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We calculate the B-meson decay constants fB , fBs , and their ratio in unquenched lattice QCD
using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated
by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge
action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of
a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control
the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the
anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization
errors from the heavy-quark action are of the same size as from the light-quark sector. We renor-
malize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which
we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close
to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through
O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2)
heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain
fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59),
and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature.
These results are in good agreement with other published results and provide an important indepen-
dent cross check of other three-flavor determinations of B-meson decay constants using staggered
light quarks.

PACS numbers:

I. INTRODUCTION

Leptonic decays of bottom mesons probe the quark-
flavor-changing transitions b → u and b → s, and there-
fore play an important role in constraining and searching
for new physics in the flavor sector.

In the Standard Model, the decay rate for B+ → `+ν`
is given by

Γ(B → `ν`) =
mB

8π
G2
F f

2
B |Vub|2m2

`

(
1− m2

`

m2
B

)2

, (1)

where fB is the leptonic decay constant that parame-
terizes nonperturbative QCD contributions to the elec-
troweak decay process, and we use the convention fπ ∼
130 MeV. The decay rate in Eq. (1) is suppressed by the
small value of the CKM matrix element |Vub|, which is
of O(10−3), and is further helicity suppressed for light
final-state charged leptons. When combined with an
experimental measurement of the decay rate, a lattice-
QCD calculation of fB enables the determination of the

CKM matrix element |Vub| within the Standard Model.
This is particularly important given the long-established
∼ 3σ disagreement between |Vub| obtained from exclusive
B → π`ν semileptonic decay and inclusive B → Xu`ν
decay [1–6]. Thus far only the charged-current decay
B+ → τ+ντ has been observed experimentally. The
experimental measurements from Belle and BaBar have
∼ 30% errors [7–10], but no individual measurement has
5σ significance. The precision will improve, however,
with additional data collected by Belle II, which is ex-
pected to begin running in around 2016. At this point
the independent determination of |Vub| from B+ → τ+ντ
may be sufficiently precise to provide some insight into
the current |Vub| puzzle.

The leptonic decays of neutral B0
d and B0

s mesons pro-
ceed via flavor-changing neutral currents. Thus they
are loop suppressed in the Standard Model, and poten-
tially more sensitive to new physics than B+ leptonic de-
cays. The decay rate for these neutral-current processes
is given by:
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Γ(Bq → `+`−) =
G2
F

π
Y

(
α

4π sin2 ΘW

)2

mBqf
2
Bq |V

∗
tbVtq|2m2

`

√
1− 4

m2
`

m2
B

, (2)

where q = d, s and the loop function Y includes next-to-
leading-order short-distance QCD and electroweak cor-
rections [11]. Here lattice-QCD calculations of the decay
constants fB and fBs are needed to calculate predictions
for Bd,s → `+`− both within the Standard Model and in
beyond-the-Standard Model theories (see, e.g. Ref. [12]).
Evidence for Bs → µ+µ− decay has been seen at the
∼ 4σ level by both LHCb [13, 14] and CMS [15], while
LHCb has also seen ∼ 2σ evidence for B0

d → µ+µ− de-
cay [14]. The statistical significance of both of these re-
sults will increase in the next few years. Many uncertain-
ties cancel, or are at least suppressed, in the Standard-
Model prediction for B(Bs → µ+µ−)/B(B0

d → µ+µ−),
which is proportional to the (squared) ratio of decay con-
stants. Therefore, once the experimental measurements
are more precise, this SU(3)-breaking ratio will provide
an especially clean test of the Standard Model given a
similarly accurate lattice-QCD calculation of fBs/fB0

d
.

In this work we present a new calculation of the lep-
tonic decay constants fB , fBs , and the ratio fBs/fB in
(2+1)-flavor lattice QCD. We use the gauge-field ensem-
bles generated by the RBC and UKQCD collaborations
with the domain-wall fermion action and Iwasaki gluon
action which include the effects of dynamical u, d, and s
quarks [16, 17]. For the bottom quarks, we use the rela-
tivistic heavy-quark (RHQ) action introduced by Christ,
Li, and Lin in Ref. [18], with the parameters of the ac-
tion that were obtained nonperturbatively in Ref. [19].
We improve the lattice heavy-light axial vector current
through O(αsa), and renormalize the current using the
mostly nonperturbative method introduced in Ref. [20].
We analyze data with several values of the light-quark
mass (down to ≈ 290 MeV) and two lattice spacings of
a ≈ 0.11 and 0.086 fm. We then extrapolate our nu-
merical simulation to the physical light-quark mass and
continuum limit using next-to-leading order SU(2) heavy-
light meson chiral perturbation theory (HMχPT) [21–
24].

This work is the first application of the RHQ ac-
tion to weak-matrix element calculations relevant for
phenomenology. The general relativistic heavy-quark
framework was introduced by El Khadra, Kronfeld, and
Mackenzie in Ref. [25], and can be used to simulate sys-
tems with both light quarks am0 � 1 (where a is the lat-
tice spacing and m0 is the bare quark mass) and heavy
quarks with am0 ∼> 1 with controlled discretization er-
rors. This method takes advantage of the fact that, in
the rest frame of the heavy-light bound states, the spa-
tial momentum carried by the heavy quark is smaller

than the mass of the heavy quark and of order of ΛQCD

|~phl| ∼ ΛQCD. (3)

Performing a Symanzik-like expansion in powers of the
spatial derivative Di and keeping all orders of the
mass m0a and the temporal derivative D0, one ar-
rives at an anisotropic action which breaks the axis-
interchange symmetry between spatial and temporal di-
rections. There are several implementations of the rela-
tivistic heavy-quark framework. Here we use the RHQ
action introduced by Christ, Li, and Lin in Refs. [18].
These authors showed that if the three coefficients in the
anisotropic Sheikholeslami-Wohlert (clover) action — the
bare quark mass m0a, anisotropy ζ, and clover coeffi-
cient cP — are suitably tuned, one can eliminate errors
of O(|~p|a), O([m0a]n), and O(|~p|a[m0a]n) from on-shell
Green’s functions. Thus the RHQ action allows us to
simulate heavy quarks such as bottom with discretization
errors of similar size to those of light-quark systems. In
this work we use the nonperturbatively-determined val-
ues of {m0a, cP , ζ} on the RBC/UKQCD domain-wall
+ Iwasaki ensembles corresponding to the physical b-
quark. The values of these parameters were fixed using
masses in the Bs system, and validated by comparison
with the experimentally-measured low-lying masses and
mass-splittings in the bottomonium system.

There are several (2+1)-flavor and (2+1+1) calcula-
tions of the B(s)-meson decay constants and their ratio
in the literature using a variety of actions for the bot-
tom and light quarks [24, 26–31]. Of these, our calcu-
lation is most similar to that of the Fermilab Lattice
and MILC collaborations, who also use the relativistic
heavy quark framework. Their calculation uses the Fer-
milab interpretation of the isotropic clover action [25]
with the tadpole-improved tree-level value of the clover
coefficient cSW . They also O(a)-improve the heavy-light
axial-vector current at tree level. Thus, for similar val-
ues of the lattice spacing, their calculation suffers from
larger heavy-quark discretization errors than ours. All of
the published Nf ≥ 3 results for fB , fBs , and fBs/fB
use staggered light quarks; the three Nf = 2 + 1 calcu-
lations use the same asqtad-improved ensembles gener-
ated by the MILC Collaboration. Our calculation using
domain-wall light quarks therefore provides a valuable in-
dependent check for these phenomenologically-important
quantities.

This paper is organized as follows. In Sec. II we de-
scribe the lattice actions and simulation parameters used
in this work. Next we present the determination of the
B(s) meson decay amplitudes in Sec. III. First we dis-
cuss the operator renormalization and improvement, fol-
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lowed by the two-point correlator fits, the interpolation
to the tuned b-quark mass, and finally (for Bs meson
quantities) the interpolation to the physical s quark. In
Sec. IV we extrapolate the numerical simulation data to
the physical light-quark masses and the continuum limit
using SU(2) HMχPT. Section V presents our complete
uncertainty budget; for clarity, we discuss each source of
systematic uncertainty in a separate subsection. Finally,
we conclude in Sec. VI with a comparison of our results
with other lattice determinations, and with an outlook
for the future. This paper also has two appendices de-
scribing our determination of the heavy-heavy current
renormalization factor ZbbV (App. A) and our estimate of
heavy-quark discretization errors (App. B).

II. LATTICE ACTIONS AND PARAMETERS

In this section we describe the setup of our numeri-
cal lattice simulations, which is the same in our earlier
work on tuning the parameters of the RHQ action [19].
Sec. II A summarizes the parameters of the light-quark
and gluon actions, while II B summarizes those of the
heavy b-quark action.

A. Light-quark and gluon actions

We use the dynamical “2+1”-flavor domain-wall
Iwasaki ensembles generated by the RBC and UKQCD
Collaborations with two lattice spacings of a ≈ 0.11
fm (a−1 = 1.729 GeV) and a ≈ 0.08 (a−1 = 2.281
GeV) [16, 17]. These ensembles were generated with
three dynamical quarks: the two lighter sea quarks have
equal masses which are denoted by ml, while the heav-
ier sea quark mass is tuned to within 10% of the physi-
cal strange-quark mass and is denoted by mh. The lat-

tices employ the five-dimensional Shamir domain-wall ac-
tion [32, 33] for the fermions in combination with the
Iwasaki gauge action [34]. This combination allows for
sufficient tunneling between topological sectors [35]. For
the calculation of the B(s)-meson decay constants, we an-
alyze five ensembles with unitary pion masses as light as
≈ 290 MeV. All spatial volumes are about 2.5 fm, such
that MπL ∼> 4. Table I summarizes the parameters of the
gauge-field ensembles used in this analysis. Throughout
this work, we refer to the coarser ensembles with a ≈ 0.11
fm as the “243” ensembles and the finer (a ≈ 0.08 fm)
ensembles as the “323” ensembles.

For the light valence quarks we use the same fermion
action and parameters as in the sea sector. Hence we can
use RBC-UKQCD’s earlier determinations of the unitary
pion masses, residual quark mass mres, and values of the
physical u/d- and s-quark masses from Ref. [17]. In par-
ticular, we use Ls = 16 for the extent of the fifth di-
mension, a domain-wall height of M5 = 1.8, and periodic
boundary conditions in all directions. With these choices
the size of residual chiral symmetry breaking is small:
amres is approximately 3× 10−3 or less on all ensembles.
For the calculation of the B(s)-meson decay constants, we
generated point-source valence quark propagators with
six different masses including approximately the physi-
cal strange quark and the unitary point; their values are
listed in Tab. II. These point-source domain-wall prop-
agators were saved and are available for non-competing
projects upon request.

B. Heavy-quark action

We simulate the heavy b-quarks (denoted by Q(x))
with the anisotropic Sheikholeslami-Wohlert (clover) ac-
tion [36]:

SRHQ = a4
∑
x,x′

Q(x′)

(
m0 + γ0D0 + ζ~γ · ~D − a

2
(D0)2 − a

2
ζ( ~D)2 +

∑
µ,ν

ia

4
cPσµνFµν

)
x′x

Q(x) , (4)

where

DµQ(x) =
1

2a

[
Uµ(x)Q(x+ µ̂)− U†µ(x− µ̂)Q(x− µ̂)

]
(5)

D2
µQ(x) =

1

a2

[
Uµ(x)Q(x+ µ̂) + U†µ(x− µ̂)Q(x− µ̂)− 2Q(x)

]
(6)

FµνQ(x) =
1

8a2

∑
s,s′=±1

ss′
[
Usµ(x)Us′ν(x+ sµ̂)U†sµ(x+ s′ν)U†s′ν(x)− h.c.

]
Q(x) (7)

and γµ = γ†µ , {γµ, γν} = 2δµν and σµν = i
2 [γµ, γν ].

In Reference [19] we nonperturbatively determined the
values of the three parameters m0a, cP , and ζ that cor-
respond to the physical b-quark mass using the same set
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TABLE I: Lattice ensemble parameters. The columns list the lattice volume, approximate lattice spacing, light (ml) and
strange (mh) sea-quark masses, residual chiral symmetry breaking parameter mres, physical u/d- and s-quark mass, unitary
pion mass, and number of configurations analyzed. The tildes over am̃u/d and am̃s denote that these values include the residual
quark mass.

(
L
a

)3 × (T
a

)
≈ a(fm) a−1 [GeV] aml amh amres am̃u/d am̃s Mπ[MeV] # configs.

243 × 64 0.11 1.729(25) 0.005 0.040 0.003152 0.00136(4) 0.0379(11) 329 1636
243 × 64 0.11 1.729(25) 0.010 0.040 0.003152 0.00136(4) 0.0379(11) 422 1419
323 × 64 0.086 2.281(28) 0.004 0.030 0.0006664 0.00102(5) 0.0280(7) 289 628
323 × 64 0.086 2.281(28) 0.006 0.030 0.0006664 0.00102(5) 0.0280(7) 345 889
323 × 64 0.086 2.281(28) 0.008 0.030 0.0006664 0.00102(5) 0.0280(7) 394 544

TABLE II: Partially quenched light-quark masses analyzed.
On the 323 ensembles, two propagators were generated on
each configuration with sources separated by T/2a.

a−1 [GeV] amq

243 1.729(25) 0.005, 0.01, 0.02, 0.03, 0.0343, 0.04
323 2.281(28) 0.004, 0.006, 0.008, 0.025, 0.0272, 0.03

of gauge field configurations as in this work. We fol-
low the same approach for our computation of the decay
constants so that we can propagate statistical uncertain-
ties from the tuning procedure directly to the decay con-
stants. Here we briefly summarize the aspects of the
tuning procedure needed to understand the error propa-
gation; further details can be found in Ref. [19].

The RHQ parameters were tuned using two experimen-
tal inputs from the Bs-meson system – the spin-averaged
massMBs = (MBs+3MB∗s

)/4 and the hyperfine-splitting
∆MBs

= MB∗s
−MBs – along with the constraint that the

lattice rest mass (measured from the exponential decay
of meson correlators) equals the kinetic mass (measured
from the meson dispersion relation). They were obtained
nonperturbatively via an iterative procedure as follows.
We began with an initial guess for the tuned values of
{m0a, cP , ζ}, and computed Bs-meson two-point corre-
lation functions for seven sets of parameters centered on
these values, as depicted in Fig. 1. For each of the seven
parameter sets we computed MBs , ∆MBs

, and M1/M2,
and then linearly interpolated/extrapolated to the values
of {m0a, cP , ζ} that reproduced the experimental meson
masses from the 2010 PDG [37] and M1/M2 = 1. We re-
peated this procedure, re-centering the seven parameter
sets each time, until all of the tuned parameter values
remained inside the “box” depicted in Fig. 1, and thus
were the result of an interpolation rather than an extrap-
olation. We confirmed the assumption that the meson
masses depend linearly on {m0a, cP , ζ} with additional
simulations using larger box sizes.

The nonperturbatively tuned RHQ parameters deter-
mined in [19] and used in this work are presented in
Tab. III and IV. These tables list the final choice for
the seven parameter sets used in the interpolation and
the tuned results on the individual ensembles. Because
we do not observe any statistically significant dependence

5.6
5.8

6.0
6.2

8.208.308.408.50

2.9

3.1

3.3

3.5

cP

σcP

σm0a

σζ

m0a

ζ

FIG. 1: Parameter sets used to obtain the tuned coefficients
of the RHQ action. The seven sets of {m0a, cP , ζ} are located
on a cube at the centers of the six faces and at the midpoint.

TABLE III: Tuned RHQ parameters m0a, cP , and ζ corre-
sponding to the physical b-quark obtained on the same 243

gauge field configurations used in this work [19]. We used
the same seven sets of parameters for the final interpolation
to the tuned values on both 243 ensembles. Only statistical
uncertainties are quoted.

aml m0a cP ζ
tuning box 8.40± 0.15 5.80± 0.45 3.20± 0.30
tuned values 0.005 8.43(7) 5.7(2) 3.11(9)
tuned values 0.010 8.47(9) 5.8(2) 3.1(1)

on the sea-quark mass, we can average the values on the
different ensembles. The tuned RHQ parameters on the
243 and 323 lattice spacings obtained from the weighted
averages of different sea-quark ensembles are given in Ta-
ble V, along with our estimate of the systematic uncer-
tainties in these values as estimated in our earlier work,
Ref. [19]. These values of {m0a, cP , ζ} are used in our cal-
culation of the renormalization factor ZbbV in Appendix A,
our estimation of heavy-quark discretization errors in Ap-
pendix B, and our companion calculation of the B → π`ν
form factor [38].
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TABLE IV: Tuned RHQ parameters m0a, cP , and ζ corre-
sponding to the physical b quark obtained on the same 323

gauge field configurations used in this work [19]. We used
the same seven sets of parameters for the final interpolation
to the tuned values on all 323 ensembles. Only statistical
uncertainties are quoted.

aml m0a cP ζ
tuning box 3.98± 0.10 3.60± 0.30 1.97± 0.15
tuned values 0.004 4.07(6) 3.7(1) 1.86(8)
tuned values 0.006 3.97(5) 3.5(1) 1.94(6)
tuned values 0.008 3.95(6) 3.6(1) 1.99(8)

III. LATTICE CALCULATION OF B-MESON
DECAY AMPLITUDES

In QCD the Bq-meson decay constant is defined by
the vacuum-to-meson matrix element of the heavy-light
axial-vector current Aµ = bγµγ5q:

〈0|Aµ|Bq(p)〉 = ifBqpµ, (8)

where q denotes the light quark and pµ is the Bq-meson
four-momentum. Because fBq behaves as 1/

√
MBq when

MBq is large, it is advantageous to compute the decay
amplitude,

ΦBq = fBq

√
MBq , (9)

which is proportional to fBq .
In this section we describe the numerical computation

of the B-meson decay amplitudes on the five sea-quark
ensembles listed in Table I. We first describe the lat-
tice axial-current operator renormalization and improve-
ment, then the two-point correlator calculations and fits,
and finally the a posteriori interpolation to the physical
strange-quark mass.

A. Operator renormalization and improvement

The lattice version of the axial-current operator, Aµ,
is related to the continuum current as follows:

ZAµAµ
.
= Aµ +O

(
α2
saΛQCDfi(m0a, cP , ζ)

)
+ O

(
a2Λ2

QCDfj(m0a, cP , ζ)
)
, (10)

where
.
= denotes the equality of on-shell matrix elements,

and where the O(α2
sa, a

2) discretization errors on the
right-hand-side are specific to our choice of operator im-
provement, discussed below.

We calculate the matching factor for the temporal com-
ponent of the axial current, hereafter called ZΦ, using
the mostly nonperturbative method introduced by El-
Khadra et al. in Reference [20]. This approach takes
advantage of rewriting ZΦ as the following product:

ZΦ = ρblA

√
ZllV Z

bb
V . (11)

Because the flavor-conserving renormalization factors
ZbbV and ZllV can be obtained nonperturbatively from
standard heavy-light and light-light meson charge nor-
malization conditions, only the residual correction ρblA
needs to be computed perturbatively. The flavor-
conserving factors ZbbV and ZllV account for most of the
operator renormalization, while ρblA is expected to be close
to unity because most of the radiative corrections, includ-
ing contributions from tadpole graphs, cancel in the ratio

ZΦ/
√
ZbbV Z

ll
V [39]. Therefore ρblA has a more convergent

series expansion in αs than ZΦ and can be computed in
lattice perturbation theory to few-percent precision.

In practice, we calculate the flavor off-diagonal correc-
tion ρblA at 1-loop in tadpole-improved lattice perturba-

tion theory. The results corresponding to αMS
s (1/a) are

given in Table VI. Details on the calculation will be pro-
vided in a forthcoming publication [40]. The light-light
renormalization factor ZllV has already been obtained by
the RBC/UKQCD Collaborations (see Ref. [17]), where
we use the fact that ZA = ZV for domain-wall fermions
up to corrections of O(amres). We use the determina-
tions in the chiral limit given in Tab. VI. We calculate
the heavy-heavy renormalization factor ZbbV as part of
this project. Details of the calculation are provided in
Appendix A; the results are given in Tab. VI. As a cross-
check of our use of lattice perturbation theory for ρblA, we
can compare our nonperturbatively determined values of
ZbbV with those computed at one loop in perturbation the-
ory, (

ZbbV
)PT

24c
= 10.72 ,

(
ZbbV
)PT

32c
= 5.725 . (12)

We find agreement to better than 10% percent, which
is consistent with expectations of perturbative errors of
O(α2

s).
To reduce lattice discretization errors we improve the

axial-vector current O(a) at one-loop in mean field im-
proved lattice perturbation theory. At this order, only
one additional matrix element needs to be computed:

Φ
(1)
Bq

= 〈0|bγ0γ5

∑
i

γi

(
2
←−
D i

)
q|Bq(p)〉/

√
MBq , (13)

where the symmetric covariant derivative
←−
Dµ acts on

fields to the left:

b(x)
←−
Dµ =

1

2

(
b(x+ µ̂)U†µ(x)− b(x− µ̂)Uµ(x− µ̂)

)
.

(14)

The O(αsa)-improved decay amplitude is then given by

Φimp
Bq

= ΦBq + cAΦ
(1)
Bq
, (15)

with values of the coefficient cA given in Table VI. Fi-
nally, we obtain the improved, renormalized decay am-
plitude as follows:

Φren
Bq = ZΦ

(
ΦBq + cAΦ

(1)
Bq

)
. (16)

Discretization errors in our simulations from the heavy-
light axial-vector current are therefore of O(α2

sa, a
2).
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TABLE V: Tuned values of the RHQ parameters on the 243 and 323 ensembles [19]. The central values and statistical errors
are from a weighted average of the results on the individual sea-quark ensembles given in Tables III and IV. The errors listed
in m0a, cP , and ζ are from left to right: statistics, heavy-quark discretization errors, the lattice scale uncertainty, and the
uncertainty in the experimental measurement of the Bs-meson hyperfine splitting, respectively. Details on the error estimation
can be found in Ref. [19].

m0a cP ζ

a ≈ 0.11 fm 8.45(6)(13)(50)(7) 5.8(1)(4)(4)(2) 3.10(7)(11)(9)(0)
a ≈ 0.086 fm 3.99(3)(6)(18)(3) 3.57(7)(22)(19)(14) 1.93(4)(7)(3)(0)

TABLE VI: Matching factors and improvement coefficients.
The light-light flavor conserving renormalization factor ZllV =
ZA for domain-wall fermions up to corrections of O(mres) [17];
results quoted here are in the chiral limit. Errors shown on
ZllV and ZbbV are statistical only. The flavor-diagonal matching
factor ρblA and improvement coefficient cA are both computed
at 1-loop in mean-field improved lattice perturbation theory
[41].

a−1 [GeV] ZllV ZbbV αMS
s (a−1) ρblA cA

1.729(25) 0.71689(51) 10.039(25) 0.23 1.02658 0.066
2.281(28) 0.74469(13) 5.256(8) 0.22 1.01661 0.064

B. Two-point correlator fits

To obtain the decay amplitudes we first cacluate the
following two-point correlation functions:

CAP (t, t0) =
∑
~y

〈O†A(~y, t)ÕP (~0, t0)〉 , (17)

CA(1)P (t, t0) =
∑
~y

〈O†
A(1)(~y, t)ÕP (~0, t0)〉 , (18)

CPP (t, t0) =
∑
~y

〈O†P (~y, t)ÕP (~0, t0)〉 , (19)

C̃PP (t, t0) =
∑
~y

〈Õ†P (~y, t)ÕP (~0, t0)〉 . (20)

where OP = bγ5q is a pseudoscalar interpolating oper-
ator, OA = bγ0γ5q is the leading axial-current opera-
tor, and OA(1) = bγ0γ5

∑
i γi
(
D+
i +D−i

)
q is the O(a)

axial-current operator. We use point sources for the light
quarks in the correlation functions and gauge-invariant
Gaussian-smeared sources [42, 43] for the b-quark prop-
agators. The parameters for the Gaussian smearing
were optimized in our earlier work to suppress excited-
state contamination [19]. We use point sinks for the b-
quarks in order to minimize the statistical errors, ex-

cept in C̃PP (t, t0) which is used to obtain the wavefunc-
tion renormalization. The tildes above the operators in
Eqs. (17)–(20) indicate that a smeared source or sink was
used for the b-quark.

To reduce autocorrelations between results on consec-
utive configurations, we place the sources of our prop-
agators at the origin of the lattice after translating the

gauge field by a random four-vector (~x, t). This is equiv-
alent to selecting a random source position for each con-
figuration, but simplifies the subsequent analysis. We
double our statistics on all ensembles by folding the cor-
relators at the temporal midpoint of the lattice, which
allows us to use both forward and backward propagat-
ing states. In the case of the 323 ensembles we also
double the statistics by placing a second source on each
shifted configuration located at the temporal midpoint
of the lattice, (~x, t) = (~0, T/2). After folding and aver-
aging the correlators with the two source positions, the
entire subsequent analysis chain, including the chiral-
continuum extrapolations, is then carried out using a
single-elimination jackknife error analysis.

At sufficiently large times, the two-point correlators
are dominated by the contribution from the ground-state
meson. We can then extract the masses and renormal-
ized, O(αsa)-improved decay amplitudes from simple ra-
tios of correlators:

MBq = lim
t�t0

cosh−1

(
CPP (t, t0) + CPP (t+ 2, t0)

CPP (t+ 1, t0)

)
,

(21)

ΦBq =
√

2ZΦ lim
t�t0

|CAP (t, t0) + cACA(1)P (t, t0)|√
C̃PP (t, t0)e−MBq (t−t0)

, (22)

where we use the values of the renormalization factor
ZΦ = ρblA

(
ZllV Z

bb
V

)1/2
and improvement coefficient cA

given in Table VI.
On each ensemble, for each of the seven sets of RHQ

parameters {m0a, cP , ζ} listed in in the first rows of Ta-
bles III and IV and six valence-quark masses listed in
Table II, we obtain the meson masses and decay ampli-
tudes from correlated plateau fits to the above ratios. We
use the same range of time slices as in our tuning pro-
cedure [19]: [tmin, tmax] = [10, 25] on the 243 ensembles
and [tmin, tmax] = [11, 21] on the 323 ensembles. Fig-
ures 2 and 3 show effective mass and decay amplitude
plots for the six different light valence-quark masses and
the central RHQ parameter set on the 323 ensemble with
ml = 0.006 in units of MBs . The plateaus for other en-
sembles and sets of RHQ parameters look similar.

Our computation is carried out using the Chroma soft-
ware library [44] supplemented by our own code for mea-
suring matrix elements for the O(a)-improvement and
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FIG. 2: Effective masses for all valence-quark masses we use on the 323, aml = 0.006 ensemble. The triangles show the data
points with jackknife statistical errors, while the horizontal bands show the result of a correlated constant fit to the data on
those time slices.
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the three-point correlation functions needed for the de-
termination of ZbbV .

C. Interpolation to the tuned RHQ parameters

As mentioned above, the extraction of B-meson decay
amplitudes is performed for each of the seven sets of RHQ
parameters. We must then interpolate these results to
the tuned values of {m0a, cP , ζ} that correspond to the
physical b-quark.

We first interpolate the seven different masses Mr
Bq

,

where the index r runs over the seven parameter sets, to
the mass of the Bq-meson via a jackknife procedure, in
which we utilize the jackknife blocks for the RHQ param-
eters created as part of our tuning procedure [19]. We
assume that the masses depend linearly on {m0a, cP , ζ}:

MRHQ
Bq

= JM ×

m0a
cP
ζ

RHQ

+AM , (23)

where JM is a three component vector and AM a constant
for each jackknife block,

JM =

[
M3
Bq
−M2

Bq

2σm0a
,
M5
Bq
−M4

Bq

2σcP
,
M7
Bq
−M6

Bq

2σζ

]
,

(24)

AM = M1
Bq − JM × [m0a, cP , ζ]

T
, (25)

and the σ’s are the variations of the parameters listed in
Tables III and IV. This procedure allows us to directly
propagate statistical uncertainties from the tuning pro-
cedure to the meson masses and later also into the decay
amplitudes. We list the values for all meson masses inter-
polated to the physical b-quark in Table VII. We follow
the same procedure for the decay amplitudes, but with
MBq → Φren

Bq
in Eqs. (23)–(25).

The renormalized decay amplitudes for all valence-
quark masses and ensembles are also listed in Table VII.
We present the results as dimensionless ratios in units of
the Bs-meson mass, and perform the subsequent chiral-
continuum extrapolation using these ratios. Because the
RHQ parameters are tuned such that MBs reproduces
the experimental value, this enables us to avoid two po-
tential sources of uncertainty associated with the lattice-
scale determination: (1) in the joint chiral-continuum fits
to the data on both lattice spacings we do not need to
know the ratio (a24/a32) to relate the overall normaliza-
tions of the decay amplitudes ΦBq on the different en-
sembles, and (2) when we convert the final results for the
decay constants to physical units we can simply multiply
by the experimental value of MBs .

TABLE VII: Masses and renormalized decay amplitudes on
the 243 ensembles (upper two panels) and 323 ensembles
(lower three panels) with statistical errors.

a−1 [GeV] aml amq aMBq Φren
Bq /M

3/2
Bs

1.729(25) 0.005 0.005 3.0644(16) 0.03999(64)
1.729(25) 0.005 0.010 3.0715(11) 0.04107(60)
1.729(25) 0.005 0.020 3.0849(5) 0.04323(58)
1.729(25) 0.005 0.030 3.0978(2) 0.04532(58)
1.729(25) 0.005 0.0343 3.1034(2) 0.04619(58)
1.729(25) 0.005 0.040 3.1106(3) 0.04733(58)
1.729(25) 0.010 0.005 3.0656(19) 0.04001(75)
1.729(25) 0.010 0.010 3.0723(12) 0.04105(70)
1.729(25) 0.010 0.020 3.0854(6) 0.04315(67)
1.729(25) 0.010 0.030 3.0983(3) 0.04520(67)
1.729(25) 0.010 0.0343 3.1038(3) 0.04607(67)
1.729(25) 0.010 0.040 3.1111(3) 0.04718(68)
2.281(28) 0.004 0.004 2.3231(13) 0.03961(61)
2.281(28) 0.004 0.006 2.3252(10) 0.04005(59)
2.281(28) 0.004 0.008 2.3275(8) 0.04054(57)
2.281(28) 0.004 0.025 2.3497(2) 0.04504(60)
2.281(28) 0.004 0.0272 2.3526(2) 0.04560(60)
2.281(28) 0.004 0.030 2.3564(2) 0.04632(61)
2.281(28) 0.006 0.004 2.3233(10) 0.03930(51)
2.281(28) 0.006 0.006 2.3254(8) 0.03971(49)
2.281(28) 0.006 0.008 2.3277(6) 0.04016(48)
2.281(28) 0.006 0.025 2.3496(1) 0.04447(49)
2.281(28) 0.006 0.0272 2.3526(1) 0.04502(50)
2.281(28) 0.006 0.030 2.3563(1) 0.04572(50)
2.281(28) 0.008 0.004 2.3236(14) 0.03961(67)
2.281(28) 0.008 0.006 2.3257(11) 0.03997(65)
2.281(28) 0.008 0.008 2.3281(9) 0.04041(63)
2.281(28) 0.008 0.025 2.3495(1) 0.04448(64)
2.281(28) 0.008 0.0272 2.3523(1) 0.04500(64)
2.281(28) 0.008 0.030 2.3560(1) 0.04565(65)

D. Interpolation to the physical strange-quark
mass

For the determination of fBs and the ratio fBs/fB we
must slightly interpolate our data with close-to-strange
valence-quark masses to the physical strange quark mass
as determined in [17]. We perform a linear, uncorre-
lated fit to interpolate the three heaviest masses on each
ensemble: amq = 0.03, 0.0343, and 0.04 on the 243 en-
sembles and amq = 0.025, 0.0272, and 0.03 on the 323

ensembles. Figure 4 shows an example determination of
Φren
Bs

on the 323 ensemble with aml = 0.006. Table VIII
lists the Φren

Bs
values for all five ensembles. We then use

the interpolated values for Φren
Bs

to obtain the ratio of the
SU(3)-breaking ratio Φren

Bs
/Φren

Bq
for all six light valence-

quark masses on each ensemble. We include statistical
correlations between the numerator and denominator via
a jackknife, and list the results in Tab. IX.
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FIG. 3: Effective decay amplitudes for all valence-quark masses we use on the 323, aml = 0.006 ensemble. The triangles show
the data points with jackknife statistical errors, while the horizontal bands show the result of a correlated constant fit to the
data on those time slices.
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TABLE VIII: Interpolated decay amplitudes Φren
Bs with statis-

tical errors.

a−1 [GeV] aml Φren
Bs /M

3/2
Bs

1.729(25) 0.005 0.04627(58)
1.729(25) 0.010 0.04615(67)
2.281(28) 0.004 0.04563(61)
2.281(28) 0.006 0.04505(50)
2.281(28) 0.008 0.04503(64)

TABLE IX: Decay-amplitude ratios Φren
Bs /Φ

ren
Bq at the physical

strange-quark mass with statistical errors.

a−1 [GeV] aml amq Φren
Bs /Φ

ren
Bq

1.729(25) 0.005 0.005 1.1573(94)
1.729(25) 0.005 0.010 1.1266(60)
1.729(25) 0.005 0.020 1.0705(25)
1.729(25) 0.005 0.030 1.02113(61)
1.729(25) 0.005 0.0343 1.001807(41)
1.729(25) 0.005 0.040 0.97777(59)
1.729(25) 0.010 0.005 1.153(11)
1.729(25) 0.010 0.010 1.1242(67)
1.729(25) 0.010 0.020 1.0694(27)
1.729(25) 0.010 0.030 1.02086(65)
1.729(25) 0.010 0.0343 1.001789(44)
1.729(25) 0.010 0.040 0.97803(63)
2.281(28) 0.004 0.004 1.1522(81)
2.281(28) 0.004 0.006 1.1393(62)
2.281(28) 0.004 0.008 1.1255(49)
2.281(28) 0.004 0.025 1.01329(28)
2.281(28) 0.004 0.0272 1.000694(18)
2.281(28) 0.004 0.030 0.98529(30)
2.281(28) 0.006 0.004 1.1465(64)
2.281(28) 0.006 0.006 1.1347(49)
2.281(28) 0.006 0.008 1.1218(38)
2.281(28) 0.006 0.025 1.01308(22)
2.281(28) 0.006 0.0272 1.000691(11)
2.281(28) 0.006 0.030 0.98551(23)
2.281(28) 0.008 0.004 1.1367(85)
2.281(28) 0.008 0.006 1.1264(66)
2.281(28) 0.008 0.008 1.1143(52)
2.281(28) 0.008 0.025 1.01235(30)
2.281(28) 0.008 0.0272 1.000666(19)
2.281(28) 0.008 0.030 0.98629(32)

IV. CHIRAL AND CONTINUUM
EXTRAPOLATIONS

In this section we present the extrapolation to the
physical light-quark masses and to the continuum limit of
the numerical lattice data presented in the previous sec-
tion and summarized in Tabs. VII–IX. All extrapolations
are performed for dimensionless ratios of decay ampli-
tudes in units of the Bs-meson mass; we obtain the phys-
ical decay constants in GeV after the chiral-continuum
extrapolation by multiplying by the appropriate power
of MBs .

FIG. 4: Linear interpolation to determine ΦBs at the physical
strange-quark mass on the 323, aml = 0.006 ensemble. The
black vertical line with error band shows the physical strange-
quark mass with errors from Ref. [17]. The red sloped line
with error band shows the interpolation of the three strange-
ish data points with jackknife statistical errors from the fit.

A. Chiral-continuum extrapolations of fB and
fBs/fB

We obtain the decay constant fB and the ratio fBs/fB
from a combined chiral- and continuum extrapolation
using next-to-leading order (NLO) SU(2) chiral pertur-
bation theory for heavy-light mesons (HMχPT). In the
SU(2) theory, the strange-quark mass is integrated out,
and only the light-quarks’ degrees-of-freedom are in-
cluded. The SU(2) low-energy constants therefore de-
pend upon the value of ms, as well as on the value of
mb for heavy-light quantities. In Ref. [24] we derived
the HMχPT expressions for B(s)-meson decay constants
in the context of our calculation using domain-wall light
quarks and static heavy quarks, which we quote here:

ΦBx = Φ0

{
1− 1 + 3g2

b

(4πfπ)2
·M2

xl ln(M2
xl/Λ

2
χ)

− 1 + 3g2
b

(4πfπ)2

1

4
·
[
(M2

ll −M2
xx) · (ln(M2

xx/Λ
2
χ) + 1)

−M2
xx ln(M2

xx/Λ
2
χ)
]

+ csea ·
2Bml

(4πfπ)2
+ cval ·

2Bmx

(4πfπ)2

+ ca ·
a2

(4πfπ)2a4
32

}
, (26)
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ΦBs
ΦBx

= RΦ(2)

{
1 +

1 + 3g2
b

(4πfπ)2
·M2

xl ln(M2
xl/Λ

2
χ)

− 1 + 3g2
b

(4πfπ)2

1

4
·
[
(M2

ll −M2
xx) · (ln(M2

xx/Λ
2
χ) + 1)

−M2
xx ln(M2

xx/Λ
2
χ)
]}

+ d(2)
sea ·

2B

(4πf)2
ml + d

(2)
val ·

2Bmx

(4πf)2

+ d(2)
a ·

a2

(4πf)2a4
32

. (27)

where x denotes the light valence quark in the Bx meson,
l the light sea quark, and Mxy denotes a “pion” composed
of two domain-wall valence quarks with flavors x and y.
At tree level, the light pseudoscalar pion masses are given
in terms of the constituent quark masses mx and my by

M2
xy = B(mx +my + 2mres). (28)

The fit functions Eq. (26) and (27) incorporate discretiza-
tion errors due to the light-quark and gluon actions via
the residual-quark mass in Eq. (28) and the analytic term
in a2.

From simple power-counting, we estimate that dis-
cretization errors in the decay amplitudes on the 323 en-
sembles from the light-quark and gluon actions are of
O (aΛQCD)

2 ∼ 5%, using ΛQCD = 500 MeV. There are
also light-quark and gluon discretization errors in the
heavy-light current, and heavy-quark discretization er-
rors from both the action and current. In Secs. V E–V F
and App. B we estimate the size of these other discretiza-
tion errors to be below 2%. Thus we expect light-quark
and gluon discretization errors from the action to dom-
inate the scaling behavior of the decay amplitudes, and
that including an a2 term in the fit will largely remove
these contributions. Heavy-quark discretization errors
as well as light-quark and gluon discretization errors in
the current will be estimated using power-counting and
added a posteriori to the systematic error budget.

Several parameters enter the expressions in Eq. (26)
and (27). We take the values of the lattice spacings and
low-energy constant B from the RBC/UKQCD analysis
of light pseudoscalar meson masses and decay constants
in Ref. [17]. We use the experimental value of fπ = 130.4
MeV from the PDG [5], and use Λχ = 1 GeV for the scale
in the chiral logarithms. We take the B∗Bπ-coupling
constant, gb = 0.57(8) from our companion analysis [45]
using the same actions and ensembles. The constant pa-
rameters used in our chiral fits are compiled in Table X.

We cannot obtain a good fit (as measured by the
χ2/dof or p-value) to our entire data set using the NLO
SU(2) HMχPT expressions above. This is not surprising
given that our heaviest pseudoscalar mesons, in which
the valence-quark masses are close to that of the physical
strange quark, have masses around 600 MeV. We there-
fore tried adding additional NNLO terms analytic in the

TABLE X: Constants used in the chiral and continuum ex-
trapolations of Φren

B , Φren
Bs and Φren

Bs /Φ
ren
B [5, 17, 45].

243 323

a−1 1.729 GeV 2.28 GeV
aB 2.348 1.826
fπ 130.4 MeV
gb 0.57
Λχ 1 GeV

pion mass in order to extend the reach of the HMχPT
expressions, as well as removing the heaviest points from
our fits. We find that we can obtain good fits with NLO
HMχPT while including as much of our data as possi-
ble when we impose the following cut: M sea

π < 425 MeV
and Mval

π < 350 MeV. These preferred fits are shown in
Fig. 5. The decay amplitudes of the neutral and charged
B mesons at the physical light-quark masses and in the
continuum are obtained by setting the lattice spacing to
zero, the sea-quark mass ml to (mu+md)/2, and the light
valence-quark mass mx to the md and mu, respectively,
in Eqs. (26)–(27). Our results for the decay constants are
fB0 = 196(6) MeV and fB+ = 195(6), and for the ratios
are fBs/fB0 = 1.19(2) and fBs/fB+ = 1.22(2), where all
errors are statistical only.

In Fig. 5, the colored fit curves corresponding to
the different sea-quark ensembles show a marked up-
ward curvature as they approach the chiral limit from
the partially-quenched chiral logarithms in the SU(2) fit
functions, Eqs. (26)–(27). Because the coefficients of the
NLO chiral logarithms are fixed in terms of gb and fπ,
the fit yields large chiral logarithms at pion masses below
∼ 200 MeV despite the fact that our data is too heavy
for us to observe their onset. Our decay-constant data
displays no significant dependence on either the light sea-
quark mass or the lattice spacing. We find that the coeffi-
cients of the a2 terms are ∼ 0.01 or smaller for both fits in
Fig. 5, and that ca is in fact statistically consistent with
zero in the left-hand fit. The coefficients of the sea-quark
mass terms are closer to O(1), but with ∼ 50% or larger
errors. In full QCD, i.e. when mx = ml in Eqs. (26)–
(27), the terms proportional to

(
M2
ll −M2

xx

)
vanish. Fur-

ther, the terms in ΦBx proportional M2
xl ln(M2

xl/Λ
2
χ) and

M2
xx ln(M2

xx/Λ
2
χ) partly cancel because their coefficients

have opposite signs. This is the primary reason why the
continuum, full-QCD band for ΦB in the left-hand plot
is much straighter than the individual fit curves, and lies
below the data points.

We also tried fits using SU(3) HMχPT, in which the
strange-quark mass is explicit in the fit functions. This in
principle has the advantage of building in the constraint
that ΦBs/ΦBq = 1 in the SU(3) limit mq = ms. We
were unable to obtain good fits, however, of the ratio
Φren
Bs
/Φren

Bq
without adding several NNLO analytic terms

and introducing cuts on the data included because the
data for the ratio is so precise. This is consistent with
observations by the RBC and UKQCD collaborations in



12

FIG. 5: Chiral and continuum extrapolation of ΦBq (left) and ΦBs/ΦBq (right) from a correlated fit using NLO SU(2) HMχPT.
The different colors/symbols distinguish our data points on the five different ensembles. For better visibility data points on the
aml = 0.004, 0.008, 0.01 ensembles are plotted with a small horizontal offset. The fit includes only the filled symbols, i.e., we
impose the cuts M sea

π < 425 MeV and Mval
π < 350 MeV. The colored fit curves show the extrapolation in the light valence-quark

mass: the fit function is evaluated at the unphysical sea-quark masses and nonzero lattice spacings on the different ensembles,
such that the curves should approximately go through the data points of the same color. The chiral extrapolation in full
QCD and the continuum is shown by the black line with grey error band. The physical values of ΦB+ (ΦB0) and ΦBs/ΦB+

(ΦBs/ΦB0) correspond to the intersection of this curve with the dashed (dot-dashed) vertical line on the left-hand side indicating
the physical u-quark (d-quark) mass. The right-hand solid, vertical line indicates the s-quark mass. Only statistical errors are
shown.

earlier analyses of light pseudoscalar meson masses and
decay constants [16], in which they concluded that NLO
SU(3) χPT was incompatible with their heaviest data.
We use the alternative SU(3) fits, as well as fits with
only analytic dependence on the quark masses and lattice
spacings, to estimate the systematic uncertainty due to
the chiral-continuum extrapolation in Sec. V A.

B. Decay constant fBs

After interpolating the decay amplitude Φren
Bs

to the
physical strange-quark mass, we only need to extrapolate
to the continuum. We do not observe any sea-quark mass
dependence in our data, so we use a simple linear function
in a2,

ΦBs = % a2 + ϕ, (29)

which captures the leading scaling behavior from the
light-quark and gluon actions. Again, discretization er-
rors from the heavy-quark action will be estimated via
heavy-quark power-counting in Sec. V E and added to
the systematic error budget. We show the continuum ex-
trapolation of ΦBs in Fig. 6; our result is ΦBs = 0.158(3),
which corresponds to fBs = 236(5) MeV (statistical er-
rors only).

V. ESTIMATION OF SYSTEMATIC ERRORS

We now discuss the sources of systematic uncertainties
in our determinations of the B(s)-meson decay constants
and their ratio. Each uncertainty is discussed in a sepa-
rate subsection and the total error budgets are provided
in Table XI.

A. Chiral- and continuum extrapolation

We estimate the systematic uncertainty due to the
chiral- and continuum extrapolation of the decay con-
stants by varying the chiral-continuum extrapolation fit
Ansätze.

For fB and the ratio fBs/fB we consider the following:

• including heavier valence-pion masses up to
Mval
π ∼ 425 MeV

• excluding ensembles with sea-pion masses above
M sea
π ∼ 350 MeV

• using NLO SU(3) HMχPT

• analytic fits in which we omit the chiral logarithms
in Eqs. (26) and (27)

• SU(2) or SU(3) fits with NNLO or higher order
analytic terms
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TABLE XI: Error budgets for the B(s)-meson decay constants and their ratios. Errors that were considered but found to be
negligible are listed as “0.0.” Errors are given in %. The total error is obtained by adding the individual errors in quadrature.

fB0(%) fB+(%) fBs(%) fBs/fB0(%) fBs/fB+(%)
statistics 3.2 3.2 2.2 1.3 1.4
chiral-continuum extrapolation 6.5 6.6 3.1 4.5 6.3
lattice-scale uncertainty 1.5 1.5 1.5 0.1 0.1
light- and strange-quark mass uncertainty 0.1 0.2 0.9 1.0 1.1
RHQ parameter tuning 1.2 1.2 1.2 0.1 0.1
HQ discretization errors 1.7 1.7 1.7 0.3 0.3
LQ and gluon discretization errors 1.1 1.1 1.2 0.6 0.6
renormalization factor 1.7 1.7 1.7 0.0 0.0
finite volume 0.4 0.4 0.0 0.7 0.7
isospin-breaking and EM 0.7 0.7 0.7 0.1 0.7
total 8.0 8.1 5.2 4.9 6.7

FIG. 6: Continuum extrapolation of ΦBs/M
3/2
Bs

from a linear

fit in a2. We plot the five data points for ΦBs/M
3/2
Bs

inter-
polated to the physical strange-quark mass on each ensemble
using the same colors/symbols as in Fig. 5. The extrapolation
is shown by the black line with gray error band. For better
visibility data points on the aml = 0.004, 0.008, 0.01 ensem-
bles are plotted with a small horizontal offset. Only statistical
errors are shown.

• varying the value of fπ in the coefficients of
the chiral logarithms from f0 in the chiral limit
(112 MeV [17]) to fK = 155.5 MeV [5]

• varying the B∗-B-π coupling in the coefficient of
the chiral logarithms gb = 0.57(8) by plus or minus
one standard deviation [45].

From these fits we take the largest difference of the
central value to be the uncertainty due to the chiral-
continuum extrapolation. Note that we do not include
fits with poor p-values in looking for the largest difference
because such fits are not compatible with the data. For
both, fB and fBs/fB , the analytic fit with the same cuts
on the data as for our preferred fit leads to the largest
shift in the central value; we show these fits in Fig. 7.

Although we expect to see the onset of chiral logarithms
once our pion masses are sufficiently light, our data shows
no evidence of curvature and the analytic fits have excel-
lent p-values.

For fBs , the preferred continuum extrapolation is from
a fit linear in a2. Our ability to perform alternate fits,
however, is limited by the fact that we only have two val-
ues of the lattice spacing and therefore do not have suf-
ficient data to add quadratic or even higher-order terms.
Because the lattice-spacing dependence of our data is
quite mild (the results on of all our five ensembles are
statistically consistent), we take as an alternative the
weighted average of the finer 323 data points.

B. Lattice-scale uncertainty

We exploit the procedure that we use to tune the
parameters of the RHQ action to minimize the uncer-
tainty due to the input lattice scale in our final results
for the decay constants. By construction, at the tuned
point the Bs-meson mass is fixed to the experimentally-
measured value. We therefore choose to perform our
decay-constant analysis in terms of dimensionless ratios
over MBs . We can then obtain the decay constants in
GeV by multiplying the ratio by MBs = 5.366 GeV from
the PDG [37]. Hence our decay-constant results have no
explicit dependence on the lattice-scale; we do, however,
still need to consider the implicit dependence on the lat-
tice spacing through the RHQ parameters.

We estimate this source of scale uncertainty by mea-
suring the slope of the decay constants and ratios with
respect to the RHQ parameters {m0a, cP , ζ}. These
are shown for the 323, aml = 0.006 ensemble in Fig. 8.
We then multiply each of these slopes by the uncertainty
in the corresponding RHQ parameter due to the lattice
scale as provided in Tab. V, e.g. ∆(Φ)/∆(cP )× σ(cP )a.
Finally, for each of our data points on the 243 and 323

ensembles, we add the three contributions for each data
point in quadrature. For each physical quantity, we take
the largest estimated total as the uncertainty due to the
lattice scale, which gives 1.5% for the decay constants
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FIG. 7: Alternate chiral-continuum extrapolations for ΦB
and ΦBs/ΦB using an analytic fit ansatz and the same data
set as our central fit. Colors/symbols are the same as in
Fig. 5, and for better visibility data points on the aml =
0.004, 0.008, 0.01 ensembles are plotted with a small horizon-
tal offset. Only statistical errors are shown. For comparison,
the results for fB+ (fB0) from our preferred fit are shown as
open (filled) black circles.

and 0.1% for the ratios.

C. Light- and strange-quark mass uncertainties

Here we estimate the uncertainties due to the input
quark masses in the chiral-continuum extrapolations, as
well as the mis-tuning of the strange sea quark. We dis-
cuss each source of uncertainty in a separate subsection
for clarity. Because most of the individual uncertainty es-
timates turn out to be small relative to other errors, we
add the numbers from the four subsections in quadra-
ture and quote a single error due to to the light- and

strange-quark mass uncertainties in Table XI.

1. Valence u- or d-quark mass uncertainty

In the chiral-continuum extrapolations of ΦBx and
ΦBs/ΦBx , we set the light valence-quark mass mx in
Eqs. (26) and (27) to the physical d-quark mass to ob-
tain the neutral-meson decay constant fB0 and the cor-
responding ratio fBs/fB0 , and to the physical u-quark
mass to obtain fB+ and fBs/fB+ . We use the prelimi-
nary values of the quark masses a32md = 1.327(13)×10−3

and a32mu = 6.06(24) × 10−4 from simulations by the
RBC/UKQCD collaborations including both QCD and
QED. We estimate the uncertainty due to the determi-
nation of the light valence-quark masses by repeating the
chiral-continuum extrapolation with md(mu) shifted by
plus and minus one sigma. We observe small changes in
the central values between 0.0–0.2%.

2. Valence s-quark mass uncertainty

We estimate the errors in fBs and fBs/fB due to the
uncertainty in the valence strange quark mass by repeat-
ing the interpolation to ms described in Sec. III D and
then using these new values as inputs to the chiral and
continuum extrapolations. We vary independently the
values for a32ms = 0.0280(7) and a24ms = 0.0369(11) on
the 323 and 243 ensembles again by one sigma [17]. We
find shifts in the central values due to varying ms of 0.9%
for fBs and fBs/fB0 , and a shift of 1.0% for fBs/fB+ .

3. Light u/d-quark uncertainty

In the chiral-continuum extrapolations of ΦBx and
ΦBs/ΦBx , we set the light sea-quark mass ml in Eqs. (26)
and (27) equal to the physical average u/d-quark mass
a32mud = 0.00102(5) [17]. We estimate the uncertainty
in the u/d-quark mass determination by varying the in-
put ml by plus/minus one sigma and repeating the chiral-
continuum extrapolation. We observe shifts in the central
values of 0.2% for fBs/fB+ , and 0.1% for fB0 , fB+ , and
fBs/fB0 .

For fBs , we study the dependence of our three (two)
323 (243) data points on the light sea-quark mass. Be-
cause we cannot resolve any sea-quark mass dependence
within our statistical uncertainties, we take this error to
be negligible and quote 0.0% in Table XI.

4. Strange sea-quark mistuning

Our ensembles were generated with the heavy sea-
quark mass mh approximately 10% heavier than that of
the physical strange quark, and with only a single value
of mh at each lattice spacing. Thus we cannot directly
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FIG. 8: Dependence of the decay amplitudes ΦBq/M
3/2
Bs and the ratio ΦBs/ΦBq on our RHQ parameters. The plots on the

left show the decay amplitude for amq = 0.006 (red triangles) and amq = 0.0272 (green circles) vs. the RHQ parameters m0a,
cP , and ζ (from top to bottom). The plots on the right show dependence of the ratio ΦBs/ΦB obtained for ams = 0.0272 and
amq = 0.006 on m0a, cP and ζ. Only statistical errors are shown.
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study the strange sea-quark mass dependence with our
data, and must use the light sea-quark mass dependence
as a proxy. Because, however, we use SU(2) HMχPT for
the chiral-continuum extrapolations of fB and fBs/fB ,
and a linear-in-a2 continuum extrapolation for fBs , the
fit functions do not have any explicit strange-quark de-
pendence, so we cannot interpolate to the correct strange
sea-quark mass a posteriori.

We therefore study the data for the decay constants
at fixed valence-quark mass on the three 323 ensembles,
and on the two 243 ensembles. In the case of the de-
cay amplitudes ΦB and ΦBs , the statistical uncertainties
are too large to resolve any sea-quark mass dependence;
hence we quote for these quantities an error of 0.0% in
Tab. XI. The statistical errors in the ratio ΦB/ΦBs are
sufficiently small that we can resolve the light sea-quark
mass dependence. We therefore perform a linear fit in
ml to the three (two) data points to obtain the slope
with respect to ml. Because the leading sea-quark mass
dependence enters as (2ml + mh) in SU(3) χPT, we ex-
pect the slope with respect to mh to be roughly half this
value. Using this slope to correct the central value of
fBs/fB leads to a change of 0.5%. We take this entire
shift to be the error in fBs/fB due to strange sea-quark
mass mistuning, but it is clearly a conservative upper
bound.

D. RHQ parameter uncertainty

Although we tune the values of the RHQ parameters to
correspond to the physical b-quark, the tuned parameter
values have both statistical and systematic uncertainties.

As described in Sec. II B, we use seven sets of RHQ
parameters and then interpolate to the physical b-quark
mass using the jackknife blocks from our tuning analy-
sis. The advantage of this method is that the statistical
uncertainties in the RHQ parameters are automatically
included in the statistical errors of the decay amplitudes.

In Ref. [19] we presented a systematic error budget for
each of the parameters m0a, cP , and ζ; the results are
shown in Table V. We already estimated the uncertainty
in the decay constants due to the scale uncertainty in
the RHQ parameters in Sec. V B. Hence we need only
consider the errors in the RHQ parameters due to the
other two sources: heavy-quark discretization errors and
experimental inputs used in the tuning procedure. As in
the case of the lattice-scale uncertainty, we use the slopes
of the decay constants with respect to {m0a, cP , ζ}. For
each of the three RHQ parameters {m0a, cP , ζ} and two
sources of uncertainty {HQ, exp.}, we estimate the error
in the decay amplitudes as, e.g., ∆(ΦB)/∆(m0a)× σHQ.
We then add these six individual contributions in quadra-
ture. We do this for all five sea-quark ensembles, and take
the largest total to be the error in the decay constants
due to the systematic errors associated with the RHQ
tuning procedure. For the decay constants fB and fBs ,
we obtain about 1.2%, and for the ratio fBs/fB about

0.1%.

E. Heavy-quark discretization errors

The RHQ action gives rise to nontrivial lattice-spacing
dependence in the decay constants in the region m0a ∼ 1.
Thus, instead of including additional functions of m0a
in the combined chiral-continuum extrapolation, we esti-
mate the size of heavy-quark discretization errors using
power-counting. We follow the approach developed by
El Khadra, Kronfeld, and Mackenzie [25] for lattice cal-
culations using the anisotropic Clover action for heavy
quarks, and later extended to include dimension 6 and 7
operators in Oktay and Kronfeld [46].

Heavy-quark discretization errors in our decay-
constant calculation arise from two sources: operators
in the heavy-quark action and in the heavy-light axial-
vector current. We tune the parameters of the dimension-
5 RHQ action nonperturbatively; therefore the leading
discretization errors from the action are of O(a2). We
use an O(a)-improved current operator with the im-
provement coefficient computed at 1-loop in αs; therefore
the leading discretization errors from the current are of
O(α2

sa) and O(a2).1

To obtain the numerical error estimates we first con-
sider a nonrelativistic description of the heavy-quark ac-
tion. Both the lattice and continuum theories can be
described by effective Lagrangians built from the same
operators, and discretization errors arise due to mis-
matches between the short-distance coefficients of higher-
dimension operators in the two theories. For each opera-
torOi in the heavy-quark effective Lagrangian or current,
the associated discretization error is given by

errori =
(
Clat
i − Ccont

i

)
〈Oi〉 . (30)

For heavy-light meson systems, the sizes of matrix el-
ements can be estimated using Heavy-Quark Effective
Theory (HQET) power-counting. Continuum HQET is
an expansion in the spatial momentum of the heavy
quark, ~p/mb. The b-quarks in B hadrons typically carry
a spatial momentum ~p ≈ ΛQCD, the scale of the strong
interactions. The lattice introduces an additional scale,
a. The relative error contribution to a physical quan-
tity such as the B-meson decay constant from an oper-
ator with dimension d can then be estimated as 〈Oi〉 ∼

1 This general approach for error estimation is also used in similar
calculations of heavy-light meson decay constants and form fac-
tors using the Fermilab action for b-quarks by the Fermilab Lat-
tice and MILC collaborations [27, 47]. The primary differences
stem the fact that (1) we remove O(a) errors from the action
to all orders in αs by tuning the parameters of the anisotropic
Clover action nonperturbatively, and (2) we calculate the O(a)-
improvement coefficient of the heavy-light axial-vector current
to one higher order in αs. Thus the heavy-quark discretization
errors in our calculation are smaller than those in the Fermi-
lab/MILC work.



17

(aΛQCD)d−4+nΓ , where nΓ = 0 (1) if the operator com-
mutes (anticommutes) with γ4.2

The details of our numerical error estimation are pro-
vided in Appendix B. We compute the sizes of the mis-
match coefficients using the tuned parameters of the
RHQ action; their values on the 243 and 323 ensembles
are given in Table XII. We take ΛQCD = 500 MeV as
suggested by fits to moments of inclusive B-decays [48].
We add the contributions from the individual operators
in quadrature to obtain the total uncertainty. Finally, we
take the size of heavy-quark discretization errors in our
calculation of the B(s)-meson leptonic decay constants

to be the estimate on our finer a−1 = 2.281 GeV lat-
tices (see Table XIII), which is 1.7%. For the ratios we
estimate that discretization errors will be suppressed by
the SU(3)-breaking factor (ms −md) /ΛQCD. Using the
quark-mass determinations from FLAG [6] we estimate
the uncertainty in fBs/fB from heavy-quark discretiza-
tion errors to be about 0.3%.

F. Light-quark and gluon discretization errors

The dominant discretization errors from the light-
quark and gluon sectors are of O (aΛQCD)

2
from the ac-

tion, which we estimate to be ∼ 5% on the finer 323 en-
sembles. We remove these errors in our chiral-continuum
extrapolation by including an analytic term proportional
to a2 in the fit function. We estimate the light-quark and
gluon discretization errors in the heavy-light axial-vector
current, which are subleading, with power-counting and
add them in quadrature with the other uncertainties in
the error budget.

The leading light-quark and gluon discretization er-
rors in the current are of O

(
αsam̃q, (am̃q)

2, α2
saΛQCD

)
,

where am̃q denotes the bare lattice mass. On the 323

ensembles, the first term leads to an ∼ 0.6% uncertainty
in fBs (using am̃s) and uncertainties below 0.1% in fB+

and fB0 (using am̃ud). The second term is significantly
smaller, about ∼ 0.1% in fBs and negligible in fB+ and
fB0 . The third term leads to uncertainties of ∼ 1.1%
in all three decay constants. Adding these three contri-
butions in quadrature, we estimate the total uncertainty
from light-quark and gluon discretization errors in the
heavy-light current to be about 1.2% in fBs and about
1.1% in fB+ and fB0 . For the decay-constant ratios,
we estimate the error from the larger quark-mass depen-
dent term to be of O (αs(am̃s − am̃ud)) ∼ 0.6%. This
contribution is not suppressed because the strange-quark
mass is so much larger than the light up- and down-quark

2 Operators in the Symanzik effective Lagrangian that anticom-
mute with γ4 are suppressed because they connect large upper
spinor components with small lower spinor components. Hence
they are promoted to operators of one dimension higher in the
heavy-quark effective Lagrangian.

masses. We estimate the error from the lattice-spacing
dependent term to be of O

(
α2
sa(ms −mud)

)
∼ 0.2%,

which is about five times smaller than in the individ-
ual decay constants. Again, adding the contributions in
quadrature, we estimate the total uncertainty from light-
quark and gluon discretization errors in the heavy-light
current to be about 0.6% in all three decay-constant ra-
tios.

G. Renormalization factor

In our computation we divide the heavy-light current
renormalization factor into three contributions ZΦ =

ρblA

√
ZllV Z

bb
V ; we consider the errors from each of these

factors in turn. For ρblA, we must estimate the uncer-
tainty due to truncating the perturbative series in αs.
We conservatively take the full size of the 1-loop cor-
rection on the fine lattice, 1.7%, as the estimate. For
ZllV we use the nonperturbative determination of the
axial-current renormalization factor ZA in the chiral limit
from Ref. [17]. The statistical uncertainty in ZA on the
finer ensemble is 0.02%, which is negligible compared to
our other sources of error. The renormalization factors
ZV and ZA for domain-wall fermions differ, however, by
O(amres), which is about 3×10−3 on our finer ensembles.
Thus we take 0.3% to be the systematic uncertainty in
ZllV due to chiral symmetry breaking. Further, because
we use the values ZllV and ρblA in the chiral limit, we must
consider the errors due to the nonzero physical up, down,
and strange-quark masses. The leading quark-mass de-
pendent errors in ZllV are of O

(
(am̃q)

2
)
, and in ρblA are of

O (αsam̃q). These contributions are already included in
the estimate of light-quark and gluon discretization errors
in Sec. V F above, so we do not count them again here.
For ZbbV , we use the weighted average of the two (three)
determinations on the 243 (323) ensembles. The statis-
tical uncertainty in ZbbV on the finer ensemble is again
small, 0.15%. Adding the contributions from ρblA, ZllV ,
and ZbbV in quadrature, we estimate the total error in the
decay constants from the renormalization factor to be
1.7%. Because we use the values ZllV and ρblA in the chi-
ral limit, the renormalization factor ZΦ cancels exactly
in our computation of the ratio fBs/fB , so we quote an
error of “0.0%” in the error budget.

H. Finite volume errors

We estimate the error due to the finite spatial lattice
volume using one-loop finite-volume SU(2) HMχPT. In
the finite-volume theory, the loop integrals become sums
over lattice sites, such that the chiral logarithms in the fit
functions in Eqs. (26) and (27) become bessel functions.
For fB and fBs/fB we repeat the combined chiral- and
continuum extrapolation using the finite volume SU(2)
HMχPT expressions. These lead to shifts in the central
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values of 0.4% for fB and 0.7% for fBs/fB . For fBs we
do not perform a chiral extrapolation, but we can still
calculate the size of the corrections to the data points
using finite-volume HMχPT. The use of SU(2) χPT at
the strange-quark mass may in general be questionable,
but we expect it to be good enough to obtain a rough
estimate of the systematic error. We find that the finite-
volume corrections to fBs are below 0.05% on all of our
ensembles, and hence quote an uncertainty of 0.0% in the
error budget.

I. Isospin breaking and electromagnetism

The decay constants of the charged and neutral B
mesons fB+ and fB0 differ due to both the masses and
the charges of the constituent light u and d quarks. The
quark-mass contribution to this difference comes from
the valence-quark masses, and the leading term is of
O (∆mud/ΛQCD), where ∆mud ≡ (md − mu). We ac-
count for this effect by extrapolating the light valence
quark to either the physical u- or d-quark mass in the
chiral-continuum extrapolation, and find that this leads
to a difference of 0.4% between fB+ and fB0 . This ob-
served size is consistent with the power-counting estimate
of 0.5% obtained using the determination of the quark
masses from FLAG [6] and ΛQCD = 500 MeV. The elec-
tromagnetic contribution to the difference between fB+

and fB0 is expected to be the typical size of 1-loop QED
corrections, or O(αQED) ∼ 0.7%. Thus we estimate that
the uncertainties in fB+ and fB0 due to isospin break-
ing and electromagnetism are ∼ 0.7%. Because only
the omission of electromagnetic effects contributes sig-
nificantly to the error, this estimate also applies to fBs .
For the ratio of neutral-meson decay constants fBs/fB0 ,
the electromagnetic contribution is suppressed due to the
equal charges of the down and strange valence quarks.
We estimate its size to be of O (αEM(ms −md)/ΛQCD) ∼
0.1%. This cancellation does not occur when the valence-
quark charges are different, so electromagnetic effects in
fBs/fB+ are still of O(αQED) ∼ 0.7%.

We note that the difference between the u- and d-quark
masses in the sea sector cannot lead to a difference be-
tween fB+ and fB0 because the sea quarks couple to the
valence quark in the B meson through I = 0 gluon ex-
change. The use of degenerate u and d sea quarks does
lead to identical shifts in fB+ , fB0 , and fBs . Such con-
tributions, however, are negligible because they must be
symmetric under the interchange mu ↔ md and are of of
O
(
(∆mud/ΛQCD)2

)
∼ 0.003%.

VI. RESULTS AND CONCLUSIONS

After adding the systematic error estimates from Ta-
ble XI in quadrature, our final results for the B(s)-meson

decay constants and their ratios are:

fB0 = 196.2(6.3)(14.3) MeV (31)

fB+ = 195.4(6.3)(14.5) MeV (32)

fBs = 235.4(5.2)(11.1) MeV (33)

fBs/fB0 = 1.193(16)(56) (34)

fBs/fB+ = 1.220(17)(79) , (35)

where the errors are statistical and total systematic, re-
spectively.

Figure 9 compares our results with other unquenched
determinations. For all quantities, they agree well with
the other Nf > 2 determinations in the literature. Our
result for fBs/fB is more precise than the published
Nf = 2 + 1 RBC/UKQCD result [24] using static b-
quarks because we include domain-wall ensembles with
much lighter pions and a finer lattice spacing. For both
the decay constants and their ratio, our uncertainties are
comparable to the results of ETM [30, 49] ALPHA [50],
as well as the similar calculation by the Fermilab Lattice
and MILC collaborations [27] using the Fermilab rela-
tivistic heavy-quark interpretation. Our results are not
as precise as those by HPQCD using HISQ b-quarks on
the MILC asqtad staggered ensembles [26], which include
ensembles as fine as a ≈ 0.045 fm, or using NRQCD b-
quarks and HISQ sea quarks [29], which include ensem-
bles with the physical pion mass.

The largest source of uncertainty in our calculations
of the B(s)-meson decay constants is from the chiral ex-
trapolation to the physical light-quark masses and the
extrapolation to the continuum limit. We are currently
generating light and strange-quark propagators on the
RBC/UKQCD Möbius domain-wall + Iwasaki ensem-
bles [51–53] with the same lattice spacing as the 243

ensembles used in our current analysis, but with mπ ≈
140 MeV. The inclusion of data at the physical pion mass
will significantly reduce our chiral-continuum extrapola-
tion errors. Statistical errors are the next-largest source
of uncertainty in our current analysis. Shortening the
distance of the chiral extrapolation will reduce the sta-
tistical errors at the physical point. We are also investi-
gating the use of all-mode averaging [54, 55] to reduce the
statistical errors on the individual numerical data points.
All of the other systematic uncertainties are estimated in
Table XI to be much smaller; thus we anticipate obtain-
ing significantly smaller errors in the future. There has
been no difference observed between calculations of the
B-meson decay constants from two-, three-, and four-
flavor lattice simulations (see Fig. 9). Nevertheless, the
inclusion of the dynamical charm quark will be impor-
tant once calculations reach even higher precision. The
RBC and UKQCD collaborations are currently generat-
ing Nf = 2 + 1 + 1 domain-wall ensembles which will
allow a direct study of the effects of charm-quark loops
on the B- (and D-) meson decay constants.

Our results for the B(s)-meson decay constants in
Eqs. (31)–(35) are the first from simulations with
domain-wall light quarks and relativistic heavy quarks,
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FIG. 9: Lattice determinations of fB , fBs , and fBs/fB using 2, 2+1, and 2+1+1 dynamical sea-quarks [24, 26–30, 49, 50].
The gray error bands show the FLAG averages [6], which were obtained from the FNAL/MILC and HPQCD determinations
for Nf = 2 + 1 and equal the ETMC result for Nf = 2. No FLAG average was presented for the 2+1+1-flavor data. Most of
the results shown are for the decay constants in the isospin limit fB and fBs/fB except for the determination by FNAL/MILC
who reported results for fB+ and fBs/fB+ ; our results refer to the determination of fB+ and fBs/fB+ . The description in
parentheses show the light- and heavy-quark actions used, with the exception of the Nf = 2 + 1 HPQCD calculations. The
HPQCD works use Asqtad sea quarks, and the determination of fB labeled “HISQb/NRQCD” is obtained by combining fBs
using HISQ b quarks from Ref. [26] with the ratio fBs/fB using NRQCD b-quarks from [28].

and also the first application of the RHQ action to weak-
matrix elements relevant for phenomenology. They pro-
vide valuable independent cross-checks of the published
unquenched calculations using staggered sea quarks. The
good agreement with other works bolsters confidence in
lattice-QCD calculations of the B(s)-meson decay con-
stants, and provides further support that the RHQ ac-
tion can be used to obtain accurate results for bottom
systems with competitive and reliable uncertainties. We
are also undertaking companion calculations of B-meson
semileptonic form factors [38], B0-B0 mixing matrix el-
ements [56], and B∗-B-π coupling [45] using the same
lattice actions and ensembles. These will enable deter-
minations of |Vub| from both leptonic and semileptonic
decays and place an important constraint on the apex
of the CKM unitarity triangle. Finally, we note that
rare decays such as B → K`+`− and B → π`+`− pro-
vide potentially sensitive probes of new physics, and are
therefore future possible applications of the RHQ action.
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Appendix A: Determination of ZbbV

The flavor conserving heavy-heavy renormalization
factor ZbbV is obtained from the matrix element of the
b→ b vector current between two Bq-mesons:

ZbbV × 〈Bq|V bb,0|Bq〉 = 2MBq . (A1)

We compute the three-point correlation function shown
in Fig. 10 by fixing the locations of the two Bq mesons
at t0 and tsink and varying the location t of the operator
over all time slices in between:

CPV P (t0, t, tsink) =
∑
~x,~y

〈ÕP (~x, tsink)OV0
(~y, t)ÕP (~0, t0)〉 ,

(A2)

where ÕP are pseudoscalar interpolating operators for
the Bq mesons and OV0

= bγ0b is the leading temporal
vector-current operator. The O(a)-improvement of ZbbV
does not require the computation of any additional ma-
trix elements because we are only interested in the tem-
poral component of the vector-current operator without
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tsink

b

s

t0

b
tV0

FIG. 10: Three-point correlation function used to compute
the flavor-conserving renormalization factor ZbbV . The loca-
tions of the Bs mesons are fixed and the location of the vector
current is varied over all time slices in between.

momentum injected. In this situation, the equations of
motion can be used to parameterize the O(a) improve-
ment as an overall multiplicative factor that depends
upon the b-quark mass. We can then absorb this cor-
rection into the values of the perturbative contribution
to the renormalization factor ρblA given in Table VI.

We use a point-source propagator for the light specta-
tor quark, and Gaussian smeared sources for the b-quarks
in the two Bq mesons. The desired renormalization factor
is then given by the ratio

ZbbV (t0, t, tsink) = lim
t0�t�tsink

C̃PP (t, t0)

CPV P (t0, t, tsink)
, (A3)

where C̃PP is the pseudoscalar-pseudoscalar correlator
with a Gaussian smeared heavy quark source and sink
[see Eq. (20)]. For the computation of ZbbV we dou-
ble the statistics by computing the sequential b-quark
propagator for both the forward- and the backward-
propagating light spectator quark. Similarly, we fold the
2-point correlation function about the temporal midpoint
of the lattice. After testing several source-sink separa-
tions ∆t ≡ (tsink − t0) = {18, 20, 22} on the 243 ensem-
ble with aml = 0.005, we found that ∆t = 20 led to the
best signal-to-noise. We scaled this value by a−1

32c/a
−1
24c to

obtain ∆t = 26 on the 323 ensembles.

Figure 11 shows an example determination of ZbbV via
Eq. (A3) for two different values of the spectator-quark
mass on the aml = 0.005, 243 ensemble; results on other
ensembles look similar. The data display long plateaus
with small error bars over almost the entire time range.
We do not observe any spectator-quark mass dependence
within statistical uncertainties, but the statistical errors
increase with lighter spectator-quark mass. We therefore
determine ZbbV using a strange spectator quark (mq ∼
ms) in Eq. (A3). The values for ZbbV are extracted by
performing a correlated constant fit over time slices [7:13]
on the 243 ensembles and [9:17] on the 323. The fits are
shown in Fig. 12 and the results with jackknife statistical
errors are summarized in Tab. VI.

 9.60

 9.80

10.00

10.20

10.40

 0  5  10  15  20

Z Vbb
 (t

)

time slice

B  → B
Bs → Bs

FIG. 11: Determination of ZbbV from three-point correlators
with unitary (blue squares) and strange (red circles) spectator
quarks on the 243 ensemble with aml = 0.005.

Appendix B: Numerical estimate of heavy-quark
discretization errors

Here we provide the explicit forms of the relevant oper-
ators and mismatch functions for the heavy-quark action
in Sec. B 1, and for the heavy-light current in Sec. B 2.
Then, in Sec. B 3, we present numerical estimates of
heavy-quark discretization errors in our calculation of the
B(s)-meson leptonic decay constants on the 243 and 323

ensembles. For the discretization errors from the cur-
rent, we compare our estimates from heavy-quark power
counting with ones based on the observed sizes of the
O(a) and O(αsa) contributions to the decay amplitudes,
and find good agreement.

1. O(a2) errors from the action

Oktay and Kronfeld present the complete set of bi-
linears and four-quark operators that can appear in
the Symanzik effective Lagrangian through dimension 7
in Ref. [46]. At dimension 6, there are two bilinears
h{γ · D,α · E}h and hγ4(D · E − E · D)h and many
four-quark operators. At tree-level, the mismatch coef-
ficients of all of the four-quark operators vanish. The
tree-level mismatch coefficients of the two bilinears are
the same, and are given by:

fE(m0a, cP , ζ) =
1

8m2
Ea

2
− 1

8m2
2a

2
, (B1)

where

1

m2a
=

2ζ2

m0a(2 +m0a)
+

ζ

1 +m0a
, (B2)

1

4m2
Ea

2
=

ζ2

[m0a(2 +m0a)]2
+

ζcP
m0a(2 +m0a)

. (B3)
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FIG. 12: Determination of ZbbV from correlated constant fits to the ratio in Eq. (A3). The filled symbols show the data points
with jackknife statistical errors, while the horizontal bands show the result of a correlated constant fit to the data on those time
slices. On the left we show the results for our three 323 ensembles and on the right results for both of the the 243 ensembles.



22

The size of the relative error from each of the dimension 6
bilinears is then estimated to be

errorE ∼ fE(m0a, cP , ζ) (aΛQCD)
2
. (B4)

2. O(α2
sa, a

2) errors from the current

Harada et al. present the complete set of operators
needed to improve the vector and axial-vector heavy-light
currents to all orders in O(a) in Ref. [39]. There are six
such operators; two for the temporal current and four
for the spatial current. Although their coefficients have
been computed numerically at one-loop for the pertur-
bative matching used in this work, the expressions are
not known analytically. We therefore use the tree-level
mismatch functions as a guide. At tree-level, all of the
operators have the same mismatch coefficient:

f
[0]
3 (m0a, cP , ζ) =

ζ(1 +m0a)

m0a(2 +m0a)
− 1

2m2a
− d1 (B5)

=
ζ

m0a(2 +m0a)
+

ζ

(2 +m0a)

− ζ

2(1 +m0a)
− ζ2

m0a(2 +m0a)
− d1 ,

(B6)

where at tree-level d
[0]
1 is defined such that f

[0]
3 = 0. For

the 2-loop mismatch function(s), we multiply the above

expression by α2
s and set d

[2]
1 = 0. The result, however,

approaches infinity in the m0a → 0 limit. We therefore

instead consider several functions similar to f
[0]
3 that have

the expected parametric dependence on the strong cou-
pling and ζ, as well as the correct asymptotic behavior in
both the chiral and static limits. For our final estimate,
we use the simple ansatz

f
[2]
3 (m0a, cP , ζ) = α2

sζ
2

(2 +m0a)
, (B7)

where the factor of two in the numerator allows for more
than one term of this size in the true mismatch func-
tion. In our numerical simulations, the parameter ζ is

of O(1), so the small size of f
[2]
3 is primarily due to the

perturbative factor α2
s. The exact dependence on m0a in

the denominator does not impact the size of f
[2]
3 signifi-

cantly, but we conservatively take the function that leads
to the largest value of the mismatch function. The size
of the relative error from the O(a) heavy-light current
operators is then estimated to be

error3 ∼ f [2]
3 (m0a, cP , ζ) (aΛQCD) . (B8)

El Khadra, Kronfeld, and Mackenzie present the ex-
pression for the tree-level O(a2)-improved heavy-light
electroweak current in Eq. (A.17) of Ref. [25]. At O(a2),
there are three relevant operators — qΓD2h, qΓiΣ ·Bh,

TABLE XII: Mismatch functions for the nonperturbatively-
tuned parameters of the RHQ action on the 243 and 323 en-
sembles given in Table V. The tree-level coefficients fE , fXi ,

and fY are known exactly. The two-loop coefficient f
[2]
3 is not

known, so we use an ansatz based on the tree-level expression.

fE fX1 fX2 fY f
[2]
3

a ≈ 0.11 fm 0.0652 0.0803 0.1517 0.1605 0.0659
a ≈ 0.086 fm 0.0864 0.0953 0.1774 0.1900 0.0312

and qΓα · Eh — where q and h denote the light- and
heavy-quark fields, respectively. Their tree-level coeffi-
cients are given in Eq. (A.19) of the same paper, from
which the mismatch functions can be inferred:

fX1
(m0a, cP , ζ) = −1

2

[
d2

1 −
ζ

2(1 +m0a)

]
(B9)

fX2(m0a, cP , ζ) = −1

2

[
d2

1 −
cP

2(1 +m0a)

]
(B10)

fY (m0a, cP , ζ) = −1

2

[
(ζ − cP )(1 +m0a)

m0a(2 +m0a)
− d1

m2a

]
,

(B11)

with

d1 = (m0a, cP , ζ) =
ζ(1 +m0a)

m0a(2 +m0a)
− 1

2m2a
. (B12)

The sizes of the relative errors from the three operators
are then estimated to be

errorX1
∼ fX1

(m0a, cP , ζ) (aΛQCD)
2

(B13)

errorX2
∼ fX2

(m0a, cP , ζ) (aΛQCD)
2

(B14)

errorY ∼ fY (m0a, cP , ζ) (aΛQCD)
2
. (B15)

3. Numerical estimates

Table XII presents the numerical values of the mis-
match functions at the tuned values of the RHQ param-
eters given in Table V. Table XIII presents the estimated
size of heavy-quark discretization errors in fB(s)

from op-

erators of O(a2) in the action and of O(α2
sa, a

2) in the
axial-vector current taking ΛQCD = 500 MeV. The last
column gives the sum of the errors from the individual
operators added in quadrature.

We can also estimate the size of heavy-quark discretiza-
tion errors from the current, i.e. those corresponding to
operators X1, X2, Y , and 3 in Table XIII, by looking at
the known O(a) and O(αsa) contributions to the decay
amplitudes in our data. We estimate the size of the omit-
ted O(a2) contributions by assuming that they are ap-
proximately aΛQCD times the size of the tree-level O(a)
contribution, which is 0.75% on the finer 323 ensembles.
This is of the same size as the estimates of the contribu-
tions from OX1,X2,Y in Table XIII based on heavy-quark
power counting. We estimate the size of the omitted
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TABLE XIII: Percentage errors from mismatches in the action and current for the bottom quark on the 243 and 323 ensembles.
For this estimate, we calculate the mismatch functions for the nonperturbatively-tuned parameters of the RHQ action from
Table V. We estimate the size of operators using HQET power counting with ΛQCD = 500 MeV. To obtain the total, we add
the individual errors in quadrature, counting contributions E and 3 twice because they each arise from two operators in the
Symanzik effective Lagrangian.

O(a2) error O(a2) errors O(α2
sa) error

from action from current from current

αMS
s (1/a) E X1 X2 Y 3 Total (%)

a ≈ 0.11 fm 1/3 0.55 0.67 1.27 1.34 1.91 3.42
a ≈ 0.086 fm 0.22 0.42 0.46 0.85 0.91 0.68 1.75

O(α2
sa) contributions in two ways: by assuming that they

are approximately α2
s times the size of the tree-level con-

tribution, or that they are αs times the size of the 1-loop
contribution. On the 323 ensembles, the first approach
leads to an estimate of 0.17%, while the second leads to
one of 0.59%. These are both similar in magnitude to
the estimated contribution from O3 in Table XIII. Given

the overall consistency between the two error estimation
approaches, we use the values obtained from heavy-quark
power counting in our systematic error budget. This, in
fact, leads to a slightly larger quoted heavy-quark dis-
cretization error than what we would obtain if we used
the data-driven numbers.
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