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ABSTRACT
Cosmic Reionization On Computers (CROC) is a long-term program of numerical simulations of cosmic

reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all
relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to
100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper we
describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using
several sets (ensembles) of simulations in 20h−1 Mpc and 40h−1 Mpc boxes with spatial resolution reaching
125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between
6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson
optical depth at z < 6.
Subject headings: cosmology: theory – cosmology: large-scale structure of universe – galaxies: formation –

galaxies: intergalactic medium – methods: numerical

1. INTRODUCTION

Study of cosmic reionization has been highlighted by the
last decadal survey as one of the most promising areas of as-
trophysical research in the current decade. Progress in this
area directly influences many other fields of astrophysics,
from thermal evolution of the Lyman-α forest to properties
of early galaxies.

Because the observational constraints on reionization are
limited, theoretical modeling, including numerical simula-
tions, play a relatively larger part in reionization studies than
in many other fields of modern astrophysics. Historically,
simulations of reionization were mostly confined to two op-
posite limits: simulations of small spatial volumes with de-
tailed treatment of relevant physics, or large volume simula-
tions with simplified physical modeling (see Trac & Gnedin
2009, for a recent review). Both approaches suffer from seri-
ous limitations. Small box simulations can model individual
ionizing sources with sufficient physical detail, but fail to ac-
count for the large-scale correlations between them. Large
box simulations include these correlations, but, by ignoring
gas dynamics, are not able to model ionizing sources self-
consistently. The inability of the simulations to include all
relevant scales resulted in a recent surge in semi-numerical
and purely analytical approximate methods (Furlanetto et al.
2004; Furlanetto & Oh 2005; Choudhury & Ferrara 2005;
Furlanetto et al. 2006; Choudhury & Ferrara 2006; Zahn et al.
2007a; Mesinger & Furlanetto 2007; Alvarez & Abel 2007;
Shull & Venkatesan 2008; Zahn et al. 2011; Mitra et al. 2011;
Venkatesan & Benson 2011; Mesinger et al. 2011; Kuhlen
& Faucher-Giguère 2012; Alvarez & Abel 2012; Mitra et al.
2012; Zhou et al. 2013; Battaglia et al. 2013; Robertson et al.
2013; Kaurov & Gnedin 2013; Sobacchi & Mesinger 2014).

That’s where Moore’s Law comes to the rescue. The un-
relenting exponential increase in the supercomputing power
means that sooner or later the gap between small- and large-
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box simulations is going to be bridged. In fact, this time is
now - the new generation of supercomputing platforms that
have recently been and are planned to be deployed in the US4,
the so-called “peta-scale” platforms (since they get close to or
exceed 1015 floating-point-operations per second), are partic-
ularly suitable for large-scale simulations of reionization that
treat fully self-consistently the radiative transfer of ionizing
radiation and gas dynamics.

Taking advantage of this technological progress, we have
started a Cosmic Reionization On Computers (CROC) project
that aims, over the course of several years, to produce nu-
merical simulations of reionization that model fully self-
consistently (albeit not necessarily from the first principles)
all relevant physics, from radiative transfer to gas dynamics
and star formation, in simulation volumes of up to 100 co-
moving Mpc and with spatial resolution approaching 100 pc
in physical units.

In this first paper in a series, we focus primarily on the tech-
nical aspects of our simulations, such as the description of the
numerical method, simulation design, and the calibration of
simulation parameters. We present the original scientific re-
sults from our simulations in the subsequent publications.

2. NUMERICAL TOOLS

Our main simulation tool is the Adaptive Refinement Tree
(ART) code (Kravtsov 1999; Kravtsov et al. 2002; Rudd et al.
2008). The ART code is an implementation of the Adaptive
Mesh Refinement (AMR) technique with the Fully Threaded
Tree data structure (Khokhlov 1998). It includes a wide range
of physical processes that make it particularly suitable for
modeling cosmic reionization. Specifically, the current ver-
sion of the code includes the following physical ingredients
(in addition to standard ingredients of gravity, dark matter,
and gas dynamics).

Cooling and Heating of hydrogen and helium is computed
“on the fly”, taking into account all relevant processes in
a time-dependent manner, without any assumptions of pho-

4 For example, “Stampede” at Texas Advanced Computing Center,
“Kraken” at Oak Ridge National Lab, “Hopper” and “Edison” at Livermore-
Berkeley Lab, “Mira” at Argonne National Lab, “Blue Waters” at NCSA,
etc.
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toionization or collisional equilibrium. Abundance of heavy
elements is tracked self-consistently in ART, but, in a most
general case, computing the full dependence of the cooling
and heating functions on the incident radiation field is a com-
plex task in itself, and cannot be currently implemented ex-
actly in cosmological simulations, unless the radiation field is
constant in space (Kravtsov 2003; Wiersma et al. 2009).

Since the latter is not a reasonable assumption during reion-
ization or in the ISM of galaxies, ART uses an approximate
method of Gnedin & Hollon (2012) that allows to compute the
metallicity-dependent part of the cooling and heating func-
tions for an arbitrary time-dependent and spatially-variable
radiation field. ART, thus, is able to account for several physi-
cal effects that are missed in most other cosmological simula-
tions codes, such as suppression of cooling in strong radiation
fields, dependence of the LTE temperature on the radiation
spectrum, etc (see Gnedin & Hollon (2012) for some repre-
sentative examples).

Radiative Transfer of ionizing and ultraviolet radiation is
currently implemented in ART using the Optically Thin Vari-
able Eddington Tensor (OTVET) approximation of Gnedin
& Abel (2001). While OTVET is an approximation, it has
been extensively tested against exact schemes (Iliev et al.
2006a, 2009). The Iliev et al. tests underscored one unde-
sirable feature of the original ART implementation of the
OTVET method - excessive numerical diffusion around ion-
ization fronts. The implementation of the OTVET scheme in
ART was substantially revised after those tests, and the cur-
rently used approach eliminates numerical diffusion almost
completely; a full description of our current implementation
of OTVET is presented in Appendix C. Thus, OTVET re-
mains a highly suitable method for modeling cosmic reion-
ization (see Gnedin & Abel 2001, for detailed discussion of
the limitations and inaccuracies of OTVET).

In our simulations, we include ionizing radiation from stars
fully self-consistently (in a time-dependent and spatially-
inhomogeneous manner), because it is the primary driver of
the reionization process. Other sources of ionizing radiation
(quasars, recombination radiation from helium that can ion-
ize hydrogen, bremsstrahlung, etc) we only include in the
cosmic background, because these sources are either weakly
clustered (helium recombination radiation) or too rare to sig-
nificantly affect the radiation field in a typical region of the
universe (bright quasars). Both components - the radiation
from local sources and the radiation from distant sources (i.e.
cosmic background) - are treated separately in ART, and then
combined together to derive a single solution of the radiative
transfer equation (see Appendix C). The advantage of this ap-
proach is that it allows to account for the contribution of rare
sources (like quasars) to the cosmic background without ac-
tually requiring an impractically large simulation volume.

Contributions from helium recombination and
bremsstrahlung can be easily computed exactly. Our
model for the quasar contribution is presented in Appendix
A.

Of course, the cosmic background is only important if the
mean free path of ionizing photons is sufficiently large, so
that the radiation field from distant sources is comparable to
or above the radiation field from local sources at a typical lo-
cation in the universe.

Since we are running several independent realizations for
each set of numerical parameters, the post-reionization evolu-
tion of the IGM would not be captured correctly if we com-
puted the mean free path for the cosmic background from

within one simulation box - periodic boundary conditions will
extend that box over the whole universe, whereas it is sup-
posed to represent just one sub-volume of the universe, and
only the full set of independent realizations should be treated
as a numerical model for the whole universe. Hence, we use
the fit from Songaila & Cowie (2010) to account for Lyman
Limit absorptions in the cosmic background; the background
is then still subject to local absorptions inside shielded re-
gions, as captured by the radiative transfer solver in Equation
(C7). Radiation from local ionizing sources is absorbed fully
self-consistently with the actually simulated gas distribution
in the box (Eq. C4).

Molecular Hydrogen chemistry (both gas-phase and dust-
based) can be followed in complete detail in ART (Gnedin &
Kravtsov 2011). However, since spatial resolution of our sim-
ulations (& 100 pc) is too coarse to resolve the scale heights of
galactic disks, it would make little sense to use the full molec-
ular chemistry module in this work. Instead, we use the fitting
formulae of Gnedin & Draine (2014, in preparation), derived
from a large set of small-volume, high resolution simulations,
to reliably account for the environmental dependence of the
molecular gas on such ISM properties as dust-to-gas ratio or
local interstellar radiation field. These fitting formulae are
similar to the ones presented in Gnedin & Kravtsov (2011),
but they also account for the overlap of damping wings of
separate absorption lines in the Lyman-Werner band at high
molecular column densities.

Star Formation cannot yet be modeled from the first prin-
ciples in cosmological simulations, and needs to be imple-
mented with a phenomenological “sub-grid” model. In the
last several years an important observational advance has
been made in understanding star formation on galactic scales.
Both, local (Leroy et al. 2008; Bigiel et al. 2008; Bolatto et al.
2011; Bigiel et al. 2011; Leroy et al. 2012, 2013) and interme-
diate redshift (Genzel et al. 2010; Daddi et al. 2010; Tacconi
et al. 2013) observational studies find that the star formation
rate surface density on several-hundred-pc scales correlates
well, and approximately linear, with the surface density of
molecular gas. We use this observed correlation to define our
star formation recipe in an entirely empirical manner,

ΣSFR =
ΣH2

τSF
, (1)

where ΣSFR is the star formation rate surface density, ΣH2 is
the surface density of the molecular gas (including the contri-
bution of helium), and τSF is the molecular gas depletion time
scale. We ignore the slightly sub- or super-linear slopes some-
times found in observations, since with our resolution we are
only able to resolve a modest range of surface densities where
the difference between an exactly linear and a slightly non-
linear slopes is negligible.

The currently most widely accepted viewpoint is that the
depletion time scale τSF ≈ 1 − 2 Gyr for normal star-forming
galaxies. We use the value of τSF = 1.5 Gyr as fiducial, and
explore the effect of varying this parameter on our results be-
low.

Stellar Feedback is implemented in our simulations with the
current industry standard “blastwave” or “delayed cooling”
model (Stinson et al. 2009; Governato et al. 2010; Agertz et al.
2011; Brook et al. 2012; Agertz et al. 2013a; Stinson et al.
2013). While this model is purely phenomenological, it is
known to reproduce many of the observed properties of real
galaxies well, and, hence, is an appropriate numerical tool at
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present. The delay time-scale τBW is a parameter that we vary
as a part of the simulation calibration procedure. Our fiducial
value of τBW = 10 Myr is consistent with the usage of this
feedback model in the field.

Ionizing Radiation from Stars is the dominant contributor to
the global reionization process. The exact amount and spec-
trum of that radiation depend on stellar IMF and on local ab-
sorption inside the galaxy (usually quantified by “escape frac-
tions”). For our modeled stars we use a fixed Kroupa IMF; the
shape of the ionizing spectrum is adopted from Starburts99
modeling (Leitherer et al. 1999) and is plotted in Fig. 4 of Ri-
cotti et al. (2002a). The total UV and ionizing luminosities of
a single-age stellar population with mass m∗ and metallicity
Z∗ can be computed with Starburst99; we fit numerical results
with the following formula:

Lion = εUV1.04 × 10−4 m∗c2

Z0.1
∗ (1 + 0.27Z∗)

f (t),

where f (t) is such that∫ t

0
f (t) dt =

x
(
0.8 + x2

)
1 + x

(
0.8 + x2) ,

and x = t/(3 Myr). At late times (t � 10 Myr) the ionizing
emissivity from a single-age stellar population falls off with
time more rapidly than UV light. Our fit behaves in between
the ionizing and UV emissivities, since our OTVET imple-
mentation requires the same time-dependence of the source
function for all radiation bands; that ansatz causes at most a
few percent error.

The parameter εUV is unity for the unattenuated stellar out-
put. However, in a numerical simulation with finite spatial
resolution some of the absorptions are not accounted for. For
example, some of ionizing photons are absorbed in the parent
molecular cloud from which stars form, further absorptions
occur in the atomic ISM on scales below the effective resolu-
tion of the radiative transfer solver. To account for all of these
unresolved photon losses, we include the εUV factor and treat
it as a free parameters of our model.

Both, our star formation model and the model for ionizing
emissivity ignore Pop III stars, because it is well established
that they contribute little to the reionization of the universe
(Ricotti et al. 2002a,b; Wise & Abel 2008; Wise & Cen 2009;
Wise et al. 2012; Muratov et al. 2013a,b).

3. DESIGN OF THE SIMULATIONS

3.1. Resolution Requirements
The very first simulations of reionization (Gnedin & Os-

triker 1997; Gnedin 2000) demonstrated that, in order to ac-
count for all potential sources of ionizing radiation, all ha-
los that can cool via atomic hydrogen line cooling (Mtot &
109M�) need to be resolved. This conclusion was later con-
firmed by several other groups (Iliev et al. 2006b; Trac & Cen
2007; Zahn et al. 2007b; McQuinn et al. 2007; Trac et al.
2008; Pawlik et al. 2009) and is also consistent with the range
of masses for Local Group dwarfs (e.g. Kravtsov 2009, and
references therein). Such a requirement can be minimally sat-
isfied with the mass resolution of 5 × 106M�, which is equiv-
alent of resolving a, say, 20h−1 Mpc box (in comoving units)
with 5123 dark matter particles.

Because in ART the number of dark matter particles
throughout the simulation remains fixed, while cells of the
adaptive mesh are created and destroyed dynamically, it is

more convenient to quantify the resolution in terms of the
number of dark matter particles. Each simulation starts with
the same number of adaptive mesh cells as dark mater parti-
cles, to ensure the consistency of the mass resolution in two
main gravitating components. As the simulation proceeds, the
number of cells usually grows with time, so that by the end of
the simulation the number of cells is a factor of several higher
than the number of dark matter particles.

Our fiducial simulation series is presented in Table 1. Each
of the simulations in the series is run with additional 6 levels
of refinement, achieving the same cell size of 125 pc in proper
units at z = 6 (145 pc at z = 5), with the actual spatial resolu-
tion being a factor ∼ 3 worse. Such resolution is well matched
to the range of scales on which the star formation model given
by Equation (1) is observationally tested.

In this paper we only present results from 20h−1 Mpc and
40h−1 Mpc boxes. A simulation with the 80h−1 Mpc is cur-
rently feasible to complete on the largest available machines,
but it is sufficiently computationally expensive (requiring 20-
30 million CPU hours depending on the platform); with the
computational resources available to us, we will only be able
to afford one per year beginning with 2014.

3.2. Running Sets of Simulations
Even our largest “B80” simulations, with the 80h−1 Mpc

box size, will be only marginally large enough for obtaining
convergent results on the distribution of sizes of ionized re-
gions or on observable properties of high redshift galaxies.
Thus, in order to extend the reach of our simulations, we run
sets of independent realizations of initial conditions for each
particular choice of the box size and simulation parameters,
accounting for the cosmic variance on the scale of the box
size.

This variance is commonly referred to as the “DC mode”.
The ART code supports the DC mode in arbitrary cosmology
without any approximations, following the method described
in Gnedin et al. (2011). In fact, as has been shown in that
paper, if a set of independent realizations with a given box size
properly accounts for the DC mode, it becomes statistically
equivalent to a simulation with a several times larger box.

Table 2 lists all sets of simulations that we present in this pa-
per. We have performed several sets of 20h−1 Mpc that serve
as our primary parameter exploration data. Most of the sci-
ence results we extract from two sets of 3 independent real-
izations each of the 40h−1 Mpc box. We highlight in boldface
the simulation sets that we consider “fiducial” - in the next
section we justify that particular choice.

In order to distinguish individual realizations in each sim-
ulation set, we label them with capital letters. For exam-
ple, the fiducial 20h−1 Mpc set (B20.sf1.uv2.bw10) includes

TABLE 1
S P

Run Box size Resolution Number of
(comoving) (proper at z = 6) DM particles

“B20” 20h−1 Mpc 125 pc 5123

“B20HR” 20h−1 Mpc 72 pc 10243

“B40” 40h−1 Mpc 125 pc 10243

“B80” 80h−1 Mpc 125 pc 20483
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TABLE 2
C S S

Set Id τSF εUV τBW Stopping Number of
(Gyr) (Myr) redshift realizations

20h−1 Mpc boxes

B20.sf1.uv1.bw10 1.5 0.1 10 5 6 [A-F]
B20.sf1.uv2.bw10 1.5 0.2 10 5 6 [A-F]
B20.sf1.uv4.bw10 1.5 0.4 10 5 3 [D-F]
B20.sf1.uv2.bw40 1.5 0.2 40 5.7 3 [D-F]
B20.sf2.uv2.bw10 0.75 0.2 10 5.7 3 [D-F]
B20.sf2.uv2.bw40 0.75 0.2 40 7 3 [D-F]
B20HR.sf1.uv2.bw10 1.5 0.2 10 5.7 1 [B]

40h−1 Mpc boxes

B40.sf1.uv1.bw10 1.5 0.1 10 5 3 [A-C]
B40.sf1.uv2.bw10 1.5 0.2 10 5.5 3 [A-C]

six independent realizations A-F. A set B20.sf1.uv2.bw40
only includes 3 simulations D, E, and F, which have iden-
tical initial conditions to the simulations D, E, and F from
the fiducial set B20.sf1.uv2.bw10. Hence, we have the ability
to both compare simulations with identical initial conditions
but varied physical parameters (like B20.sf1.uv2.bw10.D and
B20.sf1.uv2.bw40.D) and simulations with identical physical
parameters but different realizations of initial conditions (like
B20.sf1.uv2.bw10.A and B20.sf1.uv2.bw10.B).

We also use comparison between 20h−1 Mpc and
40h−1 Mpc boxes as a rudimentary convergence test.
Since every computed physical quantity may have different
convergence requirements, we do not discuss numerical
convergence in a separate sub-section, but rather include such
discussion together with the calibration for each simulation
parameter.

4. CALIBRATION OF THE SIMULATIONS

4.1. Star Formation Model
One of the largest existing observational data sets on the

sources of reionization are the UV luminosity functions of
high redshift galaxies. Matching them would validate our star
formation and feedback models.

As our final simulation data, we combine the fidu-
cial 20h−1 Mpc and 40h−1 Mpc sets (B20.sf1.uv2.bw10 and
B40.sf1.uv1.bw10). Six independent realizations of the
20h−1 Mpc box are equivalent, by volume, to 0.75 of a sin-
gle 40h−1 Mpc box, increasing our fiducial set from 3 to 3.75
40h−1 Mpc boxes.

In order to predict UV luminosities of our model galax-
ies, we use the Flexible Spectral Population Synthesis (FSPS)
code (Conroy et al. 2010; Conroy & Gunn 2010). One com-
plication in computing stellar luminosities in far UV is a
proper account of cosmic dust. A fully self-consistent dust
model would require a complex and computationally expen-
sive ray-tracing through the simulated galaxies, and is beyond
the scope of this first paper. Instead, we adopt a simple but
reasonable dust obscuration model, which we delegate to the
appendix, as it has only modest effect on our results (and no
effect at all at z > 7).
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F. 1.— Ultraviolet galaxy luminosity functions from a combination of
simulation sets B20.sf1.uv2.bw10 and B40.sf1.uv1.bw10 at 6 different red-
shifts. Lines with bands show the average luminosity functions with the rms
variation over our effective 3.75 40h−1 Mpc boxes (the error of the mean is,
respectively, a factor of

√
3.75 = 1.9 smaller). Circles with error-bars are

a compilation of recent observational measurements (Bouwens et al. 2007,
2011; Oesch et al. 2012; Bradley et al. 2012; Schenker et al. 2013; Willott
et al. 2013; Oesch et al. 2013a; Bowler et al. 2013; Oesch et al. 2013b). Dif-
ferent redshifts are shifted vertically by 1 dex for clarity.

Figure 1 presents the primary result of this paper - the evo-
lution of the galaxy UV luminosity function between z = 10
and z = 5 from our simulations, and its comparison with the
existing observational measurements5. A simple star forma-
tion model of Equation (1) is able to reproduce the observa-
tions for all z > 5. The agreement becomes worse at low
luminosities at z = 5, and that is not particularly surprising
- since our simulations maintain the fixed resolution in co-
moving units, the spatial resolution degrades as simulations
evolve, and the feedback model becomes progressively less
accurate, especially in the low mass galaxies.

The sensitivity of our star formation model to the numerical
parameters τSF and τBW is explored in Figure 2. To compare
apples and apples, we use only 3 independent realizations D-
F from our fiducial set B20.sf1.uv2.bw10, and compare them
with simulation sets B20.sf1.uv2.bw40, B20.sf2.uv2.bw10,
and B20.sf2.uv2.bw40 (which only included 3 simulations D-
F each, and were only continued to z = 5.7, to save com-
putational resources). A longer time-scale τBW for delayed
cooling does have a significant effect on the simulated galax-
ies, but not a directly proportional one - luminosity functions
for the set B20.sf1.uv2.bw40 match the fiducial set very well
if shifted horizontally by about 0.5 magnitude, which corre-
sponds to only a factor of 1.6. The sensitivity of our star for-
mation model to the star formation time-scale τSF (or, equiv-
alently, to star formation efficiency) is stronger - a change in
τSF by a factor of 2 makes a similar 0.5 magnitude change of
the simulated luminosity functions, but the effect is still sub-
stantially sub-linear. Finally, since the two parameters have

5 The exact values of redshifts are matched to Hubble filters used in obser-
vations: z = 5.0, 5.9, 6.8, 8.0, 9.0, 10.0
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F. 2.— Ultraviolet galaxy luminosity functions for simulation sets with
varied parameters of the star formation model. The time-scale for delayed
cooling τBW and the depletion time τSF (i.e. star formation efficiency) do
affect the computed luminosity functions, but not a directly proportional way
due to well-known self-regulation of star formation.

opposite effects, a higher star formation efficiency (lower τSF)
can always be compensated by a stronger feedback (longer
τBW), as is illustrated by the set B20.sf2.uv2.bw40. That re-
sult should not be surprising at all - it is well established that
stellar feedback “self-regulates” star formation on kiloparsec
scales (Schaye et al. 2009; Agertz et al. 2011; Hopkins et al.
2011; Agertz et al. 2013b; Hopkins et al. 2013). The sensi-
tivity of our star formation model to numerical parameters is
somewhat higher than is usually found at lower redshifts, re-
flecting the fact that complete self-regulation takes some time
to get established; that is also consistent with prior work (e.g.
Schaye et al. 2009; Agertz et al. 2011).

Another observational constraint on our star formation
model is offered by the observed UV continuum slopes of
high redshift galaxies. To measure the UV continuum slopes
of model galaxies we compute the monochromatic fluxes at
1300Å, 1400Å, 1500Å, 1600Å, and 1700Å for our fiducial
B20.sf1.uv2.bw10 set6, and fit a power-law relation Fλ ∝ λβ
using a simple least-squares fit in a log-log plane. In Figure
3 we show the average UV continuum slopes measured from
our simulations and the rms scatter around them, as well as
observational measurements at z = 5 and z = 7. Our simula-
tions match the observed slopes at z = 5 rather well, but do
not reproduce the trend of bluer spectra of fainter galaxies at
z = 7.

The latter discrepancy is somewhat surprising, since by
matching the whole evolution of luminosity functions, our
simulations reproduce not only star formation rates at z = 7,
but the whole prior star formation histories of galaxies. Never-
the-less, it is possible to come up with several potential rea-
sons for the discrepancy: our dust obscuration model (Ap-
pendix B) may be over-simplistic, the FSPS code may not
be sufficiently accurate, as may be observational, broad-band

6 Such calculations would be too computationally expensive for all of
B40.sf1.uv1.bw10 simulations, and are not really needed.
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F. 3.— Ultraviolet continuum slopes of galactic SEDs for our simulated
galaxies as a function of UV luminosity (average - lines, rms - shaded). Red
circles show the observational constraints at z = 5 from Rogers et al. (2013),
while green squares with error-bars are z = 7 measurements from Bouwens
et al. (2010). We do not match the z = 7 slope gradient, and the reason for
the discrepancy is currently unclear.

based diagnostics for the true spectral slope; finally, we may
be lacking numerical resolution or the stellar feedback model
may be too crude to capture the variability of star formation in
the smallest galaxies. For all these reasons, we leave resolving
this apparent discrepancy to future work.

4.2. Ionizing Emissivity
Our star formation model, specified by parameters τSF and
τBW, appears to work reasonably well. The last remaining pa-
rameter in the simulations that needs to be calibrated is the
escape fraction up to the simulation resolution limit εUV. This
parameter can be calibrated with the observed spectra of high-
redshift quasars - ionizing emissivity of our sources is propor-
tional to εUV, and, therefore, the whole process of reionization
and its aftermath - the Lyα forest at z = 5 − 6 - is affected by
εUV.

In order to model absorption spectra of high-redshift
quasars, we compute synthetic Lyα spectra along 1000 totally
random lines of sight at several simulation snapshots. Since
simulations use periodic boundary conditions, we extend each
line of sight to twice the simulation box size - random lines
of sight in a periodic universe are only weakly affected by the
artificial periodicity if they do not extend beyond twice the
box length. For the 20h−1 Mpc box that corresponds to about
∆z = 0.15 at z = 6, which is a typical redshift resolution for
averaging properties of Lyα spectra in observed spectra (Fan
et al. 2006b).

In Figure 4 we show the evolution of the mean Gunn-
Peterson optical depth and the volume weighted mean HI frac-
tion in four of our simulation sets: three 20h−1 Mpc boxes
with εUV = 0.1, 0.2, and 0.4, and our fiducial 40h−1 Mpc box.
There are several conclusions that can be drawn from that fig-
ure.

Firstly, changing ionizing emissivity by a factor of 2
changes the moment of overlap of ionizing bubbles, indi-
cated by the sharp drop in volume weighted mean HI fraction
(Gnedin 2000, 2004; Gnedin & Fan 2006), by about ∆z ≈ 0.5.

Secondly, the opacity of the post-reionization Lyα forest
are best matched by εUV = 0.2 value independently of the box
size.
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F. 4.— Gunn-Peterson optical depth (top) and volume-weighted HI frac-
tion (bottom) vs redshift for four simulation sets: B20.sf1.uv1.bw10 (blue),
B20.sf1.uv2.bw10 (green), B20.sf1.uv4.bw10 (red), and B40.sf1.uv1.bw10
(black). Solid lines show the average quantities, while the shaded regions
for fiducial sets B20.sf1.uv2.bw10 and B40.sf1.uv1.bw10 span the limits of
variation among 6/3 independent realizations. Data points are from Fan et al.
(2006b).

Thirdly, and most importantly, we do not yet reach numeri-
cal convergence at the box size of 40h−1 Mpc - the fact that out
fiducial sets B20.sf1.uv2.bw10 and B40.sf1.uv1.bw10 have
different values of the εUV parameter, but similar reioniza-
tion histories, indicates that even 3 independent realizations
of a 40h−1 Mpc are not enough to obtain an accurate predic-
tion for the mean Gunn-Peterson optical depth or the volume
weighted mean neutral fraction.

Finally, our simulations do not match the observational
points at z & 6 particularly well. However, we do not con-
sider that a serious problem exactly for the third reason above:
our sets of simulation boxes sample the Lyα forest at each
redshift interval way better than the observational measure-
ments, and yet they are still far from convergence. Hence, the
observational values are not the converged results either, and
the discrepancy between the observational constraints and our
simulations does not necessarily imply a major failure of our
physical model, but may also be due to just cosmic variance.

Large cosmic variance is further illustrated in Figure 5,
where we show the average Gunn-Peterson optical depth and
the volume weighted mean HI fraction for all 6 independent
realization of our fiducial B20.sf1.uv2.bw10 set. As one can
see, the variations from realization to realization are very large
(recall, that the 20h−1 Mpc box is well-matched to the redshift
bin of observational measurement of ∆z ≈ 0.15), and two of
our realizations go through the observational points reason-
ably well.

The reason for such a large sensitivity to cosmic variance
is in the extreme non-linearity of the relationship between the
Gunn-Peterson optical depth τGP and the gas density, which
makes τGP extremely sensitive to outlayers. For example, con-
sider N lines of sight at some redshift during reionization, of
which only one has non-zero transmitted flux F1. The aver-
age flux over N lines is F1/N, and the corresponding Gunn-
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F. 5.— Average Gunn-Peterson optical depth (top) and volume-weighted
HI fraction (bottom) vs redshift for 6 independent realizations of the fiducial
set B20.sf1.uv2.bw10. Data points are from Fan et al. (2006b).

Peterson optical depth is

τGP = − ln (F1/N) = τ1 + ln N,

where τ1 is the Gunn-Peterson optical depth along that one
line of sight with partial absorption. In observations, typically
only a few lines of sight contribute to a given redshift bin,
i.e. N = 3 − 5. Hence, a single line of sight with τ1 = 10
(an observational value at z = 6.2) results in the measured
“average” of τGP ≈ 11.1 − 11.6, only slightly above τ1.

Based on this reasoning, we use only post-reionization
Lyα data (z < 6) for calibrating our simulations, and rely
on the derived volume-weighted mean HI fraction from Fan
et al. (2006b) as preferred calibration data, even if the Gunn-
Peterson optical depth is a directly observed quantity - 〈XHI〉V
is, effectively, a convolution over the whole distribution func-
tion of observed Lyα fluxes in individual spectral pixels, just
like τGP, but it is more sensitive to typical values of the trans-
mitted flux, while τGP is heavily weighted towards the tail of
the distribution. In that sense it is a less biased, even if less
direct, observational probe.

Hence, our preferred value for the parameter εUV is between
0.1 and 0.2 (with 0.2 matching observations better); the com-
putational expense of simulations (and lack of convergence
between 20h−1 Mpc and 40h−1 Mpc boxes) prevents us from
actually fitting for the value of εUV to higher precision.

5. CONCLUSIONS

Cosmic Reionization On Computers (CROC) project is a
long-term simulation campaign for modeling the process of
cosmic reionization in sufficiently large simulations volumes
(above 100 Mpc) with detailed physical modeling and spatial
resolution better than 0.5 kpc (simulation cell size of less than
150 pc).

A simple model of star formation and feedback, based on
the linear Kennicutt-Schmidt relation in the molecular gas and
a widely used “delayed cooling” or “blastwave” feedback, is
able to reproduce the observed galaxy UV luminosity func-
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tions in the whole redshift range z = 6 − 10 with a value for
the molecular gas depletion time of τSF = 1.5 Gyr, consistent
with observations at z ∼ 0 and z = 1 − 2.

A reasonable choice for the εUV parameter, a quantity that
describes photon losses on scales unresolved in our simula-
tions, of εUV = 0.1 − 0.2 results in reionization history that
is reasonably consistent with the observed opacity of the Lyα
forest in the spectra of SDSS quasars at z < 6. An even better
consistency can be achieved by fitting the simulations to the
data, albeit at (presently unrealistically) large computational
expense.

The observed increase in the Gunn-Peterson optical depth
at z > 6 (Fan et al. 2006b) has been interpreted by several
groups (including ours) as evidence for the reionization over-
lap (Becker et al. 2001; White et al. 2003; Gnedin 2004; Fan
et al. 2006a; Gnedin & Fan 2006). That increase is, however,
a subject to large cosmic variance; with 6 independent realiza-

tions, each corresponding to multiple lines of sight, we find a
spread in the redshift of overlap of about ∆z ≈ 1. Since the
observational constraints have even less statistical power than
our simulations, they have not yet converged on the true evo-
lution of the average Gunn-Peterson optical depth, and may,
therefore, be significantly biased.

We are grateful to Andrea Ferrara and Matthew McQuinn
for valuable comments and suggestions that significantly im-
proved the original manuscript.

Simulations used in this work have been performed on
the Joint Fermilab - KICP cluster “Fulla” at Fermilab, on
the University of Chicago Research Computing Center clus-
ter “Midway”, and on National Energy Research Supercom-
puting Center (NERSC) supercomputers “Hopper” and “Edi-
son”.

APPENDIX

MODEL FOR QUASAR SOURCES

For the intrinsic quasar SED we use our own fit to the Richards et al. (2006) model,

νLν ∝
9.5 × 10−5

(1 + (hν/300 eV))0.8 e−hν/500 keV + 0.1
(10 eV/hν)2.2(

1 + (9 eV/hν)5
)0.4 + 5.8e−hν/0.2 eV.

The evolution of the bolometric quasar luminosity function has been determined by Hopkins et al. (2007). We fit the quasar
bolometric luminosity density as a function of redshift as

LQSO(z) = 107.7 L�
Mpc3

([
e1.2(z−4)

]1/3
+

[
3e−2.7z

]1/3
)−3
,

and we use a k-correction of kion = 3.9 to translate from the bolometric to ionizing quasar luminosity.

DUST OBSCURATION MODEL

In this work we adopt a simple, but reasonable dust obscuration model for our simulated galaxies, in which the dust optical
depth at wavelength λ is estimated as

τλ = σD(λ)Z∗Neff , (B1)

where Neff is a parameter to be calibrated from the observational data, Z∗ is the stellar metallicity in solar units, and σD(λ) is the
dust cross-section at solar metallicity. For the specific extinction law, we take the SMC dust (Weingartner & Draine 2001), since
most of our simulated galaxies at z = 5 − 6 have metallicities similar to SMC, and normalize it to solar metallicity by assuming
the SMC metallicity of -0.7 dex (see Gnedin et al. 2008, for details),

σD(λ) = 1.76 × 10−21 cm2
(

1500Å
λ

)1.1

.

Figure 6 shows the observational constraints on the dust abundance in z = 5 and z = 6 galaxies from Bouwens et al. (2009).
Our simple dust obscuration model can roughly match these constraints with the value of Neff ≈ 5 × 1021 cm−2. At z > 7 the
observational constraints are consistent with no dust obscuration (Bouwens et al. 2009, 2011); to account for that we adopt an
extremely crude but simple ansatz for Neff :

Neff = 5 × 1021 cm−2 min (1,max (0, 0.5(8 − z)))

(Neff = 5 × 1021 cm−2 for z ≤ 6, Neff = 0 for z ≥ 8, and is linearly interpolated in between to avoid discontinuities). With that
ansatz the dust obscuration at z = 7 is not identically zero, but is small enough to be unimportant and undetectable observationally.

OPTICALLY THIN VARIABLE EDDINGTON TENSOR APPROXIMATION IN THE ART CODE

Two-field Ansatz for the Radiation Field
Consider a radiative transfer equation in the expanding universe, in comoving reference frame,

a
c
∂Jν
∂t
+ ~n
∂Jν
∂~x
−

aH
c

(
ν
∂Jν
∂ν
− 3Jν

)
= −kνJν + S ν, (C1)

where Jν(t, ~x, ~n) is the radiation specific intensity, kν is the absorption coefficient (per unit comoving distance), and S ν is the
source function (in appropriate units).
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F. 6.— Dust optical depth at λ = 1500Å vs galaxy AB magnitude at the same wavelength. Points with error-bars are the observational constraints from
Bouwens et al. (2009), while lines with bands are a combination of simulation sets B20.sf1.uv2.bw10 and B40.sf1.uv1.bw10. Different colors correspond to
redshifts in the rainbow order.

In the following, it is assumed that

A1 all sources have the same spectral shape, i.e. the frequency dependence of S ν can be factored out, and that

A2 sources are isotropic (S ν does not depend on ~n).

Both these assumptions can be relaxed, if necessary.
With these assumptions, we can write

S ν(t, ~x) = LνρS (t, ~x).

For example, for stellar sources, ρS (t, ~x) can be the mass density of massive stars.
In cosmological simulations, it is convenient to replace specific intensity Jν with two separate functions, fν and gν, as follows:

Jν = J̄ν fν + Lν(gν − ḡν fν), (C2)

where J̄ν is the spatially and angle averaged specific intensity (i.e. cosmic background), which satisfies the following equation,

a
c
∂J̄ν
∂t
−

aH
c

(
ν
∂J̄ν
∂ν
− 3J̄ν

)
= −k̄ν J̄ν + S̄ ν,

where we defined the mean absorption coefficient as radiation-field-weighted,

k̄ν ≡
〈kνJν〉

J̄ν
.

Analogously, ḡν is the spatially and angle averaged gν.
The reason to impose such an ansatz is to simplify the frequency dependence of the radiation field - in principle, one would

need to follow several hundred radiation fields, one for each frequency bins, in order to compute accurately most of ionization
and other chemical rates. This is not practical, obviously. Hence, the goal of ansatz (C2) is to concentrate most of the frequency
dependence in the pre-factors, and hope that both fν and gν depend on the frequency only moderately.

For example, one can imagine that the radiation field shining on a particular place in space is a combination of a contribution
of the cosmic background (perhaps, attenuated by additional local absorption) and the radiation from nearby sources (perhaps,
also attenuated by additional local absorption). In that case fν and gν would only have to account for the local absorption, and in
places where the local absorption is negligible, would become completely frequency independent.

The specific form of this ansatz is dictated by the need to satisfy the consistency condition, since Jν now depends on its own
average; averaging both sides of Equation (C2) over space and angles gives

J̄ν = J̄ν f̄ν + Lν(ḡν − ḡν f̄ν),

which can be satisfied if f̄ν = 1.
There are more than one way to introduce the ansatz similar to Equation (C2). That particular form, however, ensures that both

fν and gν remain always non-negative, which is a desirable property for a numerical implementation (as it avoids numerical loss
of precision).

Equation (C2) is nothing more than an ansatz, we replaced one unknown function with two, hence we can impose a condition
on these two functions. The condition we impose is that terms with fν and gν cancel out separately. In the following we drop
the frequency subscripts for brevity, all quantities except ρS remain functions of frequency. In addition, we adopt a Newtonian
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approximation for f and g, omitting terms with the Hubble parameter for them, but retaining cosmological terms for J̄ν (see
Gnedin & Abel 2001, for more detailed description of this approximation). With these simplifications, one obtains

f
[
−k̄ J̄ + S̄

]
− L f

a
c
∂ḡ
∂t
+ (J̄ − Lḡ)

D f
dl
+ L

Dg
dl
=

= −(J̄ − Lḡ)k f − Lkg + LρS , (C3)

where we use a shorthand
D
dl
≡

a
c
∂

∂t
+ ~n
∂

∂~x
for the derivative along the light cone.

The condition we impose is then
Dg
dl
= −kg + ρS , (C4)

which, in Newtonian limit (ignoring terms with 1/c) has a simple solution,

g(t, ~x, ~n) =
∫ ∞

0
dl ρS (t, ~x + ~nl)e−τ(~x,~x+~nl), (C5)

where τ(~x1, ~x2) is the optical depth between points ~x1 and ~x2,

τ(~x1, ~x2) = |~x1 − ~x2|

∫ 1

0
ds k

(
~x1 + s(~x1 − ~x2)

)
.

An even more familiar form is the angle average of g,

〈g〉(t, ~x) =
1

4π

∫
d3x′

ρS (~x′)

(~x − ~x′)2
e−τ(~x, ~x

′),

which is simply an integral of ρS /(4πr2) over all sources, diminished by the opacity between the source and the current location.
In particular, g is manifestly positive everywhere in the computational domain.

Using Equation (C4) in (C3), we find

(J̄ − Lḡ)
[

D f
dl
+ k f

]
= f

[
k̄ J̄ − Lρ̄S

]
+ L f

a
c
∂ḡ
∂t
.

Averaging Equation (C4) over space and angle results in

a
c
∂ḡ
∂t
= −〈kg〉 + ρ̄S .

Combining the last two equations together, we find

(J̄ − Lḡ)
[

D f
dl
+ k f

]
= f

[
k̄ J̄ − L〈kg〉

]
. (C6)

Finally, we can use Equation (C2) to compute the average absorption,

k̄ J̄ ≡ 〈kJ〉 = (J̄ − Lḡ)〈k f 〉 + L〈kg〉.

Substituting 〈kg〉 from the above equation into Equation (C6), we obtain the final equation for the function f ,

D f
dl
= −k f + f 〈k f 〉. (C7)

Equations (C4) and (C7) are our master equations for the cosmological radiative transfer. At this point no approximations have
been made except for the assumptions A1 and A2 above.

One undesirable property of Equation (C7) is that it numerically unstable. To see that, we can average it over space and angle,

a
c
∂ f̄
∂t
= 〈k f 〉( f̄ − 1). (C8)

Value f̄ = 1 is indeed a solution of this equation, but an unstable one: ∂ f̄
∂t > 0 for f̄ > 1 and ∂ f̄

∂t < 0 for f̄ < 1. To circumvent this
problem, we multiply the last term in equation (C7) by a function q( f̄ ),

D f
dl
= −k f + q( f̄ ) f 〈k f 〉, (C9)

where q(1) = 1. It is easy to show that, if q′(1) < −1, then Equation (C9) is numerically stable.
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A fiducial choice for q is

q(x) =
2
x
− 1,

but, in the future, other forms for that function need to be explored.

OTVET Approximation in the Two-field Ansatz
In Gnedin & Abel (2001) it is shown how to derive a single diffusion-like equation for the angle average of fields f and g.

Namely, if

Fν(t, ~x)≡
1

4π

∫
dΩ fν(t, ~x, ~n),

Gν(t, ~x)≡
1

4π

∫
dΩgν(t, ~x, ~n),

then (again omitting the frequency dependence for brevity)

∂G
∂ξ
=
∂

∂x j

1
k
∂Ghi j

G

∂xi

 − kG + ρS , (C10)

∂F
∂ξ
=
∂

∂x j

1
k
∂Fhi j

F

∂xi

 − kF + q(F̄)F〈kF〉, (C11)

where dξ = ĉ dt/(2a), ĉ ≤ c is the “reduced speed of light” (Gnedin & Abel 2001), and averaging in Equation (C11) is done over
the space (obviously, f̄ = F̄).

We choose Eddington tensors differently in Equations (C10) and (C11): for a cosmological simulation in a periodic box,
hi j

G is chosen as the optically thin Eddington tensor from all sources inside a periodic box, while the Eddington tensor for the
background radiation is taken to be isotropic, hi j

F = δ
i j/3.

Elliptic Solver for OTVET Diffusion-like Equation
Consider OTVET-type equation for some function E(ξ, ~x) and some tensor hi j(ξ, ~x),

∂E
∂ξ
=
∂

∂x j

(
1
k
∂Ehi j

∂xi

)
− kE + s, (C12)

where k(ξ, ~x) is the absorption coefficient and s(ξ, ~x) is the source term. This equation is discretized in some fashion in space
on a set of indicies {I}, where I may may an SPH particle number, a set of indicies (i, j, k) on a regular mesh, or any other
discretization. We assume that the discretization is such that all quantities EI , hi j

I , kI , and sI are co-located in space on the same
set of resolution elements {I}.

The discretization scheme is associated with a spatial scale ∆x (cell size on a regular mesh, SPH kernel size, etc). Each cycle
of the OTVET solver (for example, a time-step of a hydro scheme) consists of the set of consecutive iterations, which we label
as E(n)

I , where n = 0, 1, 2, ....
The second-order term in Equation (C12) is discretized as

∂

∂x j

(
1
k
∂Ehi j

∂xi

)∣∣∣∣∣∣
I
≈

1
∆x
D̂I[E; a],

where aI ≡ kI∆x is the dimensionless absorption coefficient and D̂I[E; a] is a linear operator on the set of all values EI ,

D̂I[E; a] =
∑

J

wI,J EJ ,

with the sum being over all indicies J. Dimensionless weights wI,J depend on various aI as appropriate, and most of wI,J are zero
because the second order term only has a finite support.

For example, for a regular mesh with I = (i, j, k),

D̂I[E; a] =
U x

i+1, j,k − U x
i, j,k

ai+1/2, j,k
+

U x
i−1, j,k − U x

i, j,k

ai−1/2, j,k
+

Uy
i, j+1,k − Uy

i, j,k

ai, j+1/2,k
+

Uy
i, j−1,k − Uy

i, j,k

ai, j−1/2,k
+

Uz
i, j,k+1 − Uz

i, j,k

ai, j,k+1/2
+

Uz
i, j,k−1 − Uz

i, j,k

ai, j,k−1/2
,

where ai+1/2, j,k = (ai, j,k + ai+1, j,k)/2 + ε, etc, and a small offset ε = 10−3 is added to avoid division by zero (we have verified it
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F. 7.— Left: Error in the position of the ionization front rI as a function of time in the Iliev et al. (2006a) Test # 1 for several numbers of iterations (as
indicated on the legend). About 30 iterations are sufficient to achieve the convergence. Right: Comparison of the old and new OTVET implementations in Test
1 of Iliev et al. (2006a). In the new implementation the I-front is sharper and it location is more accurate. This images are to be compared with Figure 6 of Iliev
et al. (2006a).

makes no effect on the actual solution). Fluxes U j are defined as

U x
i, j,k =Ei, j,khxx

i, j,k +
1
4

(
Ei, j+1,khxy

i, j+1,k + Ei, j−1,khxy
i, j−1,k + Ei, j,k+1hxz

i, j,k+1 + Ei, j,k−1hxz
i, j,k−1

)
,

Uy
i, j,k =Ei, j,khyy

i, j,k +
1
4

(
Ei+1, j,khyx

i+1, j,k + Ei−1, j,khyx
i−1, j,k + Ei, j,k+1hyz

i, j,k+1 + Ei, j,k−1hyz
i, j,k−1

)
,

Uz
i, j,k =Ei, j,khzz

i, j,k +
1
4

(
Ei+1, j,khzx

i+1, j,k + Ei−1, j,khzx
i−1, j,k + Ei, j+1,khzy

i, j+1,k + Ei, j−1,khzy
i, j−1,k

)
,

etc.
Let us define two new, iteration-independent, discretized quantities,

AI ≡
γ

1 + γ
(
βaI − wI,I

)
(wI,I < 0 is the diagonal term of the operator D̂I[E; a]) and

BI ≡ sI∆x − (1 − β)aI E
(0)
I ,

where α, β, and γ are constants.
Then one iteration of the OTVET elliptic solver consists of computing

d(n)
I = D̂I[En; a] − βaI En

i + BI ,

for all I, followed by updating EI as
E(n+1)

I = E(n)
I + αAId

(n)
I .

Numerical stability requires α < 1. A set of values that works particularly well is

α = 0.8,
β = 0.1,
γ = 1.

The left panel of Figure 7 shows the error in the propagation of the ionization front as a function of time in the Test #1 of Iliev
et al. (2006a). This is the most sensitive to the iteration count of all tests presented in Iliev et al. (2006a) and Iliev et al. (2009).
As one can see, about 30 iterations are sufficient to achieve 2% precision in the ionization front evolution, and mere 10 iterations
already give 5% precision. The right panel of the same figure shows the improvement in tracking the ionization front with the
new scheme. It should be compared with Figure 6 of Iliev et al. (2006a) - now the quality of OTVET solution approaches that of
the best ray-tracing schemes.
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