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Abstract: We study the interplay of flavor and dark matter phenomenology for models of

flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the

coupling of dark matter with quarks. This coupling is assumed to be the only new source of

violation of the Standard Model flavor symmetry extended by a U(3)χ associated with the

dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its

various implications, including an unbroken discrete symmetry that can stabilize the dark

matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as

triplet under U(3)χ, and is a singlet under the Standard Model. The dark matter couples

to right-handed down-type quarks via a colored scalar mediator φ with a coupling λ. We

identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal

Flavor Violation. For dark matter and collider phenomenology we focus on the well-

motivated case of b-flavored dark matter. The combined flavor and dark matter constraints

on the parameter space of λ turn out to be interesting intersections of the individual ones.

LHC constraints on simplified models of squarks and sbottoms can be adapted to our case,

and monojet searches can be relevant if the spectrum is compressed.
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1 Introduction

Dark matter (DM) provides a strong connection between the two phenomenologically rich

arenas: particle astrophysics and beyond Standard Model (SM) physics. While the exis-

tence of DM is part of the standard model of cosmology, its particle physics origins are

largely unknown. The WIMP (weakly interacting massive particle) miracle however pro-

vides a tantalizing hint that DM is associated with new physics (NP) at the weak scale,

and such candidates should be accessible to various ongoing experiments. Signals at these

experiments depend strongly on the nature of interactions of the DM with SM fields, and

are less sensitive to other details of the model. This motivates the study of simplified

models, which minimally extend the SM to include couplings of DM particles with the SM.

Each simplified model can then capture the dark matter phenomenology of a wide range

of models.

Once we consider different classes of simplified models, one new category of models

arises in analogy with SM flavor: flavored DM [1–9]. In this setup DM particles come in

multiple copies, and have a non-trivial flavor structure in their couplings with quarks and

leptons. This framework does show up in a very specific way in supersymmetric models as

sneutrino DM models [10–16], but clearly there are more general possibilities.

This class of models is constrained, like other DM models, by both indirect and direct

detection DM experiments as well as collider searches. The relevant schematic interaction

responsible for these signatures is shown in the left panel of figure 1. Additionally precision

flavor experiments have to be taken into account due to the flavor violation introduced by

the dark sector. Schematically this contribution is displayed in the right panel of figure 1,

adding a new class of diagrams to the well-studied DM-SM interaction.

DM

DM

SM

SM DM

DMSM

SM

SM

SM

Figure 1. Schematic diagrams contributing to experimental constraints on flavored DM.

Flavored dark matter models can have significantly distinct phenomenology. For in-

direct detection experiments, the spectrum of photons and leptons arising from DM an-

nihilation depends on the relative annihilation into various final states. For example, it
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was shown that a DM candidate annihilating exclusively to b-quarks provides a good fit to

the spectrum of excess photons observed in a recent analysis of Fermi-LAT data from the

galactic center [17–28]. Direct detection predictions for scattering vary widely depending

upon whether the ambient DM particles couple to the first generation quarks directly or

not. The absence of direct detection signals so far then point to the possibility of suppres-

sion of such a coupling, which can be achieved through either a loop suppression or a small

mixing angle. Collider searches for DM are also sensitive to the DM couplings to various

quark flavors, both in terms of production as well as the flavor pattern of visible particles

produced in association.

While some of these effects have been explored, the study of flavor phenomenology

has largely been restricted to elaborate models such as the MSSM. Previous analyses often

assume for simplicity universality or minimal flavor violation (MFV) [29–33], so that flavor

changing neutral current (FCNC) effects are automatically suppressed. One the one hand

this is welcome due to the good agreement of the flavor data with the SM prediction, but

on the other hand interesting effects in the flavor sector are eliminated.

In this paper we abandon the MFV principle and consider instead a general flavor

violating coupling of DM particles with quarks. DM is introduced as a triplet under a new

global flavor symmetry U(3)χ. While in our analysis the coupling matrix (denoted by λ) is

taken to be completely general, we make one simplifying assumption that turns out to be

helpful in various respects. We impose that λ is the only new source of flavor breaking, in

addition to the SM Yukawa couplings. As this assumption generalizes the MFV principle

to the DM sector, we call it Dark Minimal Flavor Violation (DMFV). We will point out

the following features of DMFV:

• The DMFV framework, while bearing some conceptual similarity to MFV, goes well

beyond the latter framework, as it allows for large FCNC effects. The structure of λ

needs to be determined from the available constraints.

• The DMFV ansatz naturally preserves a residual Z3 symmetry, which guarantees the

stability of the DM particle.

• DMFV significantly reduces the number of new parameters in the Lagrangian, as the

DM mass term mχ must be flavor conserving up to corrections of the form λ†λ.

• DMFV guarantees “flavor-safety” of the UV complete theory. It is therefore sufficient

to identify flavor-safe scenarios for the structure of λ within the simplified model

framework.

In the phenomenological part of our paper we will restrict ourselves to the study of the

simplest version of DMFV, which we refer to as the minimal DMFV (mDMFV) model in

order to distinguish it from the more general framework. The DM is taken to be a Dirac

fermion χ, interacting with the right-handed down-type quarks via the coupling

λd̄Rχφ (1.1)
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with a scalar mediator φ. While leaving the question of a possible UV completion unan-

swered, this study captures the most important phenomenological effects accessible to

current experiments. Our studies extends the existing literature on the phenomenology of

flavored DM in the following ways:

• We go beyond the simple MFV hypothesis that automatically suppresses all flavor

effects to an acceptable level. Instead we study the implications of a completely

general coupling matrix λ, embedded in the DMFV ansatz, and derive its structure

from the experimental constraints.

• We consider a large number of relevant precision observables which can potentially

be affected by the mDMFV model. These are in particular the constraints from

meson-antimeson mixing, radiative and rare B and K decays, electroweak precision

observables and electric dipole moments.

• From the analysis of meson-antimeson mixing observables we identify a number of

“flavor-safe” scenarios for the structure of λ. These scenarios will be useful for future

studies of flavored DM models beyond MFV, as they can be imposed simply and

render detailed re-analyses unnecessary.

• Subsequently we perform a simultaneous analysis of flavor and DM constraints,

such as the relic abundance from thermal freeze-out, and direct detection data from

LUX [34]. While restricting ourselves to the phenomenologically interesting case of

b-flavored DM, we consider several mass hierarchies in the dark sector, i. e. large and

small splittings between the DM particle and the heavier flavors.

• We reveal a non-trivial interplay of the complementary flavor and DM constraints,

such that the combined constraint on the parameter space of λ turns out to be

interesting intersections of the individual ones. This result underlines the importance

of taking into account the various constraints simultaneously.

• We point out a cancellation between various mDMFV one-loop contributions (photon

penguin and box diagram) to the WIMP-nucleon scattering, occurring for a certain

range of coupling parameters. As the photon penguin is only present for scattering off

protons, while the box diagram contributes to proton and neutron scattering cross-

sections, this cancellation provides a possible realization of Xenophobic DM [35, 36].

• We review the constraints from collider searches on the mDMFV model with b-

flavored DM. The most stringent bounds are placed by searches for bottom squark

pair production, constraining the parameter space of the model up to a mediator

mass mφ ∼ 800− 900 GeV. Monojet searches can be important for very compressed

spectra, or for very heavy φ such that its direct production is suppressed.

Our paper is organized as follows. In section 2 we introduce the concept of Dark Min-

imal Flavor Violation (DMFV), and describe the minimal model realizing this hypothesis,

the mDMFV model. Section 3 deals with the implications of the DMFV hypothesis that
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are valid beyond the minimal model. In section 4 we provide the formalism for a detailed

study of the constraints from meson anti-meson mixing on the mDMFV model. We also

consider potential new contributions to radiative and rare B and K decays, electroweak

precision observables and electric dipole moments and find all of these observables to be

SM-like. Section 5 is devoted to a detailed numerical analysis of the constraints on the cou-

pling matrix λ arising from meson-antimeson mixing. We identify a number of “flavor-safe”

scenarios for the coupling matrix λ. In section 6 we provide a comprehensive summary

of the results of the numerical flavor analysis and the different scenarios emerging for the

analysis of DM constraints. In section 7 we study the DM phenomenology of the mDMFV

model, considering both the relic abundance constraint from thermal freeze-out and the

emerging WIMP-nucleon cross section observed in direct detection experiments. A com-

bined numerical analysis of flavor and DM constraints is performed in section 8, studying

the various possible mass hierarchies in turn. In section 9 we estimate the constraints

on the mDMFV model from the LHC, stemming in particular from monojet searches and

searches for supersymmetric bottom squarks. We also mention some new signatures for

these models. In section 10 we summarize our results. Some technical details are relegated

to the appendices.

2 Flavored dark matter beyond MFV – a minimal model

We consider a setup where DM χ transforms in the fundamental representation of a new

flavor symmetry U(3)χ. We assume that the global

U(3)q × U(3)u × U(3)d × U(3)χ (2.1)

flavor symmetry is broken only by the SM Yukawa couplings Yu, Yd and the DM-quark

coupling λ. This ansatz generalizes the MFV hypothesis [29–33] to include an extra U(3)χ
symmetry under which the DM field transforms, and an additional Yukawa coupling λ.

We refer to this assumption as Dark Minimal Flavor Violation (DMFV). Depending on

the type of quark to which the DM couples, different classes of DMFV can be defined, see

appendix A for details.

In what follows we restrict ourselves to the coupling of χ to right-handed down-type

quarks via a scalar mediator φ. While the DM particle χ is a gauge singlet, the mediator φ

has to carry color and hypercharge. This helps to keep the model simple, since no further

electroweak structure is required when assuming the new particles to be singlets under

SU(2)L. Further the choice of down-type quarks ensures to have an effect in relevant

flavor observables such as K and Bd,s meson mixing and well-measured rare decays.

The most general renormalizable Lagrangian including the minimal field content is

then given by

L = LSM + iχ̄/∂χ−mχχ̄χ− (λij d̄Riχjφ+ h.c.)

+(Dµφ)†(Dµφ)−m2
φφ
†φ+ λHφ φ

†φH†H + λφφ φ
†φφ†φ , (2.2)

with the symmetry transformation properties summarized in table 1. Note that the U(3)χ
flavor symmetry in the DM sector guarantees that at the Lagrangian level all three DM
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SU(3)c SU(2)L U(1)Y U(3)q U(3)u U(3)d U(3)χ

qL 3 2 1/6 3 1 1 1

uR 3 1 2/3 1 3 1 1

dR 3 1 -1/3 1 1 3 1

`L 1 2 1/2 1 1 1 1

eR 1 1 -1 1 1 1 1

H 1 2 1/2 1 1 1 1

φ 3 1 -1/3 1 1 1 1

χL 1 1 0 1 1 1 3

χR 1 1 0 1 1 1 3

Yu 1 1 0 3 3̄ 1 1

Yd 1 1 0 3 1 3̄ 1

λ 1 1 0 1 1 3 3̄

Table 1. Symmetry transformation properties of the minimal DMFV matter content and the

Yukawa spurions.

flavors have the same mass mχ, although they acquire a small splitting from higher or-

der DMFV corrections. In what follows we refer to this model as the minimal DMFV

(mDMFV) model.

The mDMFV model has some similarities to simplified models of supersymmetry and

should be understood in an analogous manner. In contrast to the SUSY case however in

mDMFV the flavor charge is carried by the DM fermions and not by the scalar mediator.

Further we assume χ to be a Dirac fermion (a Majorana mass term would violate the U(3)χ
symmetry), while in the minimal SUSY models the gauginos are Majorana.

We stress that the DMFV ansatz, in contrast to the MFV ansatz, potentially allows for

large flavor violating effects. A careful analysis of FCNC constraints is therefore necessary.

3 Implications of the Dark Minimal Flavor Violation hypothesis

In the present section we consider the consequences of the DMFV ansatz. We stress that

these implications go beyond the simple mDMFV model introduced in section 2 and hold

in any scenario with the same DMFV flavor symmetry breaking pattern.

3.1 New flavor violating parameters and a convenient parametrization for λ

In the DMFV setup the flavor symmetry in the quark sector is broken only by the SM

Yukawa couplings Yu, Yd and the DM-quark coupling λ. In a first step the SM flavor

symmetry can be used to remove unphysical parameters from the SM Yukawas. They can

be parametrized as usual in terms of the six quark masses and the CKM matrix, signaling

the misalignment between Yu and Yd.
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In the second step we remove unphysical parameters from the coupling matrix λ. Being

an arbitrary complex matrix, it contains at first 9 real parameters and 9 complex phases.

Some of them can be removed by making use of the DM flavor symmetry U(3)χ.

We start by parametrizing λ in terms of a singular value decomposition

λ = UλDλVλ , (3.1)

where Dλ is a diagonal matrix with real and positive entries, and Uλ and Vλ are unitary

matrices. Note that Uλ and Vλ are not uniquely defined, as λ is invariant under the diagonal

rephasing

U ′λ = Uλ diag(eiθ1 , eiθ2 , eiθ3) , V ′λ = diag(e−iθ1 , e−iθ2 , e−iθ3)Vλ . (3.2)

We use this freedom to reduce the number of phases in Uλ to three. Then λ has 9 real

parameters and 9 phases in the parametrization (3.1). We can now use the U(3)χ invariance

to fully remove the unitary matrix Vλ. Consequently we are left with the matrix

λ = UλDλ . (3.3)

It contains nine parameters: three non-negative elements of Dλ, and three mixing angles

and three CP violating phases in Uλ. Note that the mixing angles are restricted to the

range 0 ≤ θλij ≤ π/4 in order to avoid a double-counting of parameter space. This choice

ensures that each DM flavor couples dominantly to the quark of the same generation. For

instance we can refer to χ3 as b-flavored DM.

A convenient parametrization for Uλ has been derived in [37] in the context of the

Littlest Higgs model with T-parity. It can be written as

Uλ = Uλ23U
λ
13U

λ
12

=

1 0 0

0 cλ23 sλ23e
−iδλ23

0 −sλ23e
iδλ23 cλ23


 cλ13 0 sλ13e

−iδλ13

0 1 0

−sλ13e
iδλ13 0 cλ13


 cλ12 sλ12e

−iδλ12 0

−sλ12e
iδλ12 cλ12 0

0 0 1

 , (3.4)

where cλij = cos θλij and sλij = sin θλij . Performing the product one obtains the expression

Uλ =

 cλ12c
λ
13 sλ12c

λ
13e
−iδλ12 sλ13e

−iδλ13

−sλ12c
λ
23e

iδλ12 − cλ12s
λ
23s

λ
13e

i(δλ13−δλ23) cλ12c
λ
23 − sλ12s

λ
23s

λ
13e

i(δλ13−δλ12−δλ23) sλ23c
λ
13e
−iδλ23

sλ12s
λ
23e

i(δλ12+δλ23) − cλ12c
λ
23s

λ
13e

iδλ13 −cλ12s
λ
23e

iδλ23 − sλ12c
λ
23s

λ
13e

i(δλ13−δλ12) cλ23c
λ
13


(3.5)

Finally it turns out to be convenient to parametrize the diagonal matrix Dλ as

Dλ ≡ diag(Dλ,11, Dλ,22, Dλ,33) = λ0 · 1+ diag(λ1, λ2,−(λ1 + λ2)) . (3.6)

The first parametrization is useful for the analysis of DM and collider constraints. The

second parametrization instead is better suited for the flavor analysis, since it quantifies

the deviations from a flavor universal coupling.
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3.2 Non-DMFV contributions and dark matter stability

The flavor structure of the SM is accidental — there exist no other gauge-invariant op-

erators beyond the Yukawa terms at the renormalizable level. It is then worth asking if

the DMFV ansatz can also arise naturally in an analogous way. In this section we study

how generic the DMFV ansatz is from a UV point-of-view. We stress however that the

goal of this work is merely to study the novel phenomenology arising from this ansatz, and

a complete UV model is beyond the current scope. We merely study the corrections to

the ansatz to the extent that they can affect low energy phenomenology, particularly DM

decay.

Interestingly, in the exact DMFV limit, all operators inducing decay of the U(3)χ
triplet χ are forbidden, even at the non-renormalizable level. In analogy to the stability

of DM in the MFV case [3] it can straightforwardly be shown – see appendix B for details

– that the flavor symmetry (2.1) broken only by the Yukawa couplings Yu, Yd and λ,

together with SU(3)QCD imply an unbroken Z3 symmetry. It is then natural to impose

this Z3 symmetry as exact, under which only the new particles χi and φ are charged. This

prevents the decay of any of these states into SM particles only, and therefore renders the

lightest state stable.

We now estimate the size of non-DMFV effects that can arise. We imagine a UV scale,

Λ, above which the DM flavor symmetry U(3)χ is unbroken. While this scale could in

principle be associated with the SM flavor scale as well, for simplicity we assume that the

SM flavor structure is generated at a higher scale. Generically, we expect all operators

allowed by symmetries to be generated at the scale Λ. The most important contributions

at low energy arise from relevant and marginal operators.

The relevant operator

Om = δmij χ̄iχj (3.7)

is the leading operator that is generated. It maximally violates the DMFV ansatz, while

preserving the Z3. This operator can be prevented from being generated at the scale Λ if

the mass of the DM fermions is generated at a lower scale, through a flavor-blind sector.

Note the analogy to flavor-blind SUSY breaking, which yields MFV. It is an open question

whether such a scenario can be achieved simply in this framework. We assume henceforth

that this operator is negligible.

At the marginal level, we generate the following two operators,

OL = ¯̀
LχH + h.c. (3.8)

OB = q̄L(iσ2)q†Lφ
† + h.c. (3.9)

which are lepton and baryon number violating respectively. These are prohibited by the

discrete Z3 symmetry, however.

We see that additional discrete symmetries can be imposed in order to prevent the

DM from decaying, and preventing non-DMFV contributions at the renormalizable level.

Higher dimensional non-DMFV operators can then only modify other aspects of phe-

nomenology, which are not as severely constrained. Therefore, for a reasonably high scale

Λ, these operators are not expected to alter the phenomenology appreciably.
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3.3 Mass splitting in the dark sector

As noted in section 2 the DMFV hypothesis ensures that to leading order in the coupling

λ, the masses for different DM particles are equal. There are three potential sources for

splittings.

Firstly, there can be contributions to the mass matrix mχ directly violating DMFV. We

assume that such contributions are absent. Secondly, higher dimensional DMFV-violating

contributions can still induce splittings, but these are expected to be suppressed by the

heavy scale where DMFV is broken.

An unavoidable contribution is through the renormalization group running, where a

universal mass at the high scale is renormalized by the presence of the DM coupling λ at

low scales. Generically, it is also possible that there is a DMFV preserving contribution

∝ λ†λ at tree level. If present, this would be the largest contribution to the DM splittings.

Of course, the pattern of splittings generated by the running and by such threshold effects

is identical, since both cases are consistent with DMFV.

The splittings are given by

mij = mχ(1+ η λ†λ+ · · · )ij = mχ(1 + η(Dλ,ii)
2 + · · · )δij , (3.10)

where summation is not implied in the last term. Here η is a real coefficient whose value

depends on the details of the model. If the contribution to the mass matrix arises at tree

level, then η is expected to be an O(1) number. On the other hand, the contribution from

running is schematically given by

η ∼ 1

16π2
log

(
m2
χ

Λ2

)
, (3.11)

where Λ is the dark flavor scale noted above.

The DMFV expansion above is only valid if higher order corrections are parametrically

suppressed. In order to ensure convergence, in what follows we will assume |η(Dλ,ii)
2| < 0.3.

4 Constraints from flavor and precision observables

In this section we study all relevant constraints from flavor observables on the mDMFV

model. We start the analysis of the well-measured and strongly constraining observables

from meson anti-meson mixing, followed by relevant rare decays. Finally we take a brief

look at electroweak precision tests and electric dipole moments. While we will find that

∆F = 2 processes significantly shape the structure of a phenomenologically viable coupling

matrix λ, effects of other flavor observables are negligible.

We restrict ourselves to providing the formulae directly relevant for our study, a more

detailed description of relevant techniques and necessary formulae for the study of ∆F = 2

processes reaching from effective Hamiltonian to flavor observables can be found for instance

in [38]. A recent comprehensive review can be found in [39].
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χi

φ φ

χj

s d

d s

Figure 2. New contribution to K0 − K̄0 mixing in the mDMFV model.

4.1 Constraints from meson anti-meson mixing

In the mDMFV model new contributions to ∆F = 2 processes arise first at the one loop

level. The relevant box diagram is shown in figure 2 for the case of K0 − K̄0 mixing.

Evaluating this diagram we obtain the following contribution to the effective Hamiltonian:

H∆S=2,new
eff =

1

128π2m2
φ

∑
i,j

λsiλ
∗
diλsjλ

∗
djF (xi, xj)×QV RR + h.c. (4.1)

with xi = m2
χi/m

2
φ, and the loop function F (xi, xj) can be found in appendix C. As the

new particles φ and χi couple only to right-handed down-type quarks, the only effective

operator which receives new contributions is

QV RR = (s̄αγ
µPRdα)(s̄βγµPRdβ) , (4.2)

i. e. the chirality-flipped counterpart of the SM operator.

The mass splittings among the χi fields constitutes a higher order correction in the

DMFV expansion, which we assume to be small. Thus we can take the limit of equal χ

masses in (4.1). The effective Hamiltonian then simplifies to

H∆S=2,new
eff =

1

128π2m2
φ

F (x) ξ2
K ×QV RR + h.c. , (4.3)

where x = m2
χ/m

2
φ. The loop function F (x) can be found in appendix C. We also defined

ξK = (λλ†)sd =

3∑
i=1

λsiλ
∗
di . (4.4)

The mDMFV contribution of the DM sector to the off-diagonal element of the K0−K̄0

mass matrix can then be obtained from

MK,new
12 =

1

2mK
〈K̄0|H∆S=2,new

eff |K0〉∗ . (4.5)

Using

〈QV RR(µ = 2 GeV)〉 =
2

3
m2
KF

2
KB̂K (4.6)

we obtain

MK,new
12 =

1

384π2m2
φ

mKF
2
KB̂Kη2F (x)(ξ∗K)2 . (4.7)
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The parameter η2 summarizes the corrections from the renormalization group running from

the weak scale µ ∼ mt down to the scale µ = 2 GeV, where the lattice calculations are

performed, as well as the corrections due to the matching of the full theory to the effective

theory calculated within the SM.

By parametrizing the NLO corrections by η2, we make two approximations. We neglect

the running from the NP scale µ ∼ mφ to the scale µ ∼ mt, as well as the difference in

the matching conditions between the SM and the NP scenario studied here. In order to

estimate the error associated to our approach, it is useful to compare our case with the

discussion of the 331 models in [40]. In the latter framework the inclusion of the next-to-

leading order (NLO) corrections amounts to a few percent correction to the size of the NP

contribution. We expect similar conclusions to hold also in our case, in particular since

in the MSSM the NLO corrections to the Wilson coefficient CV RR have been found to be

small [41].

In an analogous manner we find

M q,new
12 =

1

384π2m2
φ

mBqF
2
BqB̂BqηBF (x)(ξ∗Bq)

2 (q = d, s) , (4.8)

where we define

ξBq = (λλ†)bq =
3∑
i=1

λbiλ
∗
qi (q = d, s) . (4.9)

In passing we note that the mDMFV model, coupling only to down-type quarks, does

not contribute to D meson observables at the one loop level.

4.2 Radiative and rare K and B decays

We now turn our attention to radiative and rare decays, starting with the electromagnetic

dipole operator generating the b→ sγ transition.

The effective Hamiltonian describing the B → Xsγ decay can be written as

H eff =
4GF√

2
V ∗tsVtb

(
C7Q7 + C ′7Q

′
7 + · · ·

)
, (4.10)

where we omitted the tree level and chromomagnetic dipole operators that contribute to

b→ sγ via renormalization group mixing. We use the normalization

Q7 =
e

16π2
mbs̄Lσ

µνbRFµν , (4.11)

Q′7 =
e

16π2
mbs̄Rσ

µνbLFµν . (4.12)

In the SM the Wilson coefficient C ′7 is strongly suppressed due to the chiral structure of

weak interactions:

C ′7,SM =
ms

mb
C7,SM . (4.13)

Conversely the DM in our scenario couples only to right-handed SM fermions – there-

fore the only relevant new contribution arises in the chirality-flipped Wilson coefficient C ′7.
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The relevant diagrams are analogous to the ones depicting the gluino contribution in su-

persymmetric models, replacing the gluino by the DM particles χi and the squarks by the

scalar mediator φ, and keeping only the coupling to right-handed SM quarks. Correcting

for the different coupling and taking into account that χi are QCD singlets while the gluino

is a color octet, we can straightforwardly obtain the result for δC ′7 from [42, 43]. Adjusting

eq. (A.5) of [43] to our model, we find

δC ′7 = − 1

6g2
2V
∗
tsVtb

m2
W

m2
φ

ξ∗Bs g(xi) , (4.14)

where the short-hand notation for the relevant combination of elements of λ has been

defined in (4.9), and the loop function g(x) is given in appendix C.

With g(x) ∼ 0.08− 0.17 the size of the new contribution δC ′7 can be estimated as

|δC ′7| ∼< 4 · 10−2|ξ∗Bs |
[

500 GeV

mφ

]2

. (4.15)

Comparing this result to the constraints on the size of NP contributions, see e. g. figure 2

in [44], we see that the effect on the electromagnetic dipole operators generated in the

present model is completely negligible. This is very welcome in view of the good agreement

of Br(B → Xsγ) with the data.

Contributions to the four-fermion operators mediating transitions like b → sµ+µ− or

s→ dνν̄ can generally be split into tree level and one loop box and penguin diagrams. In

the mDMFV model new tree level diagrams are forbidden by the residual Z3 symmetry

(see appendix B), while box diagrams are not generated since the new particles φ and χi
do not couple to leptons. We are hence left with potential contributions to the Z and

photon penguins. An explicit calculation shows that the Z penguin contribution vanishes.

This can be explained by the chiral structure of our model with the new particles coupling

only to right-handed quarks, and is also confirmed by adapting the SUSY results of [43] to

our scenario. The photon penguin contribution is non-zero, however numerically small, as

known from supersymmetric models [43, 44].

In summary we are left with completely SM-like rare decays like Bs,d → µ+µ−, B →
K∗µ+µ− and B → Xsγ. Consequently the mDMFV model does not ameliorate the tension

in the B → K∗µ+µ− data.

A bit more care is however required in the case of semileptonic decays with neutrinos in

the final state, such as K → πνν̄ or B → K(∗)νν̄. Since the neutrinos escape detection, the

experimental signatures are K → π + /ET and B → K(∗) + /ET respectively. Consequently

also the decays1 K → πχDMχ̄DM and B → K(∗)χDMχ̄DM, mediated by a tree level φ

exchange, will contribute to the measured branching ratio if the decay is kinematically

allowed. See [45] for a detailed discussion. In order to avoid these potentially stringent

constraints, in the remainder of our analysis we will assume mDM > 10 GeV and therefore

well outside the kinematically allowed region for these decays.

1We denote by χDM the lightest flavor which is stable and provides the DM.
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4.3 Electroweak precision tests and electric dipole moments

Besides the flavor violating K and B decays discussed above, the flavor conserving elec-

troweak precision constraints and the bounds on electric dipole moments also put strong

constraints on many NP models. In this section we consider these observables within the

mDMFV model.

We start by considering electroweak precision observables. Due to the residual Z3

symmetry corrections from the mDMFV model can arise only at the loop level and are

therefore suppressed by a loop factor 1/(16π2). Furthermore the mDMFV model introduces

no new SU(2)L doublets, and only φ carries hypercharge. Consequently the contributions

to electroweak precision observables receive an additional suppression by ∼ g2
Y /(9m

2
φ).

Together with the loop factor and the scale mφ above the electroweak scale we conclude

that all new contributions to electroweak precision observables are safely small.

Similarly we also find no significant new contribution to electric dipole moments. The

reasons are as follows. Due to the chiral structure of the mDMFV model with new particles

coupling only to right-handed down-type quarks no EDM is generated at the one loop level.

At the two loop level a Barr-Zee type diagram [46] with φ running in the loop exists –

however its CP-violating phase is zero because the coupling λHφ is real.

5 Flavor-preanalysis of possible structures for the DM-quark coupling

We are now prepared to study the allowed regions of parameter space from flavor observ-

ables as well as correlations between different parameters of the coupling matrix λ.

5.1 Strategy of the numerical analysis

In order to determine the constraints from ∆F = 2 observables on the mDMFV model, we

use the results of the model-independent NP fit presented by the UTfit collaboration [47].

To this end we define

M
Bq
12 = CBqe

2iϕBqM
Bq ,SM
12 (q = d, s) , (5.1)

where M
Bq
12 is the full mixing amplitude containing both SM and mDMFV contributions.

Furthermore

ReMK
12 = C∆MK

ReMK,SM
12 , ImMK

12 = CεK ImMK,SM
12 . (5.2)

These six parameters are constrained by a global fit of the NP amplitude to the available

tree level and ∆F = 2 data [47]. In order to be conservative we impose the resulting

constraints at the 2σ level, see table 2 for a summary. In the case of ∆MK we allow

for a ±40% uncertainty in order to capture the poorly known long distance effects. For

consistency we set the CKM parameters to their central values obtained in the UTfit fit.

All other input parameters are set to their central values listed in table 3 of [48].

Altogether, we have the following new parameters relevant for flavor violating decays:

mφ , mχ , λ0 , λ1 , λ2 , θλ12 , θλ13 , θλ23 , δλ12 , δλ13 , δλ23 (5.3)
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|Vus| = 0.22527 C∆MK
= 1.10± 0.44

|Vub| = 3.76 · 10−3 CεK = 1.05± 0.32

|Vcb| = 4.061 · 10−2 CBd = 1.07± 0.34

δ = 67.8◦ ϕBd = −(2.0± 6.4)◦

CBs = 1.066± 0.166

ϕBs = (0.6± 4.0)◦

Table 2. Summary of CKM parameters and ∆F = 2 constraints used in our numerical analysis,

see [47] for details.

Figure 3. Allowed ranges for the flavor violating parameters ξM = ξK (yellow), ξM = ξBd
(blue),

ξM = ξBs
(red).

Our goal is to obtain a clear picture of patterns in the coupling matrix λ that are

implied by the available ∆F = 2 data. To this end we fix the flavor conserving parameters

mφ, mχ and λ0 to the values

mφ = 850 GeV , mχ = 200 GeV , λ0 = 1 . (5.4)

The impact of varying these parameters can be estimated from the functional dependence

of M i,new
12 (i = K,Bd, Bs), which is roughly given by

M i,new
12 ∝ λ2

0

m2
φ

F (x) , x = m2
χ/m

2
φ . (5.5)

Note that F (x) is a monotonically decreasing function varying from 1 to 1/3 over the range

0 < x < 1.

The ∆F = 2 constraints then translate directly into constraints on the values of ξK ,

ξBd and ξBs , as shown in figure 3. We observe that the strongest constraints come from

K0− K̄0 mixing, and in particular the CP-violating parameter εK , which forces the phase

of ξK to be very close to 0, π/2, π, 3π/2 unless |ξK | ∼< 10−3. The B physics constraints are

less stringent and in particular do not yield a specific pattern for the phases of ξBq . The

weakest constraints are found in the Bs system.
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This pattern of allowed deviations from the SM is not specific to the mDMFV model,

but can be found in all models with a generic NP flavor structure that do not induce the

chirally enhanced left-right operators, like the Littlest Higgs model with T-parity analyzed

in detail in [49–51]. It is a direct consequence of the CKM hierarchies that determine the

size of effects within the SM, as well as the theoretical uncertainties involved. Note that

e. g. in Randall-Sundrum (RS) models with bulk fermions [52–54] and left-right models

[38, 55], the strong enhancement of the left-right operators in the kaon system makes the

K0 − K̄0 constraints even more severe.

5.2 “Flavor-safe” scenarios for the structure of λ

We now analyze the structure of the coupling matrix λ that is implied by the ∆F =

2 constraints. To this end we show in figure 4 the allowed points in the (λ1, λ2, s
λ
12),

(λ1, λ2, s
λ
13) and (λ1, λ2, s

λ
23) spaces, respectively.

We observe that the allowed points fall into five distinct scenarios for the structure of

λ, which we discuss in some detail in the following. In order to analytically understand the

scenarios, we recall the parametrization of λ in terms of three two-flavor rotation matrices

Uij and a diagonal matrix Dλ:

λ = U23U13U12Dλ . (5.6)

1. universality scenario (black): λ1 ' λ2 ' 0

In this case λ ' Uλ · λ0 so that λλ† ' λ2
0 · 1. Since flavour violating effects are

governed by the off-diagonal elements of λλ†, the ∆F = 2 constraints are trivially

fulfilled for arbitrary Uλ and there are no FCNC effects beyond the SM.

2. 12-degeneracy (blue): λ1 ' λ2

If the first two generations of DM fermions are quasi-degenerate, then – as seen from

the blue points in figure 4 – the mixing angle sλ12 can be generic while sλ13,23 have to

be small. This can be understood by taking the limit λ1 = λ2, in which the mixing

matrix U12 becomes non-physical, and we are left with

λ = U23U13Dλ . (5.7)

It is easy to see that in order to fully suppress flavor violating effects we need U13,23 '
1 and therefore sλ13,23 ' 0.

3. 13-degeneracy (red): λ2 ' −2λ1

In the case λ2 ' −2λ1, shown by the red points in figure 4, the first and third

DM flavor are quasi-degenerate, and consequently sλ13 is unconstrained. In order to

suppress the remaining flavor violating effects both sλ12 and sλ23 have to be small.

4. 23-degeneracy (green): λ2 ' −1/2λ1

Finally if λ2 ' −1/2λ1, the second and third DM flavor are quasi degenerate. Con-

sequently the mixing angle sλ23 is arbitrary, while sλ12 and sλ13 have to be small. This

scenario is shown by the green points in figure 4.
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Figure 4. Scenarios for the structure of λ: Universality (black), 12-degeneracy (blue), 13-

degeneracy (red), 23-degeneracy (green), small mixing (yellow).
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5. small mixing scenario (yellow): arbitrary Dλ

Finally if Dλ does not exhibit any degeneracies, then FCNC effects have to be sup-

pressed by the smallness of all three mixing angles sλ12 ' sλ13 ' sλ23 ' 0. This scenario,

shown by the yellow points in figure 4, corresponds to a diagonal but non-degenerate

coupling matrix λ.

In order to quantify the allowed size of deviations from the degeneracy scenarios dis-

cussed above, we show in figure 5 the mixing angles sλij as a function of the deviation from

the corresponding degeneracy line. We observe that the constraints on 12 and 13 mixing

are similar, while the constraint on the 23 mixing angle is significantly weaker. This is a

direct consequence of Bs − B̄s mixing providing the weakest constraint on NP.

Figure 5. Allowed ranges for the mixing angles sλij as a function of the deviation from the ij-

degeneracy line ∆ij = |Dλ,ii −Dλ,jj |. ij = 12 in blue, ij = 13 in yellow, ij = 23 in red.

5.3 A note on flavor safety of the UV completion

FCNC processes are known to be sensitive to NP at very high scales. It is therefore

questionable whether a study of the simplified mDMFV model is sufficient to capture all

relevant effects.

Following the DMFV principle we can write any contribution from the UV completion

in terms of higher-dimensional operators that are suppressed by powers of the UV scale ΛUV

and made formally invariant under the flavor group (2.1) by insertion of the appropriate

combination of spurion fields Yu,d and λ. The leading contribution to the ∆F = 2 effective

Hamiltonian is then

H∆F=2,UV
eff ∼

cUV
∆F=2

Λ2
UV

λλ†(s̄γµPRd)(s̄γµPRd) , (5.8)

where cUV
∆F=2 is an O(1) coefficient that is common to all three meson systems. Comparing

this to the new contribution generated first at the one loop level in the simplified model
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(see (4.1)), that can schematically be written as

H∆F=2,simpl.
eff ∼

csimpl.
∆F=2

16π2m2
φ

λλ†(s̄γµPRd)(s̄γµPRd) , (5.9)

we observe that both contributions carry the same flavor structure. Furthermore the UV

contribution is suppressed with respect to the simplified model one if

ΛUV ∼> 4πmφ . (5.10)

Therefore, NP close to the mass of φ does not change the flavor phenomenology as

long as it respects the DMFV hypothesis. Generic flavor violation needs to be suppressed

by a much higher scale ∼ O(100− 1000) TeV [56].

5.4 Recovering the MFV limit in the structures for λ

Earlier studies of flavored DM have been restricted to the MFV framework in order to be

safe from undesired effects in flavor observables. Therefore it is worthwhile to ask if the

MFV case is contained as a subspace in the DMFV framework.

Let us first consider the case where U(3)χ is identified with U(3)d. The MFV hypothesis

then requires that λ takes the schematic form

λ ∝ 1+ Y †d Yd + . . . , (5.11)

which is diagonal in the down quark mass basis. In particular Yd is proportional to the

down-type quark masses. Considering that Yd can be approximated by Yd ∼ diag(0, 0, yb),

MFV must be close to the 12-degeneracy. Additionally MFV requires

mχ ∝ 1+ Y †d Yd + . . . . (5.12)

The same expansion for mχ is obtained when inserting (5.11) into the DMFV expansion

(3.10), so that MFV in this case is consistent with the DMFV hypothesis. As λ and mχ

are diagonal in the same basis, all three flavor mixing angles are zero. Thus the MFV limit

can be recovered as a very specific subset of parameter space, (determined by the specific

choice of Yd) close to the 12-degeneracy line with all mixing angles zero.

If instead U(3)χ is identified with U(3)u, then

λ ∝ Y †d Yu + . . . , (5.13)

while

mχ ∝ 1+ Y †uYu + . . . . (5.14)

We can see immediately that this structure is inconsistent with the DMFV expansion

(3.10), so that the MFV limit cannot be recovered in this case.

Finally identifying U(3)χ with U(3)q, we have

λ ∝ Yd + . . . (5.15)
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and

mχ ∝ 1+ YuY
†
u + YdY

†
d + . . . . (5.16)

Again we observe that mχ is inconsistent with the DMFV expansion.

In summary we find that if χ is assumed to transform under U(3)d then the MFV

limit can be recovered as a small subset of the scenarios for λ, with an approximate 12-

degeneracy and all mixing angles identically zero. On the other hand the MFV limits for

χ transforming under U(3)u or U(3)q are distinct from the DMFV framework and cannot

be recovered as a subset of the latter.

6 From the flavor pre-analysis to dark matter scenarios

Our flavor pre-analysis shows that a generic coupling matrix λ leads to unacceptably large

corrections to ∆F = 2 observables. We have identified a number of non-trivial scenarios

for the structure of λ for which flavor violating effects are efficiently suppressed:

1. Universality scenario: all elements of the diagonal matrix Dλ equal and arbitrary

flavor mixing angles.

2. ij-degeneracy scenarios (ij = 12, 13, 23): Dλ,ii = Dλ,jj , arbitrary sλij and the other

mixing angles small.

3. Small mixing scenario: small mixing angles and arbitrary Dλ.

While these scenarios have been identified in a scan with fixed flavor conserving pa-

rameters mφ, mχ and λ0, we stress that these structures for λ also remain valid for different

choices of parameters. Furthermore, even though our analysis has been performed within

the simplified framework of the mDMFV model, the identified scenarios for λ remain

flavor-safe in non-minimal versions of DMFV also. Thus they provide a useful framework

for future study of the phenomenology of DMFV models – employing any of these scenar-

ios for the structure of λ efficiently evades all FCNC constraints, without the need for an

involved study of the latter.

scenario specification lightest DM particle

universal scenario (mχd ' mχs ' mχb) - all hierarchies possible

12 degeneracy (mχd ' mχs) ηλ1 > 0 χb
ηλ1 < 0 χd or χs

13 degeneracy (mχd ' mχb) ηλ1 > 0 χs
ηλ1 < 0 χd or χb

23 degeneracy (mχs ' mχb) ηλ1 > 0 χs or χb
ηλ1 < 0 χd

small mixing scenario - all hierarchies possible

Table 3. Overview of flavor-safe scenarios and their implications for the mass hierarchy in the DM

sector.
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In table 3 we summarize the flavor-safe scenarios for λ and their implications for the

mass pattern in the DM sector. It is clear that flavor constraints do not impose a specific

mass hierarchy on the dark sector, i. e. from the point of FCNC constraints any dark flavor

can be the lightest. Note that an exact degeneracy of two flavors is unnatural, since in

the case of universal λ it is violated by the presence of Yd,u at higher orders in the DMFV

expansion. We therefore assume that the observed DM is composed of a single χ flavor,

while the decay of the heavier states is fast enough to have happened in the early universe.

We refer the reader to appendix D for an estimate of the life-time of the heavier states.

However not all DM flavors are equally motivated from the point of DM and collider

phenomenology. DM that couples dominantly to first generation quarks, like d-flavored

DM, is strongly constrained by the direct detection experiments. If the DM relic density

is assumed to arise from thermal freeze-out in the early universe, the relic abundance

condition is in severe tension with the experimental constraints. We will therefore not

consider the case of d-flavored DM further.

As far as direct detection constraints are concerned, s- and b-flavored DM are on equal

footing. Interestingly the same holds also for the flavor phenomenology – as we have seen in

figure 5 the amount of flavor violation allowed by ∆F = 2 constraints is almost symmetric

under the exchange of the second and third generation, 2↔ 3.

The case is however different for collider phenomenology. While pair production of the

mediator and its subsequent decay will dominantly produce light jets and missing energy in

the s-flavored case, in the case of b-flavored DM the large coupling to the b quark will give

rise to b-jet signatures in a significant fraction of the events. Since events with b-jets are

much more easily distinguished from the QCD background, the collider phenomenology of

b-flavored DM is at the same time more constraining (in particular concerning the bound

on the mediator mass) and also more promising, as quite distinctive signatures arise.

A further motivation for b-flavored DM comes from indirect detection. Recently it has

been shown that a 35 GeV χb provides a good fit to the excess γ-rays observed at the

galactic center [19].

Therefore, in the rest of our analysis we restrict ourselves to the case of b-flavored

DM, i. e. mχb < mχd,s . We also assume that the DM relic abundance is set by the thermal

freeze-out condition, so that Dλ,33 has to be large. Due to the strong constraints on the first

generation coupling from direct detection and collider data, we deduce that Dλ,11 < Dλ,33.

Consequently in order to ensure the correct mass hierarchy, we have η < 0.

We are then left with the following scenarios for DM freeze-out:

1. single flavor freeze-out: The s- and d-flavored states are split from the b-flavored DM

by at least 10%.

2. two flavor freeze-out:

(a) 13-degeneracy – χb and χd are quasi-degenerate, while χs is split

(b) 23-degeneracy – χb and χs are quasi-degenerate, while χd is split
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3. three flavor freeze-out: All three states are quasi-degenerate. Such a scenario can

either be achieved by a quasi universal coupling matrix Dλ, or if the DMFV expansion

parameter η is loop-suppressed, |η| ∼ 10−2.

In our numerical analysis we will study all of these scenarios in turn.

7 Phenomenology of b-flavored dark matter

In this section, we study the constraints arising from requiring the DM to be a thermal

relic and from direct detection experiments. We note that the relic abundance constraints

may be potentially relaxed in the presence of other particles in the dark sector.

The presence of multiple flavors can affect the DM freeze-out significantly. This occurs

when the mass splitting between different flavors of DM is much smaller than the freeze-out

temperature, (Tf ∼ mχ/20). For mass splittings much bigger than this scale, the freeze-out

follows the standard WIMP paradigm.

We show that in the range of parameter space we consider, the heavier DM flavors decay

before big bang nucleosynthesis (BBN) (see appendix D). The direct detection constraints

then depend sensitively on the couplings of the lightest flavor of DM. In particular, when

the lightest dark flavor couples appreciably to the first generation quarks, it gives rise

to a very large direct detection signal. If this contribution is suppressed, the dominant

contribution then arises at 1-loop level, which is seen to be within the reach of present and

future direct detection experiments.

7.1 Relic abundance

φ

χb

χ̄b

qi

q̄j

Figure 6. Feynman diagram for dark matter annihilation in the early universe.

We will consider two different qualitative regimes. When their masses are nearly

degenerate, then all DM flavors are present during freeze-out and can be treated together.

Otherwise only the lightest flavor of DM remains in the thermal bath.

We start with a single flavor freeze-out. The dominant annihilation during freeze-out

occurs in the lowest partial wave. In this limit

〈σv〉bb =
∑
i,j

3λibλ
∗
ibλjbλ

∗
jbm

2
χb

32π(m2
χb

+m2
φ)2

=
3(D†λU

†UDλ)2
33m

2
χb

32π(m2
χb

+m2
φ)2

=
3D4

33m
2
χb

32π(m2
χb

+m2
φ)2

, (7.1)

where we have ignored the masses of the final state quarks.
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The relic abundance is determined by solving the Boltzmann equation for the DM

number density n at late times. For a Dirac fermion, it is useful to convert the annihilation

cross section into an effective cross section [57, 58].

〈σv〉eff =
1

2
〈σv〉 . (7.2)

which is approximately required to be [59],

〈σv〉eff = 2.2× 10−26cm3/s (7.3)

in order to produce the correct relic abundance of DM.

Next we consider the case, where the mass splitting between the DM flavors is much

smaller than the temperature at freeze-out. Consequently, we have to take into account the

co-annihilation between different flavors. We assume that flavor changing (but DM number

preserving) interactions χiq → χjq are fast during the epoch of DM freeze-out. The rate

for these processes is enhanced over the DM annihilations—which are approximately in

thermal equilibrium—by a large Boltzmann factor (O(109)). Thus, this approximation is

valid as long as any individual cross sections are not suppressed enough to overwhelm this

factor.

Then the Boltzmann equation for freeze-out has a very similar form to the single DM

case, and can be solved in exactly the same way. The relic abundance is in fact relatively

insensitive to the change in the number of DM species, changing by only about 5% when

other parameters are kept fixed. In the limit of small splitting, the effective cross section

is well approximated by [57],

〈σv〉eff =
1

18

∑
i,j=d,s,b

〈σv〉ij . (7.4)

The co-annihilation cross section can be derived by modifying equation (7.1), e.g.

〈σv〉bs =
∑
i,j

3λisλ
∗
isλjbλ

∗
jbm

2
χb

32π(m2
χb +m2

φ)2
=

3D2
22D

2
33m

2
χb

32π(m2
χb +m2

φ)2
. (7.5)

Note that the splitting between DM masses is in this case negligible (mχd ' mχs ' mχb).

If only two states are nearly degenerate, then a two flavor freeze-out occurs. The

corresponding formulae can be straightforwardly obtained from the above results.

7.2 Direct detection

For b-flavored DM, the direct detection scattering arises either through mixing, or at one

loop.

We focus on the spin-independent contribution to the WIMP-nucleus scattering. The

reported experimental bounds are translated to the WIMP-nucleon cross section, which

can be written as

σSI
n =

µ2
n

πA2
|Zfp + (A− Z)fn|2 , (7.6)
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Figure 7. Diagrams contributing to WIMP-nucleon scattering in the mDMFV model.

where µn is the reduced mass of the WIMP-nucleon system, A and Z are the mass and

atomic numbers of the nucleus respectively, and fn and fp parametrize DM coupling to

neutrons and protons. The relevant processes are shown in figure 7.

For direct detection, we can safely work in the effective theory with the φ integrated

out. The Lorentz structure of the four-fermion operator generated after performing the

Fierz transformation is given by

χ̄bγ
µ(1− γ5)χb d̄γ

µ(1 + γ5)d . (7.7)

There are three contributions to fn,p:

fn,p = f tree
n,p + fbox

n,p + fphoton
n,p , (7.8)

These contributions are individually given as follows:

1. s-channel φ at tree-level:

In presence of significant mixing in the λ matrix, this is the dominant contribution

to direct detection:

2f tree
p = f tree

n =
|λdb|2

4m2
φ

(7.9)

The spin-independent part in equation (7.7) arises from the matrix element of the

quark vector current bilinear in the nucleons. Thus, only the valence d-quark con-

tributes.

2. One-loop photon exchange:

The interaction of DM with nucleons via photon exchange is conveniently parametrized

as the electromagnetic form factors of the DM coupling with those of the nucleus. In

particular, the scattering cross sections arise from charge-charge, dipole-charge and

dipole-dipole interactions [4]. In the region of interest, the charge-charge interactions

dominate, leading to

fphoton
p =

∑
i

|λib|2 e2

96π2m2
φ

log

[
m2
qi

m2
φ

]
(7.10)

in the leading-log approximation.
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3. Box diagram with φ exchange in the t-channel:

This new contribution depends upon the coupling of DM with the first generations

quarks [8].

4fbox
p = 2fbox

n =
∑
i,j

|λdj |2 |λib|2

16π2m2
φ

F

(
m2
qi

m2
φ

,
m2
χj

m2
φ

)
(7.11)

with the loop function F given in appendix C.

The tree-level contribution, being flavor violating, constrains the mixing sλ13 to be small.

The LUX experiment [34] is sensitive to even the loop level scattering cross sections for

WIMP DM. These contributions are present even in the absence of flavor violation. The

box and the photon loop diagrams are seen to destructively interfere.

8 Combined numerical analysis of flavor and dark matter constraints

Having all relevant formulae for the DM phenomenology in hand, we are now ready to

perform a combined numerical analysis of both DM and flavor constraints. We restrict

ourselves to the phenomenologically most interesting case of b-flavored DM, and study in

turn the scenarios identified in section 6.

The DM mass mχb is allowed to vary in the phenomenologically interesting region

10 GeV < mχb < 250 GeV. We also assume η < 0 in order to suppress the χ coupling to the

first generation, in order to cope with the strong direct detection and collider constraints.

Convergence of the DMFV expansion is ensured by requiring |ηD2
λ,33| < 0.3. Finally, since

corrections to mχ are unavoidably generated at the one loop level, we take |η| > 10−2. In

summary,

− 0.3

D2
λ,33

< η < −0.01 . (8.1)

We fix mφ = 850 GeV in agreement with the collider constraints, see section 9. The

parameters of the coupling matrix λ are scattered, imposing the flavor and DM constraints

from section 4 and 7.

8.1 Single flavor freeze-out

If the masses of the heavier flavors χd,s are sufficiently split from the DM mass mχb (by

∼> 10%), then at the freeze-out temperature only the lightest state χb is left while the

heavier ones have decayed. Therefore the single flavor freeze-out condition for the relic

abundance, eq. (7.3), applies and fixes Dλ,33 as a function of mχb . The couplings Dλ,11 and

Dλ,22 on the other hand are free to vary. They both need to be split from Dλ,33 in order

to achieve the mass splitting.

Figure 8 shows the result of a parameter scan over mχb and λ, with the relic abundance

constraint for the single flavor freeze-out scenario imposed. The red points satisfy the bound

from LUX, while the blue points satisfy the ∆F = 2 constraints. The yellow points fulfill

both LUX and ∆F = 2 constraints.
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Figure 8. Flavor mixing angle sλ13 and first generation coupling Dλ,11 as functions of the DM

mass mχb
in the single flavor freeze-out scenario. The mass hierarchy mχb

< mχd,s
and the relic

abundance constraint are imposed. The red points satisfy the bound from LUX, while the blue

points satisfy the ∆F = 2 constraints. For the yellow points both LUX and ∆F = 2 constraints

are imposed.

From the left panel, showing sλ13 as a function of mχb , we can see that both the LUX

and the ∆F = 2 constraints require sλ13 to be small. In case of LUX this constraint arises

from the necessary suppression of the DM-nucleon scattering at tree level. The ∆F = 2

constraints on the other hand require sλ13 to be small, as the mass splitting between χd
and χb requires a deviation from the 13-degeneracy scenario Dλ,11 = Dλ,33. This bound

becomes stronger for small mχb for the following reason: Small mχb requires a large Dλ,33

from the relic abundance constraint, so that |η|max decreases with decreasing mχb . In turn

a larger splitting between Dλ,11 and Dλ,33 is required in order to generate the ∼> 10%

mass splitting, implying smaller flavor mixing sλ13. We further observe that once both the

LUX and the ∆F = 2 constraints are taken into account, the upper bound on sλ13 gets

stronger than the individual ones. This proves a non-trivial interplay of the flavor and DM

constraints and underlines the importance of a combined study.

In the right panel we show the allowed size of Dλ,11 as a function of mχb . The upper

bound on Dλ,11 as a function of mχb arises from the relic abundance constraint on Dλ,33

together with the hierarchy requirement Dλ,11 < Dλ,33. For mχb ∼> 100 GeV the whole

range of Dλ,11 up to the relic abundance bound is allowed. However for smaller mχb the

LUX constraint disfavors large values for Dλ,11, so that in combination with the ∆F = 2

constraints a sharp cutoff arises. This cutoff decreases with decreasing mass mχb . Below

mχb ∼ 60 GeV also a lower bound on Dλ,11 arises for the parameter points that satisfy

both the LUX and flavor constraints – interestingly this bound does not emerge if the

constraints are taken into account separately. This is another clear sign of a non-trivial

interplay of the flavor and DM constraints.

Analytically the bounds on Dλ,11 can be understood by having a closer look at the

structure of the WIMP-nucleon cross-section in the mDMFV model. As already mentioned

above, the s-channel φ exchange at tree level is proportional to (Dλ,33s
λ
13)2 and therefore

places a strong constraint on sλ13. We are then left with the one-loop box and photon
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penguin contributions. The box amplitude is positive and proportional to

D2
λ,33 ·

[
(Dλ,11c

λ
12)2 + (Dλ,22s

λ
12)2

]
. (8.2)

It can therefore be suppressed by choosing both terms in the bracket small. This explains

why the LUX constraint, which is strongest for low DM masses, gives rise to an upper

bound on Dλ,11.

The size of the photon penguin is determined by D2
λ,33 and therefore fixed by the relic

abundance (there is a small dependence on sλ23, due to the difference in quark masses).

Interestingly due to the log factor the photon penguin amplitude carries an overall minus

sign. This relative sign between the penguin and box amplitudes leads to a cancellation

of the two contributions, provided the expression in the bracket of (8.2) is of the right

size. In the absence of flavor constraints Dλ,11, Dλ,22 and sλ12 are independent parameters.

Consequently no conclusion can be drawn on the value of only one of them, while letting

the other two vary. Taking into account the flavor constraints the picture changes however.

In that case sλ12 is allowed to be sizable only if Dλ,22 ' Dλ,11. Eq. (8.2) then reduces to

D2
λ,33 ·D2

λ,11, and we can directly read off the requirement that Dλ,11 has to lie in a specific

range such that the cancellation between the penguin and box contributions can work.

This mechanism provides a realization of xenophobic DM [35, 36]. The box diagram

contributes to DM scattering off protons and neutrons, while the photon penguin is only

present for DM-proton scattering. Therefore the penguin-box cancellation works only for

a specific number of protons and neutrons in the nucleus.

We note that a pattern of constraints analogous to the one observed in figure 8 arises

for all the possible mass hierarchies in the dark sector, i. e. it does not depend qualitatively

on whether a single flavor or multiple flavors are present at freeze-out.

Figure 9. Allowed region in the λ1-λ2-plane for the single flavor freeze-out scenario, after imposing

the relic abundance, LUX and flavor constraints. The DM mass mχb
is indicated by the color, and

the ij-degeneracy lines are sketched.

Next let us recover which of the flavor scenarios identified in section 5 are realized in

the single flavor freeze-out case. To this end we parameterize the matrix Dλ in terms of

the parameters λ0,1,2, used in the flavor analysis, and defined in (3.6). The distribution of

parameter points consistent with the LUX and flavor constraints in the λ1-λ2-plane is shown
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in figure 9. We observe that the requirement mχb < mχd,s and therefore Dλ,11, Dλ,22 <

Dλ,33 restricts the allowed parameter space to the region λ2 < −1/2λ1 ∧ λ2 < −2λ1.

Consequently only the 12 degeneracy scenario and the small mixing scenario are realized

in this case. The DM massmχb is indicated by the color, with the dark points corresponding

to light DM. We see that with smaller DM mass mχb points move further away from the

universality λ1 = λ2 = 0. This feature is a direct consequence of the upper bound on Dλ,11

for mχb ∼< 100 GeV, requiring a sizable splitting in Dλ.

8.2 13-degeneracy

Next we consider the scenario of quasi-degenerate first and third dark generations, i. e.

mχb ∼< mχd < mχs . In this case we have Dλ,33 ∼> Dλ,11 > Dλ,22. Comparing this structure

to the scenarios identified in the flavor pre-analysis we see that we are confined to the

13-degeneracy scenario, in which sλ12 and sλ23 are small while sλ13 is in principle allowed to

be large. However recalling the results from the previous section we anticipate that once

the LUX bound is imposed also the latter mixing angle is constrained to be small, in order

to suppress the tree level contribution to the WIMP-nucleon scattering. This is indeed

confirmed by our numerical analysis.

Figure 10. First generation coupling Dλ,11 as function of the DM mass mχb
in the 13-degeneracy

scenario. The mass hierarchy mχb ∼< mχd
< mχs and the relic abundance constraint are imposed.

The red points satisfy the bound from LUX, while the blue points satisfy the ∆F = 2 constraints.

For the yellow points both LUX and ∆F = 2 constraints are imposed.

In figure 10 we show the allowed values of the first generation coupling Dλ,11 as a

function of the DM mass mχb . We observe that due to the quasi-degeneracy of the first

and third generation for a given mχb only a small range of parameter space is allowed by

the relic abundance constraint. Consequently the upper bound on Dλ,11 that arises again

from the need to cut off the box contribution to the WIMP-nucleon scattering translates

into a lower bound on mχb . If we neglect the flavor constraints and take into account

only the LUX bound, we find a lower bound mχb ∼> 70 GeV. Taking into account both

the LUX and flavor constraints simultaneously, the bound becomes considerably stronger,

mχb ∼> 100 GeV. Again we stress the non-trivial interplay of flavor and DM constraints.

The interplay of flavor and DM constraints can be understood from figure 11. We show

the allowed parameter range in the Dλ,11-Dλ,22-plane, applying only the LUX bound, but
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Figure 11. Allowed region for Dλ,11 and Dλ,22 in the 13-degeneracy scenario, after imposing both

the relic abundance and LUX constraints, while the flavor constraints are not taken into account.

The flavor mixing angle sλ12 is indicated by the color, and the 12-degeneracy line Dλ,11 = Dλ,22 is

sketched.

not the flavor constraints. We observe that the largest values for Dλ,11, corresponding to

the smallest DM masses, are reached away from the 12-degeneracy line and require near-

maximal mixing sλ12. This part of parameter space, while perfectly consistent with the DM

constraints, is however ruled out by the stringent ∆F = 2 constraints that allow a large

sλ12 only very close to the 12-degeneracy line.

Figure 12. Allowed region in the λ1-λ2-plane for the 13-degeneracy scenario, after imposing the

relic abundance, LUX and flavor constraints. The DM mass mχb
is indicated by the color, and the

ij-degeneracy lines are sketched.

In figure 12 we show the allowed region of parameter space in the λ1-λ2-plane. As

expected all parameter points lie very close to the exact 13-degeneracy line λ2 = −2λ1.

With decreasing DM mass mχb they move further away from the universality point λ1 =

λ2 = 0. This is a consequence of the required splitting of the second generation mχs .

8.3 23-degeneracy

The next scenario to study is the approximate 23-degeneracy, with mχb ∼< mχs < mχd .

In this case sλ23 is arbitrary, with sλ12 is required to be small by the ∆F = 2 constraints,
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