too broad. However, various two-meson
states M1(p)M2(−p) have the same quantum numbers
which presents a major challenge. Individual momenta
are discretized due to the periodic boundary conditions
in space. If the two mesons do not interact, then p = 2π

L k

with k ∈ N
3, and the energies ofM1(k)M2(−k) states for

a→ 0 are

En.i. = E1(k)+E2(k) , E1,2(k) =
√

m2
1,2 + k(2πL )2 . (1)

with k ≡ k2. These values are slightly shifted in presence
of the interaction. In experiment, these states correspond
to the two-meson decay products with a continuous en-
ergy spectrum. In the current study we neglect possible
channels with three or more mesons.
Our simulation employs dynamical u and d quarks that

correspond to the pion mass mπ ≃ 266 MeV [18, 19].
The lattice spacing is a = 0.1239(13) fm. The rather
small box V = 163 × 32 with L ≃ 2 fm may lead to
sizable finite volume corrections, but it is responsible for
a crucial practical advantage. It makes the Z+

c search
tractable since it reduces the number of M1(k)M2(−k)
states in the considered energy range, as discussed in
Section VC.
On our lattice (with mπ = 266 MeV) the two-particle

states with IG(JP ) = 1+(1+) and total momentum zero
in the energy region of interest E ≤ 4.3 GeV are1

J/ψ(0)π(0), ηc(0)ρ(0), J/ψ(1)π(−1), D(0)D̄∗(0),

ψ2S(0)π(0), D
∗(0)D̄∗(0), ψ1D(0)π(0), ηc(1)ρ(−1),

D(1)D̄∗(−1), ψ3(0)π(0), J/ψ(2)π(−2), D
∗(1)D̄∗(−1)

D(2)D̄∗(−2) (2)

1 We take Elat
n −mlat

s.a. +m
exp
s.a. < 4.3 GeV as argued below.

in order of increasing energy. Their lattice energies En.i.

in the non-interacting limit are denoted by the horizontal
lines in Fig. 1b and the values follow from the masses
and single-meson energies determined on the same set
of gauge configurations [18, 20]. Establishing two-meson
states up to 4.3 GeV at mπ = 266 MeV should suffice
for searching fairly narrow exotic candidates with mass
below 4.07 GeV for physical pion mass2.

The ψ1D in (2) denotes ψ(3770). The appearance of
ψ3π, where ψ3 denotes the charmonium with JPC=3−−,
is an artifact due to reduced symmetry on the cubic lat-
tice as discussed in Appendix A. The hc(0)π(0) is not
present for JP = 1+ since non-vanishing relative mo-
mentum p is required by the orbital momentum l = 1.
The hc(1)π(−1) lies near 4.25 GeV, but is not listed in
(2) since this is the only two-meson state below 4.3 GeV
that we do not aim to extract due to the arguments given
in Appendix A. The energy of ρ(−1) is extracted from
the diagonal correlator of d̄γju neglecting the resonance
nature of the ρ.

Our aim is to extract and identify all two-particle
energy-levels (2) from the full, coupled correlator matrix
of hadron operators and establish whether QCD predicts
additional states related to the exotic Z+

c hadron.

This goal presents a considerable challenge by itself.
Note that a rigorous treatment (via a Lüscher-type finite
volume formalism [21–25]) would require the determina-
tion of the scattering matrix for all two-particle chan-
nels that couple, and a subsequent determination of the
mass and the width for any Z+

c resonance(s). The elas-
tic scattering within a single channel has been rigorously
treated by a number of lattice simulations recently. The
first lattice simulation aimed at determining scattering
matrix for two-coupled channels [26] also shows promise
in this respect, while the rigorous treatment of seven cou-
pled channels is still beyond the capabilities of any lattice
simulation at present.

Therefore we take a simplified approach where the ex-
istence of Z+

c is investigated by analyzing the number
of energy levels, their positions and overlaps with the
considered lattice operators 〈Ω|Oj |n〉. The formalism
does predict an appearance of a level in addition to the
(shifted) two-particle levels if there is a relatively narrow
resonance in one channel. We have, for example, found
additional levels related to the resonances ρ [20],K∗(892)
[27], D∗

0(2400) [18], and the bound state D∗
s0(2317) [28].

Additional levels related to K∗
0 (1430) [26] and X(3872)

[29] have been found in the simulations of two coupled
channels. Based on this experience, we expect an ad-
ditional energy level if Zc is of similar origin, i.e. if it
corresponds to a pole of the scattering matrix near phys-
ical axis.

2 The value 4.07GeV results from taking into account a possible

pion mass dependence which we estimate conservatively by the

behavior of the threshold most sensitive to the pion mass.
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III. TOWARDS THE LATTICE ENERGY

SPECTRUM

The energiesEn and the overlaps Znj ≡ 〈Ω|Oj |n〉 of the
eigenstates n are extracted from the correlator matrix

Cjk(t) = 〈Ω|Oj(tsrc+t)O
†
k(tsrc)|Ω〉 =

∑

n

Znj Z
n∗
k e−Ent .

(3)
The physical system for given quantum numbers is cre-

ated from the vacuum |Ω〉 using creation operators O†
k

at time tsrc and the system propagates for time t be-
fore being annihilated at tsink = tsrc + t by Oj . The
creation/annihilation operators are called interpolators.
Our correlation matrix is averaged over every second tsrc.
We employ 22 interpolators OM1M2 that couple well

to the two-meson states and the choice is expected to
be complete enough to render all two-meson states listed
in (2). In addition, we implement 4 diquark-antidiquark
interpolators O4q with structure [c̄d̄]3c [cu]3̄c which is ex-
pected to couple well to possible Z+

c if it has a siz-
able Fock component of this kind. We point out that
O4q ≃ [c̄d̄]3c [cu]3̄c couples also to two-meson states via
Fierz rearrangement. Representative examples of em-
ployed interpolators are

O
ψ(0)π(0)
1 = c̄γic(0) d̄γ5u(0) , (4)

Oψ(1)π(−1) =
∑

ek=±ex,y,z

c̄γic(ek) d̄γ5u(−ek) ,

Oψ(2)π(−2)=
∑

|uk|2=2

c̄γic(uk) d̄γ5u(−uk) ,

Oηc(0)ρ(0) = c̄γ5c(0) d̄γiu(0) ,

O
D(0)D∗(0)
1 = c̄γ5u(0) d̄γic(0) + {γ5 ↔ γi} ,

OD
∗(0)D∗(0) = ǫijk c̄γju(0) d̄γkc(0) ,

O4q
1 ∝ ǫabcǫab′c′(c̄bCγ5d̄c cb′γiCuc′ − c̄bCγid̄c cb′γ5Cuc′) ,

O4q
2 ∝ ǫabcǫab′c′(c̄bCd̄c cb′γiγ5Cuc′ − c̄bCγiγ5d̄c cb′Cuc′) ,

while the full list of interpolators together with related
details is provided in Appendix A.
The momenta are projected separately for

each meson in OM1M2 as M(k) ≃ q̄1Γq2(k) ≡
∑

x
ei2πk·x/Lq̄1(x, t)Γq2(x, t). All quark fields are

smeared according to the distillation method [18, 30].
The Wick contractions for the matrix of correlators (3)

with I=1 involve only diagrams where the light quarks d̄
and u propagate from source to sink. Concerning charm
quarks, there are diagrams where they propagate from
source to sink and diagrams where charm quarks annihi-
late (Fig. 4 in Appendix B). The second class represents
mixing with channels that contain no charm quarks, their
effect is suppressed due to the Okubo-Zweig-Iizuka rule,
and the experiments do not observe these decay channels
in the region of interest. The results in the present work
are therefore based on the contractions in Fig. 4a, where
charm quarks propagate from source to sink.

The energies En and overlaps Znj are obtained from
the 22 × 22 correlator matrix (3) using the generalized
eigenvalue method [31–34]

C(t)u(n)(t) = λ(n)(t)C(t0)u
(n)(t) . (5)

The energies En are extracted from the asymptotically
exponential behaviour of the eigenvalues: λ(n)(t) ∝
e−Ent at large t. We use correlated two-exponential fits
to λ(n)(t) where consistent results are found for t0=2, 3
and we present them for t0 = 2. The errors-bars cor-
respond to statistical errors obtained using the single-
elimination jack-knife. Overlap factors follow from

Z
(n)
j (t) = eEnt/2

|Cjk(t)u
(n)
k (t)|

|C(t)
1

2u(n)(t)|
, (6)

fitted to a constant in 6 ≤ t ≤ 11.
The treatment of the charm quarks requires special

care due to discretization errors. We employ the Fermilab
method [35, 36], where discretization uncertainties are
suppressed in the difference En − ms.a. with the spin-
average mass ms.a.≡

1
4 (mηc+3mJ/ψ). The same method

and tuning of the charm quark mass mc lead to a good
agreement with experiment for conventional charmonium
[18], masses and widths of D mesons [18], and the Ds

spectrum [19, 28] on this ensemble. In view of this, we
will compare Elatn − mlat

s.a. + mexp
s.a. to experiment where

amlat
ηc =1.47392(31) and amlat

J/ψ=1.54171(43).

IV. RESULTS

The central result of our simulation is the discrete spec-
trum in Fig. 1b, while experimental candidates in the
same channel are collected in Fig. 1a. In the energy re-
gion below E ≤ 4.3 GeV one expects thirteen discrete
two-particle states (2) near the horizontal lines, which
continue in Fig. 1a to show their relation to the contin-
uum of scattering states in experiment.
We interpret the lowest thirteen levels (indicated by

black circles) as interacting two-particle states for the
following reasons:

• The levels appear near the non-interacting energies
(1) of the two-particle states (2).

• Each of these levels n has the largest overlap with
the corresponding OM1M2 . This is shown in Fig. 2
where overlaps 〈Ω|Oj |n〉 are provided in the form
of ratios Znj /maxmZ

m
j that do not depend on the

normalization of Oj (A1). The same conclusion
applies for Znj in Fig. 5 which depend on the nor-
malization of Oj (A1).

• When one of OM1M2 is omitted from the correlator
matrix, the corresponding two-particle level disap-
pears from the spectrum or becomes very noisy.
This also indicates that the two-particle states are
either decoupled or cannot be reliably extracted for
the basis without the corresponding interpolators.
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FIG. 1. The spectrum for quantum numbers IG(JPC) = 1+(1+−). (a) Position of the experimental Z+
c candidates [13]. (b,c)

The discrete energy spectrum from our lattice simulation: (b) shows energies based on complete 22×22 matrix of interpolators,
(c) is based on the 18× 18 correlator matrix without diquark-antidiquark interpolating fields O4q

1−4 (A1). The thirteen lowest
lattice energy levels (black circles) are interpreted as two-particle states, which are inevitably present in a dynamical lattice
QCD simulation. No additional candidate for the exotic Z+

c is found below 4.2 GeV. The dashed vertical lines indicate twice
the experimental widths to illustrate the energy range in which the additional energy level due to Zc might be expected.

• The thirteen lowest levels remain unaffected after
O4q

1−4 are excluded from the interpolator basis. This
can be seen by comparing the energy spectra in
Figs. 1b and 1c, that show the result from the
complete 22×22 and the truncated 18×18 correla-
tion matrices. We verified that the thirteen lowest
levels have very similar Znj for both choices of basis.

The energy level n = 14 at E ≃ 4.39 GeV in Fig. 1b
(shown in green) seems like a sought state that appears in
addition to thirteen expected two-meson states (2). This
eigenstate also has largest overlap with the tetraquark
interpolating fields O4q in Figs. 2 and 5. It might seem
tempting to relate this level to a possible Z+

c candidate.
However, the level n = 14 lies close to the expected two-
meson states above 4.3 GeV that we have omitted in the
list (2) since our aim was to search for candidates below
4.2 GeV. Although the eigenstate n = 14 might have an
interesting structure, we cannot attribute this level to
Z+
c candidate as we cannot rule out that it corresponds

to one of omitted two-meson states above 4.3 GeV.
The main conclusion of our simulation is that we do

not find any additional state below 4.2 GeV that could be
related to an exotic candidate. We only find the expected
two-meson states (2).
It is indeed surprising that with a basis (A1), which

contains a great variety of interpolating fields with the
quantum numbers of interest (IG(JPC) = 1+(1+−)), one
does not, for example, induce Zc(3900)/Z

+
c (3885) that

has been confirmed by several experiments [4–7]. Note
that our list of creation/annihilation operators (A1) con-
tains also a number of field structures J/Ψπ and DD̄∗

which correspond to channels where these resonances
have been found in experiments
We list several possible reasons for the absence of an

energy levels related to the exotic Z+
c candidate in our

simulation:

• The resonance Z+
c (3900) was found in J/ψ π in-

variant mass only through e+e− → Y (4260) →
(J/ψ π+)π− [4–6]. No resonant structure in J/ψ π+

invariant mass was seen in B̄0 → (J/ψ π+)K− by
BELLE [10], in B̄0 → (J/ψπ+)π− by LHCb [37] or
in γp→ (J/ψ π+)n by COMPASS [38]. This might
indicate that the peak seen in e+e− → Y (4260)→
(J/ψ π+)π− might not be of dynamical origin.

• Along similar lines, several theoretical approaches
render peaks in J/ψπ invariant mass for e+e− →
Y (4260)→ π−(J/ψπ+) without invoking an exotic
state. This is for example reproduced as a coupled-
channel (sometimes called cusp) effect in [39, 40].
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FIG. 2. The overlaps Zn
j = 〈Ω|Oj |n〉 show the matrix elements of interpolators Oj between the vacuum 〈Ω| and the physical

eigenstate |n〉 on the lattice. We present the overlap ratios Zn
j /maxmZ

m
j where the denominator is the maximal |Zm

j | at given
operator number j. These ratios are independent on the normalization of the interpolators Oj . Levels n = 1, .., 14 are ordered
from lowest to highest En in Fig. 1b. The horizontal axis denotes j = 1, .., 22 corresponding to complete basis of interpolators
Oj (A1).

• The JP of Zc(3900), Zc(4020) and Zc(4025) is cur-
rently unknown from experiment. This might be
the reason for their absence in a simulation of 1+

channel. We view this possibility as unlikely, since
most previous studies favour 1+ for these states
[13].

• Even if the Z+
c resonant structure seen in experi-

ment is due to a relatively narrow c̄cd̄u state, there
might be several reasons that an additional state
is absent in our simulation. It is possible that Zc
exists only at physical mu/d and is absent at un-
physical mu/d in our simulation. Furthermore, our

set of eighteen interpolatorsOMM may not be com-
plete enough to render a Z+

c candidate in addition
to thirteen two-meson states, even if Z+

c existed at
mπ = 266 MeV.

• If significant S-wave D-wave mixing is vital for
creating the observed experimental spectrum our
setup might be unsuitable and we would probably
miss an energy level emerging from this mixing.

• Based on the experience discussed in Section II we
would expect an additional energy level if the Z+

c

state was a resonance associated to pole near the
real axis in the unphysical Riemann sheet. The

absence of an additional energy level could also in-
dicate a different origin of the experimental peak
like, e.g., a coupled-channel threshold effect.

V. CAUTIONARY REMARKS

In this search for exotics from first-principle QCD we
have learned some lessons and we thus collect here some
cautionary remarks.

A. Consideration of the ground state

In lattice QCD studies and QCD sum rule studies one
is sometimes tempted to draw conclusions on the exotic
states by looking at the ground state obtained from cor-
relators of type 〈Ω|O4q†O4q|Ω〉 or 〈Ω|OM1M2†OM1M2 |Ω〉.
This may be misleading.
The ground state for the quantum numbers in our

study is J/ψ π and we observe it for most interpola-
tors at large t after the exponentials due to higher states
have died out. This applies also for 〈O4q(t)|O4q(0)〉 ∝
e−(mJ/ψ+mπ)t at large t, as shown in Fig. 3g. Looking
at the ground state of the diquark-antidiquark correla-
tors alone, one cannot reach conclusions regarding Z+

c .
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This holds also for the ground states from ODD
∗

(used in
[17]) or OD

∗D∗

correlators alone. The coupling to J/ψ π,
ηcρ (and possibly some others) has to be taken into ac-
count, as shown by our study. These cautionary remarks
also apply to QCD sum-rule studies that are based on
correlators.

B. Reduced interpolator basis

Here we show an example why the Z+
c candidate is not

reliable as long as not all two-meson states with lower
energy values and at least one nearby state with higher
energy have been established. We illustrate that by a
simulation [41] that aims at extracting nine two-meson
states J/ψ(0)π(0), ηc(0)ρ(0), J/ψ(1)π(−1), D(0)D̄∗(0),
ψ2S(0)π(0), D∗(0)D̄∗(0), ψ1D(0)π(0), D(1)D̄∗(−1),
ψ3(0)π(0) using a correspondingly chosen interpolator
basis (numbered according to (A1))

O1−9, 11, 13−15, 17, 19−22 (7)

which should suffice for the extraction of the mentioned
nine two-meson states and possibly an additional exotic
candidate.
The spectrum in Fig. 3b and overlaps in Fig. 6 show

that the lowest nine states (indicated by black circles)
are two-meson states. When either one of OD(0)D∗(0),
OD(1)D∗(−1) orOD

∗(0)D∗(0) is omitted from the correlator
matrix, the corresponding two-particle level disappears
from the spectrum (Figs. 3d-3f).
The state n = 10 at E ≃ 4.16 GeV (shown in green)

is an extra state and it has large overlap with diquark-
antidiquark interpolators in Fig. 3. Figure 6 shows that
this state disappears from the spectrum if O4q are omit-
ted from the basis (7), so the O4q Fock component seems
to be crucial for its existence. We also verified that the
energy of the extra state is rather stable under different
choices ofOMM among (7), as long as the O4q are kept in
the basis. This led to the premature conclusion [41] that
an extra level n = 10 could be related to a Z+

c candidate.
The results in Section IV from the complete inter-

polator basis (A1), which incorporate also two-meson
states in the region between 4.2 and 4.3 GeV, do not
show an additional state near 4.16 GeV. Furthermore the
complete basis renders an additional state at higher en-
ergy E ≃ 4.39 GeV, therefore the state from Fig. 3 at
E ≃ 4.16 GeV is not a reliable candidate.
In fact, the appearance of an additional state close to

the energy region of the first omitted two-meson states
in Figs. 1 and 3 seems to indicate that such an addi-
tional state may be related to (a linear combination of)
omitted two-meson states via O4q . This is not surprising
as [c̄d̄]3c [cu]3̄c contains a linear combination of various
M1(k)M2(−k) after the Fierz rearrangement. In light
of this, it is puzzling that the O4q interpolators do not
render lower lying two-meson states M1(k)M2(−k) if the
corresponding OM1(k)M2(−k) are omitted from the basis.

This is shown in Figs. 3d-3f for the cases if either one of
D(0)D∗(0), D(1)D∗(−1) or D∗(0)D∗(0) is omitted.

From this we conclude that an exotic candidate may
be reliable only when all two-meson states below it and
at least one slightly above it have also been established
in the lattice simulation.

C. Aiming at larger volumes

A lattice study at larger lattice size L will involve even
more statesM1(k)M2(−k) below a certain energy accord-
ing to (1). The present number of thirteen two-mesons
states below 4.3 GeV at L ≃ 2 fm would significantly
increase for a simulation at L = 3 fm. This would re-
quire additional scattering operators thus increasing the
correlator matrix size. Due to the larger physical volume
more eigenvectors would be required in the distillation
method.

VI. CONCLUSIONS

We presented a lattice QCD simulation for the c̄cd̄u
channel with JPC = 1+− where exotic charmonia have
been found in recent experiments; the pion mass in our
study is 266 MeV. In our set of 22 interpolating operators
we allow for all possible meson-meson operators in the en-
ergy region between the J/ψπ threshold and 4.3 GeV and
we also introduce four diquark-antidiquark operators. In
the scanned energy region we find all expected meson-
meson signals (mostly close to the non-interacting levels)
but no convincing signal for an extra Z+

c state. Possi-
ble physics and methodology-related reasons for the ab-
sence of the exotic candidate in our simulation are men-
tioned. We also discuss in detail possible traps leading
to premature identifications. We conclude that at least
with the diquark-antidiquark and meson-meson opera-
tors used here our ab-initio study shows no exotic state
below 4.2 GeV.

Appendix A: Interpolators

We implement altogether 22 interpolators with IG =
1+, JPC = 1+− and total momentum zero (using the
irreducible representation T+−

1 of the lattice symmetry
group Oh). The first 18 interpolators OM1M2 are ex-
pected to couple well to the two-meson states (2) , while
the last four are diquark-antidiquark interpolators O4q



7

exp.
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
 [

G
eV

]

all 4Q D*D* only 4Q

ψ3 π
D(1) D*(-1)
ψ

1D
π

D* D*
ψ

2S
π

D D*
J/ψ(1) π(-1)
η

c 
ρ

J/ψ π

D(1)D*(-1) D D*

a b c d e f g

without without without without
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caveats in Section VB. (b) Lattice spectrum based on the 18 × 18 correlator matrix (7); (c) spectrum based on a 14 × 14
correlator matrix without diquark-antidiquark interpolating fields O4q

1−4; spectra (d-f) are based on truncated correlator matrices

as described in the figure; spectrum (g) is based on O4q
1−4 only. The horizontal lines represent energies of the non-interacting

two-particle states. Statistical errors on the lattice spectrum are shown.

with structure [c̄d̄]3c [cu]3̄c

O1 = O
ψ(0)π(0)
1 = c̄γic(0) d̄γ5u(0) , (A1)

O2 = O
ψ(0)π(0)
2 = c̄γiγtc(0) d̄γ5u(0) ,

O3 = O
ψ(0)π(0)
3 = c̄

←−
∇jγi

−→
∇jc(0) d̄γ5u(0) ,

O4 = O
ψ(0)π(0)
4 = c̄

←−
∇jγiγt

−→
∇jc(0) d̄γ5u(0) ,

O5 = O
ψ(0)π(0)
5 = |ǫijk||ǫklm| c̄γj

←−
∇ l
−→
∇mc(0) d̄γ5u(0) ,

O6 = O
ψ(0)π(0)
6 = |ǫijk||ǫklm| c̄γtγj

←−
∇ l
−→
∇mc(0) d̄γ5u(0) ,

O7 = O
ψ(0)π(0)
7 = RijkQklm c̄γj

←−
∇ l
−→
∇mc d̄γ5u(0) ,

O8 = O
ψ(0)π(0)
8 = RijkQklm c̄γtγj

←−
∇ l
−→
∇mc d̄γ5u(0) ,

O9 = Oψ(1)π(−1) =
∑

ek=±ex,y,z

c̄γic(ek) d̄γ5u(−ek) ,

O10 = Oψ(2)π(−2)=
∑

|uk|2=2

c̄γic(uk) d̄γ5u(−uk) ,

O11 = Oηc(0)ρ(0) = c̄γ5c(0) d̄γiu(0) ,

O12 = Oηc(1)ρ(−1) =
∑

ek=±ex,y,z

c̄γ5c(ek) d̄γiu(−ek) ,

O13 = O
D(0)D∗(0)
1 = c̄γ5u(0) d̄γic(0) + {γ5 ↔ γi} ,

O14 = O
D(0)D∗(0)
2 = c̄γ5γtu(0) d̄γiγtc(0) + {γ5 ↔ γi} ,

O15 = OD(1)D∗(−1)=
∑

ek=±ex,y,z

c̄γ5u(ek) d̄γic(−ek) + {γ5 ↔ γi} ,

O16 = OD(2)D∗(−2)=
∑

|uk|2=2

c̄γ5u(uk) d̄γic(−uk) + {γ5 ↔ γi} ,

O17 = OD
∗(0)D∗(0) = ǫijl c̄γju(0) d̄γlc(0) ,

O18 = OD
∗(1)D∗(−1) =

∑

ek=±ex,y,z

ǫijl c̄γju(ek) d̄γlc(−ek)

O19 = O4q
1 = N3

L ǫabcǫab′c′(c̄bCγ5d̄c cb′γiCuc′

− c̄bCγid̄c cb′γ5Cuc′) ,

O20 = O4q
2 = N3

L ǫabcǫab′c′(c̄bCd̄c cb′γiγ5Cuc′

− c̄bCγiγ5d̄c cb′Cuc′) ,

O21 = O4q
3 = O4q

1 (Nv=32) ,

O22 = O4q
4 = O4q

2 (Nv=32) .
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We implicitly sum over index pairs. In the definitions, uk
indicates a sum over 12 directions ±ei±ej with |uk|

2 = 2,
i denotes the polarisation and the correlation matrix is
averaged over i = x, y, z. The Qilm are taken from [18]
and Rilm from [42].
The momenta are projected separately for each meson

M1(k)M2(−k) in O
M1M2

M(k) : q̄1Γq2(k) ≡
∑

x

ei2πkx/Lq1(x, t)Γq2(x, t) k ∈ N
3 .

(A2)
The momentum in O4q is projected to zero,

O4q = N3
Lǫabcǫab′c′

∑

x

c̄b(x, t)Γ1d̄c(x, t) cb′(x, t)Γ2uc′(x, t) ,

(A3)
and a factor N3

L is included to achieve similar normaliza-
tion as for OM1M2 . The O4q are implemented as

Õ4q=N3
L ǫabcǫab′c′ (A4)

∑

x1

c̄b(x1, t)Γ1d̄c(x1, t)
∑

x2

cb′(x2, t)Γ2uc′(x2, t)

which reduces to O4q after the average over gauge con-
figurations, where the gauge is not fixed. We verified
explicitly that 〈Õ4q|Õ4q†〉 ≃ 〈O4q |O4q†〉.
All quark fields in (A1) are smeared q ≡

∑Nv
k=1 v

(k)v(k)†qpoint according to the distillation method
[18, 30]. We employ Nv =64 Laplacian eigenvectors for

all interpolators with exception of O4q
3,4 where the smear-

ing with Nv=32 is used.

Eight interpolators O
ψ(0)π(0)
1,..,8 are implemented in or-

der to allow the reliable extraction of two-meson states
ψ(0)π(0) with ψ=J/ψ, ψ(2S), ψ(3770), ψ3. We verified
for conventional charmonium that eight c̄c structures in

Oψπ1,..,8 lead to a reliable signal for these four ψ’s after the
diagonalization of the 8× 8 correlation matrix. The first

six c̄c structures were used already in [18], while Oψπ7,8

were added to enhance overlap with ψ3 [42]. The ψ3

denotes the charmonium with JPC = 3−− and appears
in addition to 1−− states when charmonia are simulated
using the irreducible representation T−−

1 . This is a con-
sequence of the broken rotational invariance on a lattice,
where the continuous symmetry group is reduced to Oh.
In order to study the JPC = 1+− channel in this work,
we employ lattice interpolators that transform according
to irreducible representation T+−

1 of Oh. This irreducible
representation contains JPC = 1+− states, but also the
ψ3 π state with JPC = 3+−.
We do not implement interpolators correspond-

ing to hc(1)π(−1), since the simplest choice
ǫijk [c̄γjγtγ5c(ek) d̄γ5u(−ek) − c̄γjγtγ5c(−ek) d̄γ5u(ek)]
renders sizable coupling of c̄γyγtγ5c(ex) also to lower-
lying J/ψ(ex). The hc(1)π(−1) lies near 4.25 GeV and
omission of this two-meson state does not modify our
physics conclusion concerning absence of Z+

c candidate
below 4.2 GeV.

Appendix B: Wick contractions

The Wick contractions that appear in the correlation
matrix (3) for interpolators (A1) are drawn in Fig. 4.
Our correlation matrix is based on Wick contractions in
Fig. 4a, as explained in the main text.

Appendix C: Overlaps 〈Ω|Oj |n〉 for all eigenstates

Here we present the overlaps 〈Ω|Oj |n〉 of eigenstates
to employed interpolators. These show which Fock com-
ponents are important for various eigenstates. Note that
the overlap factors Znj depend on the normalisation of Oj
(A1), while the ratios presented in Fig. 2 are independent
of it.
The complete basis of 22 interpolators (A1) leads to

the overlaps in Fig. 5. The result from the reduced basis
of 18 interpolators (7) is presented in Fig. 6 to illustrate
the cautionary remarks discussed in Section V.
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[33] M. Lüscher and U. Wolff, Nucl. Phys. B339, 222 (1990).
[34] B. Blossier, M. Della Morte, G. von Hippel,

T. Mendes, and R. Sommer, JHEP 0904, 094
(2009), [arXiv:0902.1265].

[35] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie,
Phys. Rev. D55, 3933 (1997), [arXiv:hep-lat/9604004].

[36] M. B. Oktay and A. S. Kronfeld, Phys. Rev.D78, 014504
(2008), [arXiv:0803.0523].

[37] LHCb Collaboration, R. Aaij et al., Phys.Rev. D90,
012003 (2014), [arXiv:1404.5673].

[38] COMPASS Collaboration, C. Adolph et al., (2014),
[arXiv:1407.6186].

[39] D.-Y. Chen, X. Liu, and T. Matsuki, Phys.Rev. D88,
036008 (2013), [arXiv:1304.5845].

[40] E. Swanson, (2014), [arXiv:1409.3291].
[41] S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler,

(2014), [arXiv:1405.7623v1].
[42] J. J. Dudek, R. G. Edwards, N. Mathur, and

D. G. Richards, Phys. Rev. D77, 034501 (2008),
[arXiv:0707.4162].

http://arxiv.org/abs/0708.1790
http://arxiv.org/abs/0811.0564
http://arxiv.org/abs/1404.1903
http://arxiv.org/abs/1303.5949
http://arxiv.org/abs/1304.0121
http://arxiv.org/abs/1304.3036
http://arxiv.org/abs/1310.1163
http://arxiv.org/abs/1309.1896
http://arxiv.org/abs/1308.2760
http://arxiv.org/abs/1408.6457
http://arxiv.org/abs/1304.0380
http://arxiv.org/abs/1305.6905
http://arxiv.org/abs/1404.3723
http://arxiv.org/abs/1010.5827
http://arxiv.org/abs/1312.7408
http://arxiv.org/abs/1308.2097
http://arxiv.org/abs/1403.1318
http://arxiv.org/abs/1208.4059
http://arxiv.org/abs/1403.8103
http://arxiv.org/abs/1105.5636
http://arxiv.org/abs/1107.3988
http://arxiv.org/abs/1204.0826
http://arxiv.org/abs/1401.3312
http://arxiv.org/abs/1406.4158
http://arxiv.org/abs/1307.0736
http://arxiv.org/abs/1308.3175
http://arxiv.org/abs/1307.5172
http://arxiv.org/abs/0905.2160
http://arxiv.org/abs/0902.1265
http://arxiv.org/abs/hep-lat/9604004
http://arxiv.org/abs/0803.0523
http://arxiv.org/abs/1404.5673
http://arxiv.org/abs/1407.6186
http://arxiv.org/abs/1304.5845
http://arxiv.org/abs/1409.3291
http://arxiv.org/abs/1405.7623
http://arxiv.org/abs/0707.4162

