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We measure the mass of the top quark in lepton+jets final states using the full sample of pp̄
collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at√
s = 1.96 TeV, corresponding to 9.7 fb−1 of integrated luminosity. We use a matrix element tech-

nique that calculates the probabilities for each event to result from tt̄ production or background.
The overall jet energy scale is constrained in situ by the mass of the W boson. We measure
mt = 174.98 ± 0.76 GeV. This constitutes the most precise single measurement of the top-quark
mass.

PACS numbers: 14.65.Ha

Since its discovery [1, 2], the determination of the prop-
erties of the top quark has been one of the main goals of
the Fermilab Tevatron Collider, recently joined by the
CERN Large Hadron Collider. The measurement of the
top quark mass mt, a fundamental parameter of the stan-
dard model (SM), has received particular attention. In-
deed, mt, the mass of the W boson MW , and the mass of
the Higgs boson are related through radiative corrections
that provide an internal consistency check of the SM [3].
Furthermore, mt dominantly affects the stability of the
SM Higgs potential, which has related cosmological im-
plications [4–6]. Currently, with mt = 173.34±0.76 GeV,
a world-average combined precision of about 0.5% has
been achieved [7–9].

In this Letter, we present a measurement of mt using
a matrix element (ME) technique, which determines the
probability of observing each event under both the tt̄ sig-
nal and background hypotheses described by the respec-

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cDESY, Hamburg,
Germany, dUniversidad Michoacana de San Nicolas de Hidalgo,
Morelia, Mexico eSLAC, Menlo Park, CA, USA, fUniversity Col-
lege London, London, UK, gCentro de Investigacion en Computa-
cion - IPN, Mexico City, Mexico, hUniversidade Estadual Paulista,
São Paulo, Brazil, iKarlsruher Institut für Technologie (KIT) -
Steinbuch Centre for Computing (SCC), D-76128 Karlsruhe, Ger-
many, jOffice of Science, U.S. Department of Energy, Washington,
D.C. 20585, USA, kAmerican Association for the Advancement of
Science, Washington, D.C. 20005, USA, lKiev Institute for Nu-
clear Research, Kiev, Ukraine and mUniversity of Maryland, Col-
lege Park, Maryland 20742, USA.

tive MEs [10]. The overall jet energy scale (JES) is cali-
brated in situ by constraining the reconstructed invariant
mass of the hadronically decaying W boson to MW =
80.4 GeV [11]. The measurement is performed using the
full set of pp̄ collision data at

√
s = 1.96 TeV recorded by

the D0 detector in the Run II of the Fermilab Tevatron
Collider, corresponding to an integrated luminosity of
9.7 fb−1. This is an update of a previous D0 measurement
that used 3.6 fb−1 of integrated luminosity and measured
mt = 174.94±1.14 (stat+ JES)±0.96 (syst) GeV [12]. In
the present measurement, we not only use a larger data
sample to improve the statistical precision, but also re-
fine the estimation of systematic uncertainties through an
updated detector calibration, in particular improvements
to the b-quark JES corrections [13], and using recent im-
provements in modeling the tt̄ signal. The analysis was
performed blinded in mt.

The D0 detector central-tracking system consists of
a silicon microstrip tracker and a central fiber tracker,
both located within a 1.9 T superconducting solenoidal
magnet [14, 15], with designs optimized for tracking and
vertexing at pseudorapidities |η| < 3 and |η| < 2.5, re-
spectively [16]. A liquid-argon calorimeter with uranium
absorber plates has a central section covering pseudora-
pidities up to |η| ≈ 1.1, and two end calorimeters that
extend coverage to |η| ≈ 4.2, with all three housed in sep-
arate cryostats [17]. An outer muon system, at |η| < 2,
consists of a layer of tracking detectors and scintillation
trigger counters in front of 1.8 T iron toroids, followed
by two similar layers after the toroids [18].

The top quark decays into a b quark and a W bo-
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son with ≈ 100% probability assuming unitarity of the
CKM matrix, resulting in a W+W−bb̄ final state. This
analysis is performed using lepton+jets (ℓ + jets) final
states, where one of the W bosons decays leptonically,
and the other hadronically. Here, ℓ denotes either an
electron (e) or a muon (µ), including those from leptonic
tau decays. This analysis requires the presence of one
isolated electron [19] or muon [20] with transverse mo-
mentum pT > 20 GeV and |η| < 1.1 or |η| < 2, respec-
tively. In addition, exactly four jets with pT > 20 GeV
within |η| < 2.5, and pT > 40 GeV for the jet of high-
est pT, are required. Jets are reconstructed using an
iterative cone algorithm [21] with a cone parameter of
R = 0.5. Jet energies are corrected to the particle level
using calibrations derived from exclusive γ+jet, Z+jet,
and dijet events [13]. These calibrations account for dif-
ferences in detector response to jets originating from a
gluon, a b quark, and u, d, s, or c quarks. Furthermore,
each event must have an imbalance in transverse mo-
mentum of /pT > 20 GeV expected from the undetected
neutrino. Additional selection requirements to suppress
background contributions from multijet (MJ) production
are discussed in more detail in Ref. [22]. To further re-
duce background, at least one jet per event is required
to be tagged as originating from a b quark (b-tagged)
through the use of a multivariate algorithm [23]. The
tagging efficiency is ≈ 65% for b-quark jets, while the
mistag rate for gluons and for light (u, d, s) quark jets
is ≈ 5%. In total, 1468 and 1124 events are selected in
the e + jets and µ+ jets channels, respectively, which is
consistent with expectation from SM predictions.

The extraction of mt is based on the kinematic infor-
mation in the event and performed with a likelihood tech-
nique using per-event probability densities (PD) defined
by the MEs of the processes contributing to the observed
events. Assuming only two non-interfering contributing
processes, tt̄ and W + jets production, the per-event PD
is:

Pevt = A(~x)[fPsig(~x;mt, kJES)

+ (1− f)Pbkg(~x; kJES)] , (1)

where the observed signal fraction f , mt, and the overall
multiplicative factor adjusting the energies of jets after
the JES calibration kJES, are parameters to be deter-
mined from data. Here, ~x represents the measured jet
and lepton four-momenta, and A(~x) accounts for accep-
tance and efficiencies. The function Psig describes the PD
for tt̄ production. Similarly, Pbkg describes the PD for
W + jets production, which contributes 14% of the data
in the e + jets and 20% in the µ+ jets channels accord-
ing to the normalization procedure in Ref. [22]. W + jets
and MJ backgrounds have similar PD in the studied kine-
matic region, and thus MJ production is accounted for in
Pevt via Pbkg. MJ events contribute 12% to the e + jets
and 5% to the µ + jets channels. The combined contri-

bution from all other backgrounds amounts to about 5%
in both channels.

In general, the set ~x of measured quantities will not
be identical to the set of corresponding partonic vari-
ables ~y because of finite detector resolution and parton
hadronization. Their relationship is described by the
transfer function W (~x, ~y, kJES), where we assume that
the jet and lepton angles are known perfectly. The den-
sities Psig and Pbkg are calculated through a convolu-
tion of the differential partonic cross section, dσ(~y), with
W (~x, ~y, kJES) and the PDs for the initial-state partons,
f(qi), where the qi are the momenta of the colliding par-
tons, by integrating over all possible parton states leading
to ~x:

Psig =
1

σtt̄
obs(mt, kJES)

∫ ∑
dσ(~y,mt)d~q1d~q2f(~q1)f(~q2)

×W (~x, ~y; kJES) . (2)

The sum in the integrand extends over all possible flavor
combinations of the initial state partons. The longitudi-
nal momentum parton density functions (PDFs), f(qi,z),
are taken from the CTEQ6L1 set [24], while the depen-
dencies f(qi,x), f(qi,y) on transverse momenta are taken
from PDs obtained from the pythia simulation [25].
The factor σtt̄

obs(mt, kJES), defined as the expected to-
tal tt̄ cross section, ensures that A(~x)Psig is normalized
to unity. The differential cross section, dσ(~y,mt), is cal-
culated using the leading order (LO) ME for the pro-
cess qq̄ → tt̄. The integration in Eq. 2 is performed
over the masses of the t and t̄ quarks which are as-
sumed to be equal, the masses of the W± bosons, the
energy E (curvature 1/pT) of the electron (muon), and
Eq/(Eq + Eq̄) for the quarks from the W → qq̄′ decay.
The MW = 80.4 GeV constraint for the in-situ JES cal-
ibration is imposed by integrating over W boson masses
from a Breit-Wigner prior. There are 24 possible jet-
parton assignments that are summed with weights based
on their consistency with the b-tagging information.

The density Psig is calculated by numerical Monte
Carlo (MC) integration and is identical to that in
Ref. [12], except as described. The transfer function
W (~x, ~y; kJES) and σtt̄

obs(mt, kJES) are rederived using im-
proved detector calibrations. Instead of pseudo-random
numbers, we utilize the implementation of Bratley and
Fox [26] of the Sobol low discrepancy sequence [27] for
MC integration, which provides a reduction of about one
order of magnitude in calculation time. Furthermore, we
approximate the exact results of Eq. (2) for a grid of
points in (mt, kJES) space by calculating the ME only
once for each mt and multiplying the results with the
transfer function W (~x, ~y; kJES) to obtain Psig for any
kJES. This results in another order of magnitude re-
duction in computation time. Both improvements are
verified to provide a performance of the ME technique
consistent with that in Ref. [12]. They proved essential
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to reduce the statistical uncertainty in evaluating most
of the systematic uncertainties discussed below.

The differential partonic cross section for Pbkg is cal-
culated using the LO W + 4 jets MEs implemented in
vecbos [28]. The initial-state partons are all assumed
to have zero transverse momentum pT. As in the case of
Psig, we apply identical procedures to calculate Pbkg to
those in Ref. [12], but using the updated transfer function
W (~x, ~y; kJES) and background normalization factor.

We calculate Psig and Pbkg on a grid in (mt, kJES)
with spacings of (1 GeV, 0.01). A likelihood function,
L(~x1, ~x2, ..., ~xN ;mt, kJES, f), is constructed at each grid
point from the product of the individual Pevt values
for the measured quantities ~x1, ~x2, ..., ~xN of the selected
events, and f is determined by maximizing L at that grid
point. The likelihood function L(~x1, ~x2, ..., ~xN ;mt, kJES)
is then projected onto the mt and kJES axes by inte-
grating over kJES and mt, respectively. Best unbiased
estimates of mt and kJES and their statistical uncertain-
ties are extracted from the mean and standard deviation
(SD) of L(~x1, ~x2, ..., ~xN ;mt) and L(~x1, ~x2, ..., ~xN ; kJES).

Simulations are used to calibrate the ME technique.
Signal tt̄ events, as well as the dominant background con-
tribution from W + jets production, are generated with
alpgen [29] using the CTEQ6L1 set of PDFs, interfaced
to pythia for parton showering using the MLM match-
ing scheme [30]. The simulation of parton showers with
pythia uses modified tune A with the CTEQ6L1 PDF
set and fixed ΛQCD. The detector response is fully simu-
lated through geant3 [31], followed by the same recon-
struction algorithms as used on data. See Ref. [22] for
more details on MC simulations. Contributions from MJ
production are estimated with the “matrix method” [22]
and modeled using a data sample, where lepton isolation
requirements are inverted.

Seven samples of tt̄ events, five at mgen
t = 165, 170,

172.5, 175, 180 GeV for kgenJES = 1, and two at kgenJES =
0.95, 1.05 for mgen

t = 172.5 GeV, are generated. Three
samples of W + jets events, at kgenJES = 0.95, 1, and 1.05,
are produced. Together, the tt̄, W +jets and MJ samples
are used to derive a linear calibration for the response of
the ME technique to mt and kJES. For each generated
(mgen

t , kgenJES) point, 1000 pseudo-experiments (PE) are
constructed, each containing the same number of events
as observed in data. This is done by randomly draw-
ing simulated signal and background events according to
the signal fraction f from Eq. 1, which is randomly var-
ied according to a binomial distribution around the value
measured in data. Each of the PEs contains the number
of MJ events determined from the matrix method.

The signal fraction f used to construct PEs for the
calibration of the method response in mt and kJES is
extracted from data by maximizing the likelihood af-
ter integrating over mt and kJES. Five sets of PEs are
formed, for f = 0.5, 0.6, 0.7, 0.8, and 0.9 at mgen

t =
172.5 GeV, kgenJES = 1 to linearly calibrate the response
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FIG. 1: (color online) (a) Two-dimensional likelihood
L(~x1, ~x2, ..., ~xN ;mt, kJES)/Lmax for data. Fitted contours of
equal probability are overlaid as solid lines. The maximum
is marked with a cross. Note that the bin boundaries do not
necessarily correspond to the grid points on which L is calcu-
lated. (b) Expected uncertainty distributions for mt with the
measured uncertainty indicated by the arrow.

of the ME technique to f . We find f = 63% in the
e + jets and f = 70% in the µ + jets channels, with an
absolute uncertainty of 1% due to the finite size of the
data sample and the calibration in f . These values are
in agreement with the expectation for the signal yield
assuming σtt̄ = 7.24 pb [32].

With f determined as above, we proceed to form
PEs at the chosen (mgen

t , kgenJES) points, and extract lin-
ear calibrations of the ME technique response to mt

and kJES. Applying them to data, we measure mt =
174.98± 0.58 GeV and kJES = 1.025± 0.005 , where the
total statistical uncertainty on mt also includes the statis-
tical contribution from kJES. Both uncertainties are cor-
rected by the observed SD of the pull distributions [33].
The two-dimensional likelihood distribution in (mt, kJES)
is shown in Fig. 1(a). Figure 1(b) compares the measured
total statistical uncertainty on mt with the distribution
of this quantity from the PEs at mgen

t = 172.5 GeV and
kgenJES = 1. In contrast to the previous measurement [12],
we do not use the JES determined in exclusive γ+jet and
dijet events with an uncertainty of ≈ 2% to constrain
kJES. We follow this strategy because the statistical
uncertainty on the measured kJES value is substantially
smaller than the typical uncertainty on the JES, and be-
cause kJES relates jet energies at detector level to parton
energies, while JES relates jet energies at detector level
to jet energies at particle level. Splitting the total statis-
tical uncertainty into two parts from mt alone and kJES,
we obtain mt = 174.98± 0.41 (stat)± 0.41 (JES) GeV.

Comparisons of SM predictions to data for mt =
175 GeV and kJES = 1.025 are shown in Fig. 2 for the
invariant mass of the jet pair matched to one of the W
bosons and the invariant mass of the tt̄ system. The
kinematic reconstruction is identical to the one used in
Ref. [22]. The tt̄ signal is normalized to total cross sec-
tions of σtt̄ = 7.8 pb in the e + jets and σtt̄ = 7.6 pb
in the µ + jets channel, corresponding to the measured
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FIG. 2: (color online) (a) Invariant mass of the jet pair
matched to one of the W bosons. (b) Invariant mass of the
tt̄ system. In the ratio of data to SM prediction, the total
systematic uncertainty is shown as a shaded band.

signal fraction.
Systematic uncertainties are evaluated using PEs con-

structed from fully simulated events and including back-
ground contributions for three categories: modeling of
signal and background events, uncertainties in the simu-
lation of the detector response, and uncertainties associ-
ated with procedures used and assumptions made in the
analysis. Contributions from these sources are listed in
Table I.

The first four sources of systematic uncertainty in Ta-
ble I are evaluated for mgen

t = 172.5 GeV by compar-
ing results for mt using different signal models. All
other systematic uncertainties are evaluated by rederiv-
ing the calibration with simulations reflecting an alter-
native model, and applying the alternative calibration
to data. The statistical components of systematic uncer-
tainties are ≈ 0.05 GeV for the former and ≈ 0.01 GeV for
the latter sources of systematic uncertainty. The statis-
tical components are never larger than the net difference
between the default and alternative models for any of the
sources of systematic uncertainty. One-sided sources of
systematic uncertainties are taken as symmetric in both
directions in the total quadrature sum.

We refine the evaluation procedure for several sources
of systematic uncertainty compared to Ref. [12] as de-
scribed below. Details on other, typically smaller, sources
of systematic uncertainty can be found in Ref. [12]. The
uncertainty due to the modeling of initial and final state

radiation is constrained from Drell-Yan events [34]. As
indicated by these studies, we change the amount of ra-
diation via the renormalization scale parameter for the
matching scale in alpgen interfaced to pythia [35] up
and down by a factor of 1.5. In addition, we reweight
tt̄ simulations in pT of the tt̄ system (ptt̄T) to match
data, and combine the two effects in quadrature. The
uncertainty originating from the choice of a model for
hadronization and underlying event (UE) is evaluated by
comparing events simulated with alpgen interfaced to
either pythia or herwig [36]. The JES calibration is
derived using pythia with a modified tune A [13], and is
expected to be valid for this configuration only. Applying

Source of uncertainty Effect on mt (GeV)
Signal and background modeling:
Higher order corrections +0.15
Initial/final state radiation ±0.09
Hadronization and UE +0.26
Color reconnection +0.10
Multiple pp̄ interactions −0.06
Heavy flavor scale factor ±0.06
b-jet modeling +0.09
PDF uncertainty ±0.11

Detector modeling:
Residual jet energy scale ±0.21
Flavor-dependent response to jets ±0.16
b tagging ±0.10
Trigger ±0.01
Lepton momentum scale ±0.01
Jet energy resolution ±0.07
Jet ID efficiency −0.01

Method:
Modeling of multijet events +0.04
Signal fraction ±0.08
MC calibration ±0.07

Total systematic uncertainty ±0.49
Total statistical uncertainty ±0.58
Total uncertainty ±0.76

TABLE I: Summary of uncertainties on the measured top
quark mass. The signs indicate the direction of the change in
mt when replacing the default by the alternative model.

it to events that use herwig for evolving partons showers
can lead to a sizable effect on mt. However, this effect
would not be present if the JES calibration were based on
herwig. To avoid such double-counting of uncertainty
sources, we evaluate the uncertainty from hadronization
and UE by considering as ~x the momenta of particle level
jets matched in (η, φ) space to reconstructed jets. In this
evaluation, we reweight our default tt̄ simulations in ptt̄T to
match alpgen interfaced to herwig. A potential effect
of color reconnection (CR) on mt is evaluated by compar-
ing alpgen events interfaced to pythia with the Perugia
2011NOCR and Perugia 2011 tunes [37], where the latter
includes an explicit CR model. The residual jet energy

scale uncertainty from a potential dependence of the JES
on (pT, η) is estimated by changing the jet momenta as a
function of (pT, η) by the upper limits of JES uncertainty,
the lower limits of JES uncertainty, and a linear fit within
the limits of JES uncertainty. The maximum excursion in
mt is quoted as systematic uncertainty. Dedicated cal-
ibrations to account for the flavour-dependent response

to jets originating from a gluon, a b quark and u, d, c,
or s quarks are now an integral part of the JES correc-
tion [13], and the uncertainty on mt from these calibra-
tions is evaluated by changing them within their respec-
tive uncertainties. This systematic uncertainty accounts
for the difference in detector response to b- and light-
quark jets. To evaluate the uncertainty from modeling
of b tagging, differential corrections in (pT, η) to ensure
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MC – data b-tagging efficiency agreement are changed
within their uncertainties. The uncertainty due to the
modeling of multijet events is evaluated by assuming a
100% uncertainty on its contribution to the data sam-
ple, i.e., by leaving it out when deriving the alternative
calibration. We construct PEs with ±5% variations on
the measured signal fraction, which approximately cor-
responds to the systematic uncertainty on the measured
tt̄ production cross section using D0 data [38], ignoring
the uncertainty from integrated luminosity, and construct
the PEs according to this 5% change.

In summary, we have performed a measurement of the
mass of the top quark using the matrix element technique
in tt̄ candidate events in lepton+jets final states using
9.7 fb−1 of Run II integrated luminosity collected by the
D0 detector at the Fermilab Tevatron pp̄ Collider. The
result,

mt = 174.98± 0.58 (stat + JES)± 0.49 (syst) GeV , or

mt = 174.98± 0.76 GeV ,

is consistent with the values given by the current Teva-
tron and world combinations of the top quark mass [8, 9]
and achieves by itself a similar precision. With an un-
certainty of 0.43%, it constitutes the most precise single
measurement of the top quark mass, with a total system-
atic uncertainty notably smaller than any other single
measurement.
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