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Abstract
The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-

quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation

of beam energy is parameterized using a generalized Courant-Snyder (CS) theory, which extends

the original CS theory for one degree of freedom to higher dimensions. The envelope function is

generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic

rotation, or an U(2) element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney

equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimen-

sions. Other components of the original CS theory, such as the transfer matrix, Twiss functions,

and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably

similar expressions, in the generalized theory. The gauge group structure of the generalized theory

is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parame-

terization assumes the form of the modified Iwasawa decomposition, whose importance in phase

space optics and phase space quantum mechanics has been recently realized. This gauge fixing

also symmetrizes the generalized envelope equation and express the theory using only the gener-

alized Twiss function β. The generalized phase advance completely determines the spectral and

structural stability properties of a general focusing lattice. For structural stability, the generalized

CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis.

The generalized CS theory provides an effective tool to study coupled dynamics and to discover

more optimized lattice design in the larger parameter space of general focusing lattices.

PACS numbers: 29.27.-a,52.20.Dq
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I. INTRODUCTION

In accelerators and storage rings, charged particles are confined transversely by electro-

magnetic focusing lattices. Many different kinds of focusing lattice have been successfully

designed and implemented. The fundamental theoretical tool in designing an uncoupled

quadrupole lattice is the Courant-Snyder (CS) theory [1], which can be summarized as fol-

lows. For a given set of focusing lattice in the x− and y−directions κx(t) and κy(t), particle’s

dynamics is governed by the oscillation equation

q̈ + κq(t)q = 0 , (1)

where q represents one of the transverse coordinates, either x or y. Solution of Eq. (1) can

be expressed as a symplectic linear map M(t) that advances the phase space coordinates(
q

q̇

)
= M (t)

(
q0

q̇0

)
. (2)

In CS theory, the linear map M(t) is given as

M (t) =


√
β

β0
[cosφ+ α0 sinφ]

√
ββ0 sinφ

−1 + αα0√
ββ0

sinφ+ α0 − α√
ββ0

cosφ
√
β0

β
[cosφ− α sinφ]

 , (3)

where α (t) and β (t) are two of the so-called Twiss parameters, and φ (t) is the phase

advance. They are defined by an envelope function w (t) as

β (t) = w2 (t) , (4)

α (t) = −wẇ , (5)

φ (t) =
ˆ t

0

dt

β (t) , (6)

and the envelope function w (t) is determined by the envelope equation

ẅ + κq (t)w = w−3 . (7)

In Eq. (3), q0 = q (t = 0) , q̇0 = q̇ (t = 0) , β0 = β (t = 0) , and α0 = α (t = 0) are the initial

conditions at t = 0.
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Associated with the dynamics of Eq. (1), there exists a constant of motion, ICS, known

as the Courant-Synder invariant

ICS = q2

w2 + (wq̇ − ẇq)2 = (q, q̇)

 γ α

α β


 q

q̇

 , (8)

γ(t) ≡ w−2 + ẇ2 . (9)

Here γ (t) is the third Twiss parameter. It turns out that the transfer matrix M (t) can be

decomposed into the elegant form [2]

M (t) =

 w 0

ẇ
1
w


 cosφ sinφ

− sinφ cosφ


 w−1

0 0

−ẇ0 w0

 , (10)

which seems to indicate a certain structure for M(t).

The CS theory can be viewed as a parameterization method of the time-dependent 2× 2

symplectic matrix M(t) for a standard uncoupled lattice. Not surprisingly, there exist other

parameterization schemes mathematically. Why is the CS parameterization preferable? This

is because it describes the physics of charged particle dynamics. The main components of

the CS theory, i.e., the phase advance, the envelope equation, the transfer matrix, and the

CS invariant are physical quantities describing the dynamics of the particles. For example,

the CS invariant defines the emittance in phase space, and the envelope function describes

the transverse dimensions in configuration space. This theoretical framework also makes it

possible to investigate collective effects associated with high-intensity beams, such as in the

construction of the Kapchinskij-Vladimirskij distribution [3–5].

However, the CS theory can only be applied to the x− or y−dynamics separately for the

ideal case of uncoupled quadrupole focusing lattices. In realistic accelerators, there exist

bending magnets, torsion of the design orbit (fiducial orbit), and skew-quadrupole compo-

nents, which are introduced intentionally or by misalignment [6, 7]. Solenoidal magnets

are also used in certain applications [8]. When these additional components are included,

the transverse dynamics in the x− and y−directions are coupled, and the focusing force

depends on the transverse momentum as well. In this most general case, the transfer matrix

M(t) is a time-dependent 4×4 symplectic matrix, which has 10 time-dependent parameters

and admits many different schemes for parameterization. The first set of parameterization

schemes for M (t) were developed by Teng and Edwards [9–11] and Ripken [12–14], some of
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which have been adopted in lattice design and particle tracking codes, such as the MAD code

[15, 16]. A class of different parameterizations by directly generalizing the Twiss parameters

to higher dimensions has also been developed by Dattoli, et al. [17–19]. However, in contrast

to the original CS theory, these parameterization schemes are designed from mathematical

considerations, and fail to connect with physical parameters of the beam. The elegant and

much-needed connection with the physics of beam dynamics in the original CS theory for

one degree of freedom is not transparent in these parameterization schemes. This is probably

why there is no de facto standard yet adopted by the accelerator community. Another main

reason is that for most present-day accelerators and rings, the transverse dynamics are so

nearly decoupled that perturbative treatment often works satisfactorily. Even for lattices

with strong coupling, elementary methods can be used to analyze the dynamics, even though

the calculation often become rather involved and requires diligence and patience.

In a recent Letter [20], we reported the development of a generalized CS theory for

focusing lattices with the most general form in Eq. (11), including bending magnets, torsion

of the design orbit, and solenoidal magnets, in addition to quadrupole and skew-quadrupole

components. In this generalized theory, the physics elements of the original CS theory,

i.e., the phase advance, the envelope equation, the transfer matrix, and the CS invariant

are all generalized to the 2D coupled case with identical structure. This new development

also generalizes our previous results for coupled dynamics including only a skew-quadrupole

lattice component [21–24]. In this paper, we give a detailed derivation of the generalized

CS theory reported in Ref. [20], describe the theoretical structure of the theory in terms of

gauge freedoms and group decomposition, and demonstrate the application of the theory in

stability analysis.

II. THEORETICAL MODEL AND SUMMARY OF RESULTS

In this section, we outline the theoretical methods used and summarize the main results

obtained in this paper. As discussed in Sec. I, when realistic components such as skew-

quadrupoles, bending magnets, torsion of the design orbit, solenoidal magnets are included,

in addition to the standard quadrupole components, the transverse dynamics in the x− and

y−directions are coupled, and the focusing force depends on the transverse momentum. In

this case, the linear dynamics of a charged particle relative to the fiducial orbit are governed

4



by a general time-dependent Hamiltonian [25] of the form

H = 1
2z

TAz , A =

 κ (t) R (t)

R (t)T m−1 (t)

 . (11)

Here, z = (x, y, px, py)T are the transverse phase space coordinates, and κ(t), R (t) and

m−1 (t) are time-dependent 2 × 2 matrices. The matrices A, κ(t) and m−1 (t) are also

symmetric. In this most general Hamiltonian, the skew-quadrupole and dipole components

are included in the off-diagonal terms of the κ (t) matrix, and the solenoidal component

and the torsion of the fiducial orbit are included in the R (t) matrix. There are several

different methods to include the effect of torsion, which were reviewed by Hoffstaetter [26].

Typically, Frenet-Serret coordinates along the fiducial orbit is used. When the fiducial orbit

is straight, the Frenet-Serret coordinates are not uniquely defined. In this case, we can

choose any particular set of Frenet-Serret coordinates in the straight section, as long it is

smoothly connected to those in the curved sections. The variation of beam energy along

the fiducial orbit is reflected in the mass matrix m−1 (t) , which is allowed to be any real

symmetric matrix for complete generality. The transfer matrix M(t) corresponding to H is

a time-dependent 4 × 4 symplectic matrix, which has 10 time-dependent parameters. Our

goal is to develop a generalized Courant-Snyder parameterization method for M(t), which

has the same elegant structure and direct connection to beam dynamics as the original

Courant-Snyder theory for one degree of freedom.

We will use a time-dependent symplectic transformation technique [21, 24, 27] to analyze

the charged particle dynamics governed by the Hamiltonian given in Eq. (11). This technique

is described in Sec. III. The concept of scalar envelope function is generalized to a 2 × 2

envelope matrix, and the envelope equation in 2× 2 matrix form is developed [see Eq. (36)].

In the original CS theory, the envelope equation (7) is one dimensional and plays a central

role. It also has been discovered or re-discovered many times [28–32] in other branches of

physics. In quantum physics, it is known as the Ermakov-Milne-Pinney equation [28–30],

which has been utilized to study 1D time-dependent quantum systems [33, 34] and associated

non-adiabatic Berry phases [35]. A brief account of the history of the 1D envelope equation

can be found in Ref. [36]. We expect the generalization of the envelope equation to higher

dimensions for the most general Hamiltonian to have applications in areas other than beam

physics as well. The 1D CS invariant given by Eq. (8), also known as the Lewis invariant
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[31, 32] in quantum physics, is generalized to higher dimensions in Eqs. (44) and (45).

Also in Sec. IV, the 1D phase advance is generalized to a time-dependent matrix P , which

belongs to the symplectic rotation group Sp(4)⋂SO(4) = U(2). Here, Sp(4), SO(4), and

U(2) denote the groups of 4 × 4 symplectic matrices, 4 × 4 rotation matrices, and 2 × 2

unitary matrices, respectively. For dynamics with one degree of freedom, the phase advance

is naturally an angle (an element of SO(2)) in the 2D phase space. For dynamics with two

degrees of freedom, the phase space is 4D, and it is tempting to represent the phase advance

by two angles. This is what has been adopted in previous parameterization schemes. From

the viewpoint of theoretical physics and geometry, however, it is more natural to represent

the phase advance for dynamics with two degrees of freedom by a 4D rotation (an element

of SO(4)), which is not equivalent to two 2D rotations. Because of the symplectic nature of

the Hamiltonian dynamics, the generalized phase advance in higher dimensions thus belongs

to the symplectic rotation group. Of course, one can adopt different views on this. In the

normal form analysis of accelerator rings, the 4D transfer matrix is reduced to a 2D rotation

after block diagonalization. In a sense, we can compare coupled betatron motion to the

Dirac equation. In a fully quantum mechanical limit, the only correct approach is to treat

electrons and positrons as inextricably coupled; only the 4D approach is permissible in this

limit. But in the accelerator physics, we routinely treat electrons and positrons as completely

separate entities, and two 2D descriptions are adopted without much hesitation.

The generalized decomposition for the symplectic map M(t) is given by Eq. (43), which

has exactly the same structure as the original 1D CS theory given by Eq. (10). In addition

to its aesthetic elegance, the generalized CS theory provides an effective tool to describe

the beam dynamics governed by the most general Hamiltonian. The 2× 2 envelope matrix

w defines the transverse dimension of the beam, and the generalized CS invariant defines

the emittance. These components of the generalized CS theory are derived in detail in

Sec. IV. For the present application to beam transverse dynamics, there are two degrees of

freedom. But the theory developed is valid for any degree of freedom. For a system with

n-degrees of freedom, the time-dependent matrix A(t) specifying the Hamiltonian in Eq. (11)

will be 2n × 2n, the envelope matrix will be n × n, and the phase advance will belong to

Sp(2n)⋂SO(2n) = U(n).

In Sec. V, we investigate the group structure of the generalized CS theory, which is

built on the decomposition of the time-dependent symplectic coordinate transformation G
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in the form of Eq. (42). There exists a gauge freedom in this decomposition specified by a

2D rotation element c ∈ SO(2) for every t. The transfer map M(t) is independent of this

gauge. By fixing the gauge freedom with a desired symmetry, the decomposition of G as

PS assumes the form of the modified Iwasawa decomposition (or pre-Iwasawa decomposi-

tion), whose importance in phase space optics [37, 38] and phase space quantum mechanics

[39] has been recently realized. This specific gauge fixing also symmetrizes the generalized

envelope equation and express the theory using only the generalized Twiss function β. For

a symplectic matrix, the modified Iwasawa decomposition is equivalent to the well-known

Iwasawa decomposition for a semi-simple Lie group [40]. However, the unique feature of the

theory described here is that the decomposition is constructed as a function of time, and

from the viewpoint of dynamics using the generalized envelope equation. Nevertheless, it is

a pleasant surprise to find the deep connection between the original CS theory for charged

particle dynamics [1] and the Iwasawa decomposition for Lie groups [40], two theoretical

formalisms developed concurrently. This connection also demonstrates that beam dynam-

ics, phase space optics and quantum dynamics have a similar theoretical structure at the

fundamental level. In order to satisfy the symmetry requirement of the modified Iwasawa

decomposition, the gauge freedom need to be selected locally as a function of time, which

is the characteristics of gauge theories in theoretical physics. This procedure also results in

a symmetrized envelope equation in terms of the generalized Twiss parameter β, which is a

symmetric, positive-definite matrix. The beam dimensions and emittance can be expressed

using the β matrix only.

We show in Sec. VI how the generalized CS theory can be used to analyze the stability of a

charge particle dynamics in realistic accelerators with quadrupole, skew-quadrupole, dipole,

and solenoidal components, as well as torsion of the fiducial orbit and variation of beam

energy. It turns out that the generalized phase advance as a symplectic rotation completely

determines the spectral and structural stability properties of the general lattice after a

matched solution of the envelope equation is found. For structural stability, the generalized

CS theory enables us to apply the Krein-Moser theory [41–45] to greatly simplify the stability

analysis. This general result includes the well-known stability criterion for sum/difference

resonances for uncoupled quadrupole lattices as a special case.
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III. METHOD OF TIME-DEPENDENT CANONICAL TRANSFORMATION

We will construct the generalized Courant-Snyder theory for the general focusing lattice

given by Eq. (11) using a method of time-dependent canonical coordinate transformation.

Let’s consider a linear, time-dependent Hamiltonian system with n-degrees of freedom

H = 1
2z

TA (t) z , (12)

z = (x1, x2, ..., xn, p1, p2, ..., pn)T .

Here, A (t) is a 2n× 2n time-dependent, symmetric matrix. The Hamiltonian in Eq. ((11))

has this form with n = 2. The basic idea is to introduce a time-dependent linear canonical

transformation [27]

z̄ = S (t) z , (13)

such that in the new coordinates z̄, the transformed Hamiltonian has the desired form

H̄ = 1
2 z̄

T Ā (t) z̄ , (14)

where Ā (t) is a targeted symmetric matrix. Because the transformation (13) is canonical,

it requires that

SJST = J , (15)

Here, J the 2n× 2n unit symplectic matrix of order 2n,

J =

 0 I

−I 0

 , (16)

and I is the n × n unit matrix. Equation (15) implies that S is a symplectic matrix.

In addition, it needs to satisfy a differential equation, which can be derived as follows.

Hamilton’s equation for z is given by

ż = J∇H , (17)

Using index notation, Eq. (17) becomes

żj = Jij
∂H

∂zj
= 1

2Jij (δljAlmzm + zlAlkδkj)

= 1
2Jij (Ajm + Amj) zm = JAjmzm . (18)
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Switching back to matrix notation, Eq. (18) can be expressed as

ż = JAz . (19)

Similarly,
˙̄z = JĀz̄ = JĀSz . (20)

Meanwhile, ˙̄z can be directly calculated from Eq. (13) by taking a time-derivative, which

gives
˙̄z = Ṡz + Sż =

(
Ṡ + SJA

)
z . (21)

Combining Eqs. (20) and (21) gives the differential equation for S

Ṡ =
(
JĀS − SJA

)
. (22)

The remarkable feature of the canonical transformation S is that it is always symplectic,

if S is initially symplectic at t = 0. This assertion can be proved by two methods. For the

first proof, we follow Leach [27] and consider the dynamics of the matrix K = SJST ,

K̇ = ṠJST + SJṠT

=
[(
JĀS − SJA

)
JST + SJ

(
−SĀJ + AJST

)]
=
[
JĀSJST − SJST ĀJ

]
=
[
JĀK −KĀJ

]
. (23)

Equation (23) has a fixed point at K = J. If S(t = 0) is symplectic, i.e., K (t = 0) = J, then

K̇ = 0 and K = J for all t, and S is symplectic for all t. A more geometric proof can be given

from the viewpoint of the flow of S. Because A is symmetric, we have JJĀ − ĀTJJ = 0,

which indicates that JĀ belongs to the Lie algebra sp (2n,R) . We now show that if S is

symplectic at a given t, then JĀS belongs to the tangent space of Sp (2n,R) at S, i.e.,

JĀS ∈ TSSP (2n,R) . Let’s examine the Lie group right action: S : a 7→ aS for any a in

Sp (2n,R) , and the associated tangent map

TS : TaSp (2n,R)→ TaSSp (2n,R) . (24)

It is evident that JĀS is the image of the Lie algebra element JĀ under the tangential map

TS. This means that JĀS is a vector tangential to the space of Sp (2n,R) at S, if S is on

Sp (2n,R). By the same argument SJA ∈ TSSP (2n,R) as well. Thus, the right-hand side

of Eq. (22) is a vector on Sp (2n,R), and the S dynamics will stay on the space of Sp(2n,R).
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We can always choose initial conditions such that S is symplectic at t = 0, and this will

guarantee that the time-dependent transformation specified by Eq. (22) is symplectic for all

t.

IV. GENERALIZED COURANT-SNYDER THEORY

We now apply the technique developed in Sec. III to the Hamiltonian system in Eq. (11).

Our goal is to find a new coordinate system where the transformed Hamiltonian vanishes.

This idea is identical to that in Hamilton-Jacobi theory. Applications of Hamilton-Jacobi

theory include the construction of action-angle variables for periodic systems [46] and finding

geodesic curves on an ellipsoid [47]. It is often required that the variables in the Hamilton-

Jocabi equation can be separated in order for the technique to be effective for practical

problems. This limits its application. Since our dynamics is linear, the new coordinate

system can be more easily constructed using the method developed in Sec. III. We will

accomplish this goal in two steps. First, we seek a coordinate transformation z̄ = Sz such

that, in the z̄ coordinates, the Hamiltonian assumes the form

H̄ = 1
2 z̄

T Āz̄ , Ā =

 µ(t) 0

0 µ(t)

 , (25)

where µ(t) is a 2 × 2 matrix to be determined. To write Eq. (22) in the format of 2 × 2

blocks, we let

S =

 S1 S2

S3 S4

 ,
and split the differential equation for S, i.e., Eq. (22), into four matrix equations,

Ṡ1 = µS3 − S1R
T + S2κ , (26)

Ṡ2 = µS4 − S1m
−1 + S2R , (27)

Ṡ3 = −µS1 − S3R
T + S4κ , (28)

Ṡ4 = −µS2 − S3m
−1 + S4R . (29)

Including µ(t), we have five 2 × 2 matrices unknown. The extra freedom is introduced by

the to-be-determined µ(t). Based on the analogy with Eq. (10), we choose S2 ≡ 0 to remove

the freedom. We rename S4 to be w, i.e., w ≡ S4, because it will be clear later that S4 is
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the envelope matrix. Equations (26)-(29) become

Ṡ1 = µS3 − S1R
T , (30)

S1 = µwm , (31)

Ṡ3 = −µS1 − S3R
T + wκ , (32)

S3 = −ẇm+ wRm, (33)

for matrices S1, S3, w and µ. Because (S1, S2 = 0, S3, S4 = w) describes a curve in Sp(4),

they are consistent with the symplectic condition S1S
T
4 − S2S

T
3 = I, i.e., S1w

T = I, which

implies

S1 = w−T . (34)

From Eq. (31), we obtain

µ =
(
wmwT

)−1
. (35)

It is straightforward to verify that Eq. (30) is equivalent to another symplectic condition

S3S
T
4 = S4S

T
3 . Substituting Eqs. (32)-(35) into Eq. (32), we immediately obtain the following

matrix differential equation for the envelope matrix w,

d

dt

(
dw

dt
m− wRm

)
+ dw

dt
mRT + w

(
κ−RmRT

)
−
(
wTwmwT

)−1
= 0 . (36)

This is the desired generalized envelope equation. It generalizes the 1D envelope equation

(7), or the Ermakov-Milne-Pinney equation [28–30], as well as the previous matrix envelope

equation for cases with only quadrupole and skew-quadrupole magnets, i.e., R = 0 [21–24].

For n-degrees of freedom, the envelope matrix w will be n×n, and the generalized envelope

equation has the same form as Eq. (36).

Once w is solved for from the envelope equation, we can determine S1 from Eq. (34) and

S3 from Eq. (33). In terms of the envelope matrix w, the symplectic transformation S and

its inverse are given by

S =

 w−T 0

(wR− ẇ)m w

 , (37)

S−1 =

 wT 0

(w−1ẇ −R)mwT w−1

 . (38)
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The second step is to use another coordinate transformation ¯̄z = P (t)z̄ to transform H̄

into a vanishing Hamiltonian ¯̄H ≡ 0 at all time, thereby rendering the dynamics trivial in

the new coordinates. The determining equation for the transformation P (t) is

Ṗ = −PJĀ = P

 0 −µ

µ 0

 . (39)

As explained in Sec. III, the P matrix satisfying Eq. (39) is symplectic because JĀ ∈ sp(4).

From µ = µT , we know that JĀ is also antisymmetric, i.e., JĀ belongs to the Lie algebra

so(4) of the 4D rotation group SO(4). Thus JĀ ∈ sp(4)⋂ so(4), and P (t) is a curve in

the group of 4D symplectic rotations, i.e., P (t) ∈ Sp(4)⋂SO(4) = U(2), provided the

initial condition of P (t) is chosen such that P (0) ∈ Sp(4)⋂SO(4) = U(2). We call P (t)

the generalized phase advance, an appropriate descriptor in light of the fact that P (t) is a

symplectic rotation. The Lie algebra element (infinitesimal generator) −JĀ =

 0 −µ

µ 0

 is

the phase advance rate, and it is determined by the envelope matrix through Eq. (35). Since

Sp(4)⋂SO(4) = U(2), P and its inverse must have the forms

P =

 P1 P2

−P2 P1

 , (40)

P−1 = P T =

 P T
1 −P T

2

P T
2 P T

1

 . (41)

Combining the two symplectic coordinate transformations, we obtain the transformation

¯̄z = G(t)z = P (t)S(t)z . (42)

In the ¯̄z coordinate representation, because ¯̄H ≡ 0, the dynamics is trivial, i.e., ¯̄z = const.

This enables us to construct the symplectic matrix specifying the map between z0 and

z = M(t)z0 as

M(t) = S−1P−1P0S0 =

 wT 0

(w−1ẇ −R)mwT w−1

P T

 w−T 0

(wR− ẇ)m w


0

, (43)

where subscript “0” denotes initial conditions at t = 0, and P0 is taken to be I without

loss of generality. This expression for M(t) generalizes the decomposition of the symplectic

map for the original 1D CS theory given by Eq. (10). The first and the third matrices
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in Eq. (10) obviously have the same construction as their counterparts in Eq. (43). The

phase advance, as a 4D symplectic rotation P T in Eq. (43), generalizes the 2D rotation

matrix, which is also symplectic, in Eq. (10). The phase advance P is generated by its

infinitesimal generator JĀ determined by the envelope matrix through µ =
(
wmwT

)−1
.

This mechanism for phase advance in 4D phase space is identical to the original 1D CS

theory where the infinitesimal generator of the phase advance is w−2 for a scalar envelope

w. The importance of the decomposition in Eqs. (43) and (10) can be appreciated from

both physical and mathematical points of view. We explain the physical meaning of the

decomposition here, and leave the mathematical analysis to Sec. V. The first matrix from

the right is a matching transformation at t = 0 of the initial conditions to an equivalent

focusing system, where the phase space dynamics can be characterized by a time-dependent

rotation. The second matrix from the right is a transformation along the time axis in this

equivalent focusing system, with the phase advance playing the role of a time-like evolution

parameter. And the third matrix from the right is a back-transformation to the original

coordinate system at t > 0.

The coordinate transformation can also be used to construct invariants of the dynamics.

A general description of linear symplectic invariants can be found in Refs. [48, 49]. For any

constant 4× 4 positive-definite matrix ξ, the quantity

Iξ = zTSTP T ξPSz (44)

is a constant of motion, since ¯̄z = PSz is a constant of motion. The subscript “ξ” in Iξ is

used to indicate that it is an invariant associated with ξ. For the special case of ξ = I, the

phase advance P in Eq. (44) drops out, and

ICS ≡ zTSTSz = zT

 γ α

αT β

 z , (45)

where α, β, and γ are 2× 2 matrices defined by

α ≡ wTS3 , (46)

β ≡ wTw , (47)

γ ≡ ST3 S3 + w−1w−T . (48)

Here, we have used ICS to denote this special invariant because it is the invariant that

generalizes the CS invariant [1] (or Lewis invariant [31, 32]) for one degree of freedom in
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Eq. (8). The matrices, α, β, and γ are the generalized Twiss parameters in higher dimensions.

It is straightforward to verify that they satisfy

βγ = I + α2, (49)

which is a familiar relationship in the original CS theory between the scalar Twiss parameters

defined by Eqs. (4), (5) and (9). The symplectic condition wST3 = S3w
T has been used in

obtaining Eq. (49).

It has been demonstrated that the envelope matrix w and the invariant Iξ define the

beam dimensions and emittance for both low intensity beams and high intensity beams with

strong space-charge potential [4, 5].

Note that we have “overloaded” the symbols “M , w, α, β, γ, ICS” to represent the

same physical quantities in both the original CS theory for one degree of freedom and the

generalized CS theory in higher dimensions without causing any confusion. It is actually

more appropriate to do so than not, because the quantities in higher dimensions recover their

counterparts for one degree of freedom as special cases, and the correspondence between

them is exact.

V. GROUP STRUCTURE OF THE GENERALIZED COURANT-SNYDER THE-

ORY – ROTATION GAUGE AND MODIFIED IWASAWA DECOMPOSITION

In Sec. IV, we noted that initial conditions for the envelope matrix w need to satisfy

the symplectic condition; otherwise they can be arbitrary. There are freedoms in the initial

conditions and thus the solutions for w. But the transfer matrixM is independent from these

freedoms, which are thus gauge freedoms. A subset of the gauge freedoms has the structure

of the orthogonal group O(n). For a time-independent element c ∈ O(n), we define the gauge

transformation c : (w,P ) 7→ (w̃, P̃ ) as

w̃ = cw , (50)

P̃ = P

 c−1 0

0 c−1

 . (51)

Let’s show that the transformed w̃ and P̃ also satisfy Eqs. (36) and (39), respectively, andM

is gauge invariant. Multiplying Eq. (36) by c from the left to obtain the governing equation
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for w̃,

d

dt

(
dw̃

dt
m− w̃Rm

)
+ dw̃

dt
mRT + w̃

(
κ−RmRT

)
−
(
w̃T w̃mw̃T

)−1
= 0 , (52)

which is the same as Eq. (36) with w replaced by w̃. According to Eq. (35), the µ matrix

transforms as

µ̃ = cµc−1 .

Equation (39) thus can be re-expressed in the same form using P̃ and µ̃ as

d

dt
P̃ = −P̃

 0 −µ̃

µ̃ 0

 . (53)

From Eqs. (37) and (38), the S matrix and its inverse transform as

S̃ =

 c 0

0 c

S , (54)

S̃−1 = S−1

 c−1 0

0 c−1

 . (55)

Combining Eqs. (50) and (51), (54) and (55), we conclude that M is invariant under the

gauge transformation c : (w,P ) 7→ (w̃, P̃ ), i.e., M̃ = M .

The O(n) gauge group introduces an equivalent class ([w], [P ]) for the decomposition of

M using (w,P ). The dimension of this equivalent class is the dimension of M as a Sp(2n)

group. To specify S by w and ẇ, 2n2 numbers are needed. To specify P ∈ U(n), additional

n2 numbers are needed. The symplectic condition for S, ST3 S1 = ST1 S3 brings (n2 − n)/2

constrains on w and ẇ, and the O(n) gauge freedom for the equivalent class is also (n2−n)/2.

The dimension of the decomposition is therefore

2n2 + n2 − (n
2 − n

2 + n2 − n
2 ) = n(2n+ 1) , (56)

the same as the dimension of Sp(2n).

According to the polar decomposition theorem, any non-degenerate square matrix X can

be uniquely factored into an orthogonal matrix O and a symmetric, positive-definite matrix

Q, i.e., X = OQ. As a matter of fact, Q =
√
XTX and O = XQ−1. Using this fact, at a

fixed time t = t1 we can always choose c =
√
wT (t1)w(t1)w−1(t1) such that w̃(t1) = cw(t1)
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is symmetric. With this gauge, the canonical coordinate transformation at t = t1 becomes

G = P̃

 w̃−1 0

(w̃R− ˙̃w)m w̃

 , (57)

which is in the form of a modified Iwasawa decomposition (or pre-Iwasawa decomposition),

whose importance in phase space optics [37, 38] and phase space quantum mechanics [39]

have been recently realized. The modified Iwasawa decomposition is the unique decomposi-

tion of a 2n× 2n symplectic matrix G in the form of

G = P

 L 0

QL L−1

 , (58)

where P ∈ Sp(2n)⋂SO(2n) = U(n) and L is symmetric. Matrix Q is also symmetric, which

is equivalent to the condition LTQL = (QL)TL for

 L 0

QL L−1

 to be symplectic. These

facts are also true if the decomposition is alternatively defined to be

G =

 L 0

QL L−1

P . (59)

For a symplectic matrix, the modified Iwasawa decomposition is equivalent to the well-known

Iwasawa decomposition for a semi-simple Lie group [40].

Making w̃ symmetric at t = t1 fixes the O(n) gauge because w̃(t1) is unique according

to the polar decomposition theorem. However, such a choice only makes w̃ symmetric at

t = t1. As in general gauge theories, we would like to pick a gauge such that the envelope

matrix is symmetric for all t. To accommodate this desired symmetry, we need to modify

the governing equations, especially the envelope equation. Let

w(t) = c−1(t)u(t) ,

u(t) =
√
β(t) =

√
wT (t)w(t) ,

c−1(t) = w(t)u−1(t) ,

be the time-dependent polar decomposition of w(t). Here we use u(t) to denote this special

w̃(t), which is symmetric and positive-definite for all t. The matrix u(t) is the “symmetrized”

w(t) and equals the square-root of the generalized β function. We will recast the envelope

equation (36) in terms of β, as in the original Courant-Snyder theory for one degree of

freedom [1]. The difference is that the procedure here has to be carried out in matrix form.
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Rewrite Eq. (36) as

ẅ + ẇg + wh = w−Tm−1w−1w−Tm−1 , (60)

g ≡ (ṁ−Rm+mRT )m−1 , (61)

h ≡ (κ−RmRT − Ṙm−Rṁ)m−1 . (62)

We symmetrize Eq. (60) by taking wT (Eq. (60)) + (Eq. (60))Tw to obtain an second order

ordinary differential equation for β,

β̈ − 2ẇT ẇ + wT ẇ + gT ẇTw + βh+ hTβ = 2m−1β−1m−1 . (63)

It is a second-order equation for β because ẇT ẇ and wT ẇ can be expressed in terms of β

and β̇ as follows. First note that

ẇT ẇ = u̇Du+ u̇2 − uD2u− uDu̇ , (64)

wT ẇ = uDu+ uu̇ , (65)

D ≡ −ċc−1 . (66)

Both u̇ and D in Eqs. (64) and (65) can be expressed as functions of β and β̇. For u̇, from

the definition of u we obtain

u̇u+ uu̇ = β̇ , (67)

whose left-hand side can be viewed as a linear operator on u̇ associated with u,

Lu(u̇) ≡ u̇u+ uu̇ . (68)

The properties of the linear operator L is discussed in the Appendix. Since u =
√
β is

symmetric and positive-definite, Lu is invertible to give

u̇ = L−1√
β
(β̇) , (69)

where L−1 is the inverse of L defined in Eq. (A.3).

To express D in terms of β and β̇, we exam the symplectic condition

wST3 = S3w
T , (70)

S3 ≡ −ẇm+ wRm . (71)
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Substituting in the polar decomposition w = c−1u gives

Lumu(D) = umuD +Dumu = (umu̇− u̇mu) + u(Rm−mRT )u . (72)

Therefore,

D = L−1
umu

[
(umu̇− u̇mu) + u(Rm−mRT )u

]
, (73)

where u =
√
β and u̇ = L−1

u (β̇) .

Equation (63) is a second equation for β. Its solutions do not uniquely determine the

envelope matrix w, which is not surprising considering that β = wTw is a “symmetric”

version of w. However, due to the O(n) gauge freedom, β contains enough information to

determine the transfer map M. In terms of u and c−1,

S =

 c−1 0

0 c−1

Su , (74)

Su ≡

 u−1 0

(uR−Du− u̇)m u

 . (75)

Even though the rotation matrix c(t) here is a function of t, the transformed phase advance

is defined the same way as in the case of a global gauge, i.e.,

Pu = P

 c−1 0

0 c−1

 . (76)

What is modified is the governing equation for Pu,

Ṗu = −Pu


 0 µu

−µu 0

−
 D 0

0 D


 , (77)

µu ≡
(
umuT

)−1
. (78)

The second term on the right-hand side of Eq. (77) is due to the dependence on t of the local

gauge. At last, the canonical coordinate transformation between z and ¯̄z is

¯̄z = Gz = PuSuz , (79)

and the transfer map is

M(t0, t) = S−1
u P−1

u Su0 . (80)
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The symmetric decomposition furnished by Eqs. (75), (76), and (80) is equivalent to the

decomposition described in Sec. IV, but it has three desirable features by comparison. The

canonical coordinate transformation PuSu in Eq. (79) has the modified Iwasawa format for all

t. It comprises a curve of the modified Iwasawa decomposition, developed from a dynamical

point of view. The gauge freedom is removed, and the dimension of the symplectic transfer

map is directly reflected by the dimension of the decomposition. At every t,M(t) is specified

by two n × n symmetric matrices β and β̇, and a U(n) matrix Pu. The dimension of M(t)

is thus (n2 + n)/2 + (n2 + n)/2 + n2 = n(2n+ 1).

Before ending this section, we emphasize that the purpose of studying the gauge freedom

is to simplify the calculation of the symplectic map M and other lattice functions and beam

parameters. By investigating the gauge freedom in the matrix envelope equation for w,

we have found that we can actually bypass this gauge freedom and solve for the β matrix

instead, which is symmetric and does not have the gauge freedom. From Eqs. (46), (48) and

(49), the generalized Twiss parameters α and γ can also be expressed in terms of β and β̇.

One important advantage of using the β matrix is that the symmetric matrices β and β̇ form

a linear space, which makes the numerical algorithms of searching for matched solutions for

β much more efficient than for matched solutions for w.

VI. STABILITY ANALYSIS – SPECTRAL STABILITY AND STRUCTURAL

STABILITY

The classical analysis by Courant and Snyder [1] on the instability induced by sum reso-

nance for uncoupled transverse dynamics may give a wrong impression that coupling effects

are always deleterious. The coupled dynamics can be stable or unstable depending on the

specific configuration of the lattice, but certainly not more unstable than the uncoupled

dynamics. The parameter space for a stable coupled lattice is probably much larger than

that of a stable uncoupled lattice. In the conceptual design of the Möbius accelerator [50]

and N-rolling lattice [24, 51], it was argued that strongly coupled lattice are more preferable

for high-intensity beams. Strongly coupled systems have been implemented in the spiral

line induction accelerator (SLIA) [52–58], which reached up to 10KA electron current at 5

MeV beam energy. Our understanding of the stability properties of coupled dynamics has

been limited by the theoretical tools available. In this section, we demonstrate how the

19



generalized Courant-Snyder theory can be applied to study the stability of the most general

focusing lattice given by Eq. (11) with weak and strong coupling components in realistic

accelerators.

For a thorough understanding, it is necessary to distinguish two types of linear stability (or

instability). The first type is spectral stability, which means the linear dynamics is stable for

all initial perturbations. The system is spectrally unstable if there exists an initial condition

that grows without bond. In most contexts, the meaning of stability is that of spectral

stability. The second type is the so-called structural stability (or strong stability). It mostly

applies to systems that are spectrally stable. A spectrally stable system is structurally

unstable if there is a spectrally unstable system infinitesimally closed-by. Otherwise, the

spectrally stable system is also structurally stable. The well-known result with respect to

the stability properties of sum/difference resonances for uncoupled lattices refers to the

structural stability under the influence of an infinitesimal coupling component [1].

The spectral and structural stability of the transverse dynamics in a periodic focusing

lattice is determined by its one-turn (or one-period) map M(T ). The fact that M(T ) is a

symplectic matrix regulates the stability properties in a significant way [41–45]. We list here

the relevant results without presenting details of the proof.

The spectral property is determined by the eigenvalues and their multiplicities. There

are four possibilities:

C1) All eigenvalues are distinct and on the unit circle of the complex plane.

C2) All eigenvalues are on the unit circle. There are repeated eigenvalues. But the

geometric multiplicity for all eigenvalues is one.

C3) All eigenvalues are on the unit circle. There are repeated eigenvalues with mul-

tiplicity greater than one.

C4) There exits at least one eigenvalue not on the unit circle.

Cases C3 and C4 are spectrally unstable, and Cases C1 and C2 are spectrally stable. For

Cases C1 and C2, we would like to know whether they are also structurally stable. It has

been shown that Case C1 is structurally stable using the symplectic nature ofM(T ) [41–45].

Case C2 needs to be sub-divided into two categories:
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C2.1) For all repeated eigenvalues, the corresponding eigenvectors have the same sig-

natures.

C2.2) There is at least one repeated eigenvalue whose eigenvectos have different signa-

tures.

According to the Krein-Moser theorem [41–45], Case C2.1 is structurally stable and C2.2

is structurally unstable. For an eigenvector ψ of M(T ), its signature is defined to be the

sign of its self-product 〈ψ, ψ〉 = ψ∗iJψ. The product between two eigenvectors ψ and φ in

general is defined to be 〈ψ, φ〉 ≡ ψ∗iJφ, where ψ∗denotes the complex conjugate of ψT .

To design a coupled lattice, it is desirable to be in Case C1, which is both spectrally and

structurally stable. As mentioned previously, for the general Hamiltonian given by Eq. (11),

the parameter space satisfying this condition is large enough for most applications. Given

a periodic lattice, we can search for a matched solution for β, as in the original Courant-

Snyder theory for one degree of freedom [1]. After a matched β is found, the one-turn map

is

M(T ) = S−1
0 P (T )−1S0 ,

which implies that M(T ) is similar to P (T )−1. Their eigenvalues and multiplicity are iden-

tical. Because P (T ) is a symplectic rotation, all of its eigenvalues are on the unit circle,

automatically ruling out the unstable situation in C4.

The phase advance P (T ) also determines the structural stability of the system. To

prove this assertion, let ψ and φ are the eigenvectors of M(T ). Then S0ψ and S0φ are the

eigenvectors of P (T )−1, and

〈S0ψ, S0φ〉 = ψ∗ST0 iJS0φ = ψ∗iJφ = 〈ψ, φ〉 , (81)

where use had been made of the fact S0is symmetric, i.e., ST0 JS0 = J. Equation (81) states

that the signatures of eigenvectors of P (T )−1 and thus its structural stability are identical

to that of M(T ).

These analyses lead to the important conclusion that the phase advance matrix P (T )

completely determines both the spectral and structural stability of the general focusing

lattices. This fact can significantly simplify the stability analysis in lattice design. For

example, if the system is in Case C2, we only need to look at the signatures of the eigenvectors

of P (T )−1 to know if it is structurally stable. According the Krein-Moser theorem, if the
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eigenvectors for all repeated eigenvalues of P (T )−1 have the same signatures, then the system

is structurally stable. Otherwise, it is structurally unstable. Let’s show that this conclusion

recovers the classical results on the stability properties of sum/difference resonances for

uncoupled quadrupole lattices as special cases. In this case, the phase advance matrix is

calculated to be [21, 22]

P (T )−1 =



cosφx 0 sinφx 0

0 cosφy 0 sinφy
− sinφx 0 cosφx 0

0 − sinφy 0 cosφy


,

where φx and φy are the one-turn phase advance in the x− and y−directions. Its four sets

of eigenvalues, eigenvectors, and signatures are

λx+ = cosφx + i sinφx , ψx+ = (1, 0, i, 0)T , σx+ = −1 , (82)

λx− = cosφx − i sinφx , ψx− = (1, 0,−i, 0)T , σx− = 1 , (83)

λy+ = cosφy + i sinφy , ψy+ = (0, 1, 0, i)T , σy+ = −1 , (84)

λy− = cosφy − i sinφy , ψy− = (0, 1, 0,−i)T , σy− = 1 . (85)

Resonance occurs when two or more eigenvalues collide, which has four possibilities:

R1) Self-resonance in the x−direction. φx = nπ and λx+ = λx− = ±1.

R2) Self-resonance in the y−direction. φy = nπ and λy+ = λy− = ±1.

R3) Sum resonance. φx + φy = nπ, λx+ = λy− and λx− = λy+.

R4) Difference resonance. φx − φy = nπ, λx+ = λy+, and λx− = λy−.

Case R1 is structurally unstable because σx+ and σx− are different. Case R2 is structurally

unstable for the same reason.

For the sum resonance at the repeated eigenvalue λx+ = λy−, the signatures σx+ and σy−

of the corresponding eigenvectors have different signs. The sum resonance is thus structurally

unstable. For the difference resonance at the first repeated eigenvalue λx+ = λy+, the

corresponding eigenvectors ψx+ and ψy+ have the same signature. This is also true at the

second repeated eigenvalue λx− = λy−. The difference resonance is thus structurally stable.

These results are well-known previously [1], but recovered here as a special case of a more

22



general criterion based on the generalized phase advance and the Krein-Moser theorem [41–

45]. We expect that the more general stability criterion expressed in terms of the phase

advance matrix P (T ) to be a powerful tool for future lattice design with strong coupling.

VII. CONCLUSIONS AND FUTURE WORK

We have presented in this paper a detailed derivation of the generalized Courant-Snyder

theory for the most general linear focusing lattices with quadrupole, skew-quadrupole, dipole,

and solenoidal components, as well as torsion of the fiducial orbit and variation of beam

energy. The theoretical structure of the theory in terms of gauge freedoms and group

decomposition were described. We have also demonstrated the application of the theory

in stability analysis for strongly and weakly coupled lattices. In addition to being more

realistic, the most general Hamiltonian in Eq. (11) enables a much larger parameter space

for designing strongly coupled lattices that are spectrally and structurally stable. The

generalized Courant-Snyder parameterization scheme developed here provides an effective

tool to study the coupled dynamics and to discover more optimized lattice design in the

larger parameter space of general focusing lattices. The formalism also sets the theoretical

foundation for investigating collective phenomena in high-intensity beams, such as the self-

consistent solutions of the Vlasov-Maxwell equations in phase space including strong self-field

effects that can couple the transverse dynamics [59–63].

As mentioned in Sec. IV, the theoretical framework developed is valid for linear system

with any degree of freedom. In particular, we can apply it to the 3D coupled dynamics, which

includes the sychrotron oscillation in RF cavities, and the linear coupling between transverse

and longitudinal dynamics as in the recent investigations of emittance change [64–66]. In

this case, n = 3 and the focusing matrix κ(t) in Eq. (11) becomes a 3 × 3 matrix which

describes both sychrotron and betatron oscillations as well as possible coupling between

them. The envelop matrix w is 3 × 3 and satisfies Eq. (36) with R, m and κ being 3 × 3

matrices. The Twiss parameters α, β, and γ are 3× 3 matrices, the symplectic matrix M is

6× 6, and all the equations they satisfy are identical as in the case of 2-degrees of freedom.

Studies in these directions will be reported in future publications.
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Appendix: Lx(y)

In this Appendix, we derive the mathematical properties of the linear transformation used

in Eqs. (68) and (72). Let A and X denote n×n matrices. For a symmetric, positive-definite

matrix A, define the linear function associated with A on X as

LA(X) ≡ AX +XA .

We prove that LA is invertible. It is enough to show that LA is injective, i.e., LA(X) = 0

only if X = 0. Let X is in the kernel of LA, i.e.,

LA(X) = 0. (A.1)

Since A is symmetric, the eigenvectors of A form a basis for vectors in Rn. Expressed in this

basis, Eq. (A.1) is

λuv
TXu+ λvv

TXu = 0 , (A.2)

where u and v are any pairs of vectors in the basis, and λu and λv are the corresponding

eigenvalues, respectively. Because the eigenvalues of a positive-definite matrix are positive,

Eq. (A.2) is possible only when vTXu = 0. This proves that LA is invertible. In terms of its

components in this basis, L−1
A is given as

uTXv = uTY v

λu + λv
, (A.3)

where Y = LA(X).
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