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Abstract

The coherent radiation emitted by an electron bunch provides a diagnostic
signal that can be used to estimate its longitudinal distribution. Commonly
only the amplitude of the intensity spectrum can be measured and the asso-
ciated phase must be calculated to obtain the bunch profile. Very recently
an iterative method was proposed to retrieve this phase. However ambigui-
ties associated with non-uniqueness of the solution are always present in the
phase retrieval procedure. Here we present a method to overcome the am-
biguity problem by first performing multiple independent runs of the phase
retrieval procedure and then second, sorting the good solutions by mean of
cross-correlation analysis. Results obtained with simulated bunches of vari-
ous shapes and experimental measured spectra are presented, discussed and
compared with the established Kramers-Kronig method. It is shown that
even when the effect of the ambiguities is strong, as is the case for a double
peak in the profile, the cross-correlation post-processing is able to filter out
unwanted solutions. We show that, unlike the Kramers-Kronig method, the
combined approach presented is able to faithfully reconstruct complicated
bunch profiles.
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1. Introduction

Short bunches are generated at photoinjectors such as the A0 photoin-
jector at Fermilab [1, 2], at X-ray Free Electron Lasers such as the Linac
Coherent Light Source (LCLS) at SLAC [3] and will be a key requirement for
high luminosity in the proposed International Linear Collider (ILC) [4]. At
the new ASTA photoinjector at Fermilab, now being commissioned, bunches
shorter than a picosecond will be created using a two stage compression
scheme [5]. Streak cameras are used to measure bunch lengths down to the
picosecond scale but shorter bunches require either electro-optical methods
[6], transversely deflecting rf cavities [7] or methods which use the coherent
radiation at infrared wavelengths emitted by the bunch. Such radiation can
have different sources such as synchrotron radiation, transition radiation,
and diffraction radiation to name a few. The radiation is coherent when the
wavelength is comparable or longer than the bunch length.
At the A0 photoinjector the coherent transition radiation (CTR) emitted
when the electron beam traverses a thin metallic foil has been used to de-
termine the longitudinal distribution of the electron beam. The distribution
is reconstructed from the measured amplitude and calculated phase of the
intensity spectrum. The phase calculation uses the Kramers-Kronig (KK)
method which relates the real and imaginary parts of the spectrum via a
Hilbert transform. While the KK method is relatively straightforward and
has been used extensively, see e.g. [8, 9, 10, 11, 12, 13], it has a few draw-
backs which will be discussed below. It is therefore useful to develop an
alternative technique to reconstruct the longitudinal distributions of short
electron bunches.

Very recently a different approach was proposed [14]. It is based on the
iterative retrieval of the phase from the knowledge of the measured amplitude
and imposing suitable constraints which must be satisfied by the longitudinal
bunch profile. This approach belongs to a much wider class of iterative meth-
ods that aim to indirectly measure a signal from the magnitude of its Fourier
transform [15, 16, 17]. By retrieving the missing phase in Fourier space, the
signal can be reconstructed unambiguously. In [14] such a procedure was em-
ployed to retrieve the longitudinal profile of simulated and measured CTR
spectra and a heuristic approach to optimize the iterative reconstruction was
given.
A fundamental issue with these iterative algorithms is that the underlying
mathematical problem is inherently ill-posed [18] meaning that a number 2N
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of unknown quantities (for instance amplitude and phase of the target func-
tion) must be reconstructed starting from only N measured values (i.e. the
amplitude of the spectrum). In practice though, under reasonable assump-
tions on the object function to be retrieved, the problem can be uniquely
solved in two or more dimensions [19] while fundamental ambiguities are still
present in the one-dimensional case [16, 18, 19].
This aspect was briefly discussed in [14], showing that in some cases of ex-
perimental significance, the solution is in fact unique. Nevertheless a more
general approach, able to deal with the ambiguities is desirable. This is the
subject of this paper, which aims to extend the results obtained in [14], dis-
cussing in greater detail the problem of uniqueness of the solution. We shall
show that this is extremely relevant when the longitudinal bunch distribu-
tion has more than a single peak. In this case the fundamental ambiguities
inherent to the 1D problem can play a non-trivial role.
We proposed an approach inspired from a similar procedure derived for x-ray
optics [20]. This method is based on the a posteriori selection of the results
of the reconstruction of different algorithm runs, starting from independent
random estimates. The selection is made on the basis of the cross-correlation
that each reconstruction displays with a reference one.
The paper is organized as follows: in Sec. 2 the basis of the KK method is re-
viewed and the limitations associated with it are discussed. Sec. 3 deals with
the problem of the ambiguities in iterative phase retrieval, while Sec. 4 is
devoted to the detailed description of our method. Sec. 5 reports the results
obtained with our method applied to simulated bunch profiles of character-
istic shape: Gaussian, Lorentzian and combinations of the two. The effect
of noise is also discussed here. The results related to measured bunch pro-
files at the A0 photoinjector are shown in Sec. 6 and discussed in Sec. 7.
Conclusions are drawn in Sec. 8.

2. The Kramers-Kronig method and its limitations

We briefly discuss the KK method here, more complete discussions can be
found in [9, 11]. Let s(z) denote the longitudinal distribution of an electron
bunch, then its Fourier transform (FT) is

S(ω) ≡ ρ(ω)eiφ(ω) =

∫

s(z) exp[i
ω

c
z] dz. (1)
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Here ρ(ω) and φ(ω) are the amplitude and phase respectively of the complex
function S(ω). The bunch form factor F (ω) is defined as

F (ω) ≡ ρ2(ω) = S(ω)S∗(ω). (2)

The form factor is related to the bunch intensity spectrum I(ω) via

I(ω) = I1(ω)[N + N(N − 1)F (ω)], (3)

where I1 is the spectrum of a single particle and N is the number of particles
in the bunch. In the limit of a large bunch population the intensity spectrum
of coherent radiation I(ω) ∝ F (ω) or equivalently the amplitude ρ(ω) ∝
√

I(ω).
Since S(z) is a causal function, the real and imaginary parts of its FT

are related by the Hilbert transform. Using this relation, the phase can be
written as the sum of two terms φ(ω) = φm(ω) + φB(ω) where φm is known
as the minimal phase and φB is known as the Blaschke phase. They can be
written as:

φm(ω) = −
2ω

π
P

∫

∞

0

dx
ln(ρ(x))

x2 − ω2
, φB(ω) =

∑

j

arg(
ω − ωj

ω − ω∗

j

). (4)

In the expression for φm, P denotes the Cauchy principal value while in the
formula for φB, ωj is the jth zero of S(ω) in the upper half of the complex
plane. Only the zeros nearby to the real axis have a meaningful impact on
the phase. When the zeros are far away, the Blaschke phase is linear in the
frequency but a linear frequency shift corresponds to a spatial translation of
the profile and does not affect the shape of the bunch. If there are no nearby
zeros, then the minimal phase is a useful approximation to the total phase.
It can be written in a form without the apparent pole-like singularity

φm(ω) = −
2ω

π

∫

∞

0

dx
ln(ρ(x)/ρ(ω))

x2 − ω2
. (5)

The bunch profile can be obtained from the minimal phase by an inverse
Fourier transform,

s(z) =
1

πc

∫

∞

0

ρ(ω) cos[φm(ω) −
ω

c
z]dω. (6)

For a Gaussian bunch, the minimal phase is linear in ω while for a general
asymmetric bunch profile, φm is nonlinear in ω.
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The KK method suffers from two main limitations: (i) the modulus of the
spectrum must be known in principle for all frequencies and (ii) the minimal
phase must be a good approximation to the total phase [11]. In practice one
needs to extrapolate the measured spectrum to very low frequencies [11] and
calculate the phase from Eq. (5).
The assumption of no nearby zeros is valid for Gaussian functions and com-
binations of Gaussians but it is not valid for other shapes with long tails such
as Lorentzians. For these shapes the Blaschke phase cannot be ignored and
approximating the phase by the minimal phase does not result in an accurate
reconstruction, as will be seen later. In a photoinjector with a bunch com-
pressor, the longitudinal profile can be far from Gaussian and it not clear a

priori that the minimal phase approximation will be accurate.
From the description above, the need for an alternative method is clear. The
iterative phase retrieval approach can offer such an alternative: it is valid
even in the presence of nearby zeros of S(ω) and can be more robust against
missing data. Nonetheless the iterative method also suffers from limitations,
which will be discussed in the next section.

3. Ambiguities in 1D phase retrieval procedures

Iterative phase retrieval methods have been applied to numerous 2D prob-
lems in optics and crystallography [21], electron microscopy [22] and x-ray
imaging [23]. They are well suited when the direct imaging of a sample is not
possible due to the lack of a suitable objective lens. For example, aberrations
of the objective may prevent imaging at the diffraction limit or the efficiency
of the objective lens makes a direct imaging procedure impractical.
The iterative method, in its original form is based on the fast Fourier trans-
form (FFT) routine to numerically propagate the wave front from the sample
plane to the detector plane and vice versa. The algorithm is constrained by
the measured data in the Fourier space, and by any available a priori infor-
mation in real space. Typically one imposes a ”support” constraint in real
space, namely imposing that the solution must be zero outside a certain re-
gion. Support information is in many cases sufficient to retrieve the phase and
the algorithm is very robust against noise and also missing information [24].
In most applications, phase retrieval algorithms aim at solving some imaging
problem and therefore are naturally implemented with 2D data. When a 1D
problem is to be treated, fundamental ambiguities in the solution do exist
[19, 16], which we will briefly describe in the following.
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Let s(t) = s(z/c) denote the bunch distribution in the time domain. It is
straightforward to prove that for any given real numbers t0 and α, the am-
plitudes of the FT of the functions s(t), s(t + t0), exp(iα)s(t) and s∗(−t)
are the same (the symbol ∗ denotes complex conjugation). In other words
if the distribution is changed with any of the above transformations , the
measured spectrum ρmeas(ω) will be unchanged. While a constant shift and
a constant phase are actually trivial ambiguities, the ambiguity between s(t)
and s∗(−t) is more complicated to handle. In imaging it represents the so
called ”twin-image” problem (see [25] for a recent review). This problem
corresponds to the stagnation of the iterative algorithm which is unable to
converge on either s(t) or s∗(−t) and keeps bouncing between a combination
of the two.
Fienup [16] reported iterative retrieval of 1D functions pointing out that de-
pending on the constraints applied, the 1D iterative procedure can have a
unique solution or multiple yet correlated solutions. The presence of corre-
lated solutions and the poor convergence due to the presence of twins is very
significant for the reconstruction of longitudinal bunch profiles, as the set of
possible solutions becomes very large. For instance when the distribution is
asymmetric and composed of multiple, partially overlapping peaks, the rela-
tive heights and widths of the peaks can be incorrectly reconstructed due to
the presence of twins of possible solutions.
Recently, a method was proposed to improve the reconstruction of a 1D sig-
nal from a single measurement of the magnitude of its FT [20]. The method
works in two steps. The first step is an iterative phase retrieval algorithm
employing known numerical strategies such as hybrid input-output or error
reduction [17]. This procedure is repeated many times with different inde-
pendent random choices of the initial phase φ(ω) and the corresponding set
of independent reconstructions is stored. At this point the second step is
taken, consisting in a post-selection of the reconstructions on the basis of
their cross-correlations with a reference reconstruction. The selected profiles
are then averaged to produce the final result. Therefore, while ambiguities
and poor reconstructions can still affect each individual solution, the post-
selection ensures that only the significant reconstructions are considered. In
the next section we describe in detail both steps of the method.
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4. Description of the method

In this section we describe the strategies to implement the iterative phase
retrieval procedure optimized for the measurement of an electron bunch pro-
file. As anticipated, the method is divided in two steps, the first consisting
of many independent runs of a suitable iterative phase retrieval algorithm,
followed by result post-selection.

4.1. Iterative phase retrieval algorithm

The aim is to reconstruct the electron bunch longitudinal distribution s(t)
from the knowledge of the measured spectrum amplitude ρmeas(ω). In reality
we deal with discrete arrays of data, therefore in the following we shall use
the discrete notation sj to denote the j-th element of the array s. Lower-case
symbols will denote arrays in real space (time domain) while capital letters
will indicate arrays in Fourier space (frequency domain) The iterations start
by defining a random array φ(0) and assign it as phase to the measured
amplitude, thus building the complex-valued spectrum at the zero-th iterate:
S(0) = ρmeas exp(iφ(0)). Then the following sequence is iterated:

1. Inverse FT the function S(0) to get the zero-th estimate of the bunch
longitudinal distribution s(0);

2. Impose the time domain constraints, by applying any a priori infor-
mation on the distribution, to get a new iterate of the time domain
function s(1);

3. Calculate its FT, to get a subsequent estimate in the frequency domain
S ′(1) and calculate its phase φ(1) = arg

(

S ′(1)
)

;

4. Update the frequency domain iterate by imposing the frequency domain
constraint (i.e. the measured data), S(1) = ρmeas exp(iφ(1));

The procedure is iterated until convergence is attained, i.e. the solution
does not appreciably change with further iterates. To monitor the quality
of the convergence two different figures of merit (FOMs) are used. The first
accounts for the variation of the time domain function between subsequent
iterates

∆k =
∑

j

|s
(k+1)
j | − |s

(k)
j |

|s
(k)
j |

(7)

We assume that the convergence is reached whenever ∆k becomes less than
some threshold value. In addition, a second figure of merit is employed
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defined as

ǫk =
∑

j

|S
(k)
j | − ρmeas

j

ρmeas
j

(8)

ǫk is used to monitor how close the kth estimate of the amplitude of the
frequency domain function – before applying the frequency domain constraint
– is to the measured data. By minimizing both figures of merit we ensure
that the algorithm is both converging and the solution is close to the actual
measured data.
The constraint in the time domain is imposed by using all types of a priori

information that are available for the problem under study. For the results
reported here we used a geometrical constraint, that means imposing the
bunch length cannot exceed a certain duration. Such duration – which we
call ”support” – is especially important to guarantee the convergence of the
algorithm. If it is too small the algorithm fails to converge because it cannot
find a suitable solution fitting within the support size. If the support is
too large it is likely that two or more ambiguous solutions are present at
the same time, resulting in a poor convergence [25]. The support can be
approximately estimated by the auto-correlation function associated with
the measured spectrum [26] but care must be used if the longitudinal bunch
distribution has multiple adjacent peaks or long tails, as we shall discuss in
the next section.
An additional simplification (that may be included as support) comes from
the nature of the function to be retrieved. The longitudinal profile of the
electron bunch has to be necessarily described by a real and positive function.
This fact reduces the ambiguity of Hermitian conjugation to a simpler time
reversal.
To update the solution at each step using the time domain constraints, we
used several cycles, each composed of a combination of hybrid input-output
(HIO) followed by error reduction (ER) algorithms [17]. The HIO is known
to ensure a faster convergence, being less prone to stagnations, while the ER
steps are beneficial in reducing the reconstruction errors.
A last remark concerns the possibility of dynamically updating the support
to closely follow the object reconstruction. This corresponds to the so-called
”shrink-wrap” algorithm [27] and it has been successfully adapted to the
phase retrieval applied to CTR [14] where the authors were able to reduce
the effects of ambiguities using this feature. This is indeed very beneficial
when the distribution is composed of a single pulse with short tails (such as
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a Gaussian) or multiple well separated pulses. In this case the procedure will
reduce the support size to the approximate size of the pulse (or the multiple
pulses) and the algorithm will converge easily to the right shape. As we will
discuss in the following, problems arise when the profile has long tails (as in
a Lorentzian profile) or it is composed of partially overlapping pulses. In this
case the support constraint cannot be very strict and the convergence of the
iterative procedure is generally poorer. Therefore in this study we did not
adopt a shrink-wrap option but introduced a solution-sorting procedure as a
second step.

4.2. Post-selection of the reconstruction results

This procedure closely follows the one described in [20] which we shall
summarize here. From the first step of the method we obtain a set of N inde-
pendent results, each result being contained in an array with size J . Let us
denote by sn

j the pixel j of the n-th result, where j = 1, ..., J and n = 1, ..., N .
We shall denote with sn the array n.
The aim of the post-selection procedure is to select the best results and aver-
age them, considering the figures of merit defined in the previous sub-section.
Associated with each result are the values ∆ and ǫ calculated with Eqs. (7)
and (8) respectively at the last step of each iteration run. The specific values
of these FOMs vary depending on the profile to be reconstructed, typically
values of ∆, ǫ . 10−3 indicate an acceptable convergence. If the values of the
FOMs fail to meet this criterion the results are discarded, so that the set of
N results obtained at the end will meet the required level of convergence.
The N results will be affected by ambiguities described above, the most im-
portant in our case being translation shift, time reversal or a mild problem
related to the presence of twins.
The key step at this point is to select the best solution obtained, seeking the
lowest value of ǫ, indicating that the modulus of the reconstructed function
in Fourier space is very close to the measured data. We then check that, as-
sociated with this solution, also that ∆ has a low value, indicating that the
algorithm did effectively converge. Typically when ǫ is small, ∆ is also small,
while the converse is not always true, i.e. it is possible for the algorithm to
converge to the wrong solution. The solution having the smallest value of ǫ is
chosen as the reference reconstruction, denoted by sR in the following. Every
other solution is quantitatively compared to the reference by calculating the
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cross-correlation:

cn
h =

∑

j sR
j sn

j+h
(

∑

j |s
R
j |

2
)1/2 (

∑

j |s
n
j+h|

2
)1/2

. (9)

The cross correlation is calculated for each solution as a function of the
relative shift h. This procedure is necessary to account for any shift ambiguity
that might be present. In practice h is a cyclic shift, i.e. one always considers
(j + h) mod J .
To account for the time reversal ambiguity a second cross correlation array
is also computed:

c̄n
l =

∑

j sR
j sn

J−j+l
(

∑

j |s
R
j |

2
)1/2 (

∑

j |s
n
J−j+l|

2
)1/2

. (10)

In Eq. (10) each array is reversed before computing the cross correlation. In
order to choose between ambiguous solutions one compares the cross corre-
lations in Eqs. (9) and (10). In practice, denoting with h̄ and l̄ the values of
the shift that maximize Eqs. (9) and (10) respectively, this corresponds to
seeking the maximum between cn

h̄
and c̄n

l̄
:

pn = max
(

cn
h̄, c̄n

l̄

)

. (11)

The value of pn indicates how well a solution is correlated with the reference.
Therefore only solutions that after this procedure have a high correlation
(say pn ≥ 0.9) are averaged.

5. Phase retrieval of simulated spectra

We performed the phase retrieval with the procedure described in the pre-
vious section using simulated spectra of three representative distributions:
Gaussian, Lorentzian and different superpositions of the two. All profiles
were simulated using 4096 data points.
The Gaussian case is the easiest and a very good reconstruction can be ob-
tained both with the KK method [10] and with the phase retrieval method
[14], as shown in Fig. 1a. The Gaussian has been simulated using rms width
σ =70 and its maximum amplitude value was set to unity.
On the contrary, the reconstruction of a Lorentzian pulse is non-trivial in both
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scenarios, but for different reasons. The complex spectrum associated with
a Lorentzian distribution has zeroes in the upper half complex plane close to
the real axis, therefore the KK method (based on the minimal phase) is not
able to reconstruct the pulse shape properly. At the same time a Lorentzian
curve has long tails, comparatively longer than a Gaussian. This fact makes
the phase retrieval reconstruction based on geometrical support constraint
also problematic, as the approximation of time-limited (bound) signal is not
completely met.
A satisfactorily reconstruction is attained by increasing the size of the sup-
port (compared to the FWHM of the pulse). This improves the convergence
even though some distortion is still present in the pulse tails, as evident from
Fig. 1b. The FWHM of the simulated Lorentzian was w =50.
When a random noise is added to the pulse, the performance of the iterative
algorithm is still robust. Fig. 1c shows the Gaussian case with noise. It is
worth noting that the KK reconstruction, which works well for a noiseless
Gaussian, has some issues when noise is added. This is not surprising consid-
ering that the spectrum amplitude is no longer a smooth analytic function,
so the Hilbert transform relation between the amplitude and phase can only
be approximately true. Using the iterative procedure, the retrieved profile
with noise always appear smoother due to the averaging during the post-
selection process. These observations are confirmed when a Lorentzian pulse
with noise is simulated (Fig. 1d). The iterative algorithm is still capable of
reproducing the tails of the pulse correctly, while still displaying a slightly
larger width.

In Fig. 2 the retrieved shapes from simulated spectra related to double
pulses are shown. The simulated bunches contain different superpositions of
a Gaussian and a Lorentzian shape with different degree of overlap, which
can be typical of many experimental situations. In all cases we considered a
Gaussian with σ =70 and a Lorentzian with width w =50. The maximum
value of the Gaussian was set to 60% of the corresponding value for the
Lorentzian and the maximum height of the whole profile has been normalized
to unity. We studied the effect of varying the separation between the pulses
and compared the results from the iterative reconstruction to those with the
KK method.
Fig. 2a shows the reconstruction obtained when the distance between the

centers of the peaks is 40. In this case the profile appears rather asymmetric
with different tails. The iterative reconstruction is very close to the input
profile, while an evident discrepancy appears for the KK reconstruction. A
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Figure 1: Plots of the simulated profile (cyan), reconstructions using the KK method
(blue) and the iterative phase retrieval (red). (a) Gaussian profile. (b) Lorentzian profile.
(c) Gaussian profile with noise. (d) Lorentzian profile with noise.

similar conclusion can be drawn from Fig. 2b where the separation between
the peak centers is 100 but the two peaks are still partially overlapping. A
value of 200 for the peak separation has been chosen for the results shown
in Fig. 2c, without noise, and in Fig. 2d, with noise, respectively. In this
case the overlap between the pulses is much reduced and detrimental effects
of time reversal ambiguities appear to be stronger. In particular the relative
heights of the peaks is not correctly reproduced and, when noise is present,
distortions in the tails do appear.

6. Experimental profiles at the A0 photoinjector

The data used here were taken at Fermilab’s A0 photoinjector during
2011. This was during a period when the Tevatron collider was operational
and liquid helium was available for a 9-cell superconducting cavity in the
beamline. We describe the experimental setup briefly here, more complete
descriptions can be found in [28, 29, 30, 31]. Electron pulses are generated
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Figure 2: Plots of the simulated profile (cyan), reconstructions using the KK method
(blue) and the iterative phase retrieval (red). The profiles are the sum of a Gaussian with
σ = 70 and a Lorentzian with width w = 50 (see text). The distance d between the peak
centers is varied (a) d = 40. (b) d = 100. (c) d = 200. (d) d = 200 with noise added.
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with a CsTe photo-cathode within a 1.3 GHz rf gun and then accelerated
with a 1.3GHz superconducting rf cavity to an energy of about 15 MeV.
Bunch charge could be varied over the range 250pC - 1nC. A transverse to
longitudinal emittance exchange (EEX) section consisting of a transverse de-
flecting mode cavity placed between two doglegs could be used to vary the
bunch length by changing quadrupole settings upstream of the EEX [30]. In
addition, the bunch length could also be controlled by varying the off-crest
rf phase (aka energy chirp) in the 9-cell accelerating superconducting cavity
which was upstream of the EEX section. Downstream of the EEX, the beam
passed through a thin metallic foil (Al coating on Si substrate) generating
coherent transition radiation (CTR) in the process. The radiation entered a
Martin-Puplett interferometer which uses a a polarizing splitter to send the
radiation along two orthogonal arms with mirrors at the ends. The mirrors
change the polarizations and the beams after reflection are recombined using
the same splitter and then sent to two pyroelectric detectors after being split
again with another polarizing splitter. One of the arms is movable so the
path length between the interfering beams can be varied. An interferogram
or auto-correlation function C(t) is obtained from the intensity in the de-
tectors; measured as a function of t = ∆z/c where ∆z is the path length
difference from the central beam splitter to the two mirrors. The real part
of the Fourier transform of the auto-correlation function yields the intensity
spectrum I(ω). The detector’s response is frequency dependent and is limited
at low frequencies by the thickness of the pyroelectric crystal. Consequently
the measured response drops to zero at frequencies below about 0.1 THz.
This is corrected during post-processing with a parabolic fit which smoothly
extends the response to zero frequency [29]. We use the corrected intensity
curves in the following.

Figure 3 shows the reconstructed profiles from measurements taken over
four different days. In these measurements, the bunch length was varied only
by changing quadrupole settings upstream of the EEX and no energy chirp
was applied. Both the KK and the iterative profiles are shown in Fig. 3 and
they are scaled to the same peak height for ease of comparison.

On another day, the effect of an energy chirp on the bunch length was
measured by varying the off-crest rf phase. The coherent synchrotron radia-
tion (CSR) emitted in the second dogleg was monitored and at the maximum
compression (17◦ off-crest) the CSR power reached its peak value. A discus-
sion of this measurement and the CSR emitted by these bunches can be
found in [31]. The auto-correlation function was measured with the chirp
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Figure 3: Reconstruction of experimental data with iterative algorithm (red) and with the
KK method (blue). Data were taken in 2011 and on different dates: (a) May 9, (b) Aug
24, (c) Aug 25, (d) Oct 5
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Figure 4: Measured auto-correlation function of two pulses, data taken on July 1, 2011.
The data were taken with additional bunch compression using a rf chirp (red) and also
without the chirp (blue). See the text for a more detailed description.

set at maximum compression and also without any chirp and are shown in
Fig. 4. As expected, the auto-correlation with the chirp has a significantly
smaller full width at half maximum (FWHM).
Figure 5 shows the reconstructed profiles of these two cases, both with the
iterative and the KK method. Again, the profiles have been scaled to the
same peak height.

7. Discussion of reconstruction results

It is instructive to compare the quality of the reconstructions of simulated
profiles to understand the merits and limitations of the iterative algorithm
plus post-selection, over the KK method. Both the new method and the KK
method perform very well for the reconstruction of the Gaussian profile alone
– Fig. 1a. The FWHMs from the two methods are shown in Table (7).
The new method presented here tends to overestimate the FWHM while a
slight under-estimate result from the KK. The reason for the over-estimate
lies in the post-selection procedure. While averaging the best correlated so-
lutions, a residual translation shift between them will result in an overall
larger average. Nevertheless the effect is relatively small (∼ 3%) and of little
importance under normal circumstances.
The same effect is more significant in the reconstruction of the Lorentzian
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Figure 5: Reconstruction of experimental data taken on July 1, 2011 with the iterative
method (red) and the KK method (blue) (a) Compressed pulse with chirp, (b) Pulse
without chirp.

bunch, shown in Fig. 1b. The overestimation of the peak width is com-
paratively larger here because, in order to correctly reproduce the long tails
typical of the Lorentzian, the geometrical support constraint must be loos-
ened, and this in turn produces a poorer localization of the peak. Therefore
when averaging the results the presence of this residual shift ambiguity is
more significant and yields a larger overestimation of the width. Neverthe-
less the profile shape closely follows the correct profile. The KK method
on the other hand produces a steep vertical slope on one side and a more
slowly falling slope on the other side. These effects, arising from ignoring the
Blaschke phase, seems to be characteristic of the KK method when recon-
structing profiles with long tails, like Lorentzians.
From this discussion we conclude that the support size is an extremely crit-
ical parameter, when reconstructing a bunch with long tails. We chose the
optimal support size by seeking the best reconstruction in preliminary runs of
the algorithm. If the support is too small compared to the profile width, the
algorithm fails to converge and secondary small peaks may appear. Quantita-
tively this is manifested by both FOMs ǫ and ∆ failing to decrease. Therefore
the procedure is to increase the support size, which automatically produces
smaller value of ∆ (i.e. increasing the support size makes the time domain
constraint less and less effective). Therefore the optimal support size, on av-
erage, guarantees a low value of ǫ while avoiding stagnation of the algorithm.
The case of a double pulse is more convoluted. When two or more peaks
are present, the time reversal ambiguity plays a much more critical role. In-
correct reconstructions often contain twins resulting in a larger number of
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Table 1: FWHM of the simulated profiles, compared with one reconstructed by KK method
and iterative retrieval.

Profile type FWHM input FWHM KK FWHM iterative
Gaussian 165 163 170

Lorentzian 50 64 68
Gaussian w noise 165 160 170

Lorentzian w noise 50 68 64

peaks or in an incorrect estimation of the peak heights and widths. In this
case the solution sorting procedure is a key factor in filtering out incorrect
reconstructions.
The comparison in Fig. 2, between the iterative reconstruction and the KK
method shows that the former always produces a result much closer to the
input profile. Specifically, the peak positions are always correctly estimated.
Nonetheless the quality of the reconstruction critically depends on the peak
separation. The iterative reconstructions are extremely close to the simu-
lated profiles for small peak separation (see Fig. 2 a and b) while becoming
worse when the separation increases. Notably the relative peak height is not
faithfully reproduced. The dip between the peaks is more correctly repro-
duced with the iterative reconstruction.
It is worth noting that the cases studied here – either a Lorentzian profile
or the partially overlapping peaks – are generally hard to tackle with al-
gorithms of the kind of “shrink-wrap”. The double peak case is especially
complicated as the shrink-wrap is able to restrict the support to the total
extent of the profile, but ambiguities can still be present in reconstructing
the position/width of each individual pulse.

The comparison of the experimental profiles in Fig. 3 shows similarities
and differences that are consistent over the measured profiles. Table 7 shows
the FWHMs from the two methods for the experimental profiles. Profile
(a) from May 9 is seen to have only a single peak in both reconstructions.
As before, the KK profile shows a very steep slope at the head of the pulse
while the iterative profile builds up more gradually. This feature is repeated
in all the measured profiles and was also seen in the simulated profiles of
Figs. 1 and 2. The iterative profiles have higher secondary peaks in cases
(b),(c),(d) in Fig. 3 and do not have the multiple small peaks in the tail
when compared to the KK profiles. If real, these small peaks in the profile
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Table 2: FWHM of the KK profiles compared with the FWHM from iterative retrieval.
In the case of bunches with multiple peak, the FWHM is relative the highest peak.

Profile date FWHM KK [ps] FWHM iterative [ps]
May9 1.2 1.2

Aug 24 0.8 1.1
Aug 25 0.6 0.8
Oct 5 0.6 1.2

Jul 1, with chirp 0.8 0.5
Jul 1, no chirp 1.4 1.5

tails would indicate high frequency micro-structure These are unlikely to be
present in the A0 photoinjector bunches given the relatively low charge and
the lack of external excitations. It is therefore possible that the iterative
reconstruction avoids the appearance of unphysical micro-structure, but this
needs to be verified with detailed studies in the ASTA photoinjector.
Comparing the profiles in Fig. 5, we find that both methods show that
the chirp reduced the pulse width relative to the unchirped case but the
iterative profile is narrower. The KK profile does not show that the additional
compression with the chirp reduced the FWHM compared to profiles obtained
without chirp on other days, e.g. compared to the profiles seen in Figs 3c and
3d. The iterative profile on the other hand shows that the chirp results in
the smallest FWHM among all profiles. This corresponds nicely to the auto-
correlation function (seen in Fig 4) of the chirped pulse which also had the
the smallest FWHM amongst all auto-correlations considered here. This is
again suggestive, but not definitive evidence, that the iterative reconstruction
may be more accurate.

8. Conclusions

We have described a two-step iterative phase retrieval method to recon-
struct the phase of the spectrum from the measured spectrum amplitude.
In the first step, multiple reconstructions are performed with different initial
random phases. During each reconstruction, constraints in frequency space
and real space are applied successively. Only those solutions are kept which
are both sufficiently close to measured spectrum amplitude and have a high
rate of convergence. In the second step, a post selection method using cross-
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correlations is employed to remove ambiguities related to translation and
reversal in real space. The final solution is obtained by averaging over the
solutions surviving the post-selection step. The post-selection is crucial in
removing these troublesome ambiguities that are common with complicated
profiles such as those with multiple peaks.

In applying this procedure to Gaussians, Lorentzians, sums of Lorentzians
and Gaussians, we found that this iterative method is able to retrieve the
profiles with reasonable accuracy and much more faithfully than the Kramers-
Kronig method based on the minimal phase. The latter method is known to
be inaccurate for profiles with long-tails such as Lorentzians. When applied
to experimental data taken at the A0 photoinjector, the iterative method
yielded profiles without some of the unphysical features in the profiles of the
minimal phase KK method.

The major drawback of the iterative method at present is its iterative
nature, so it takes longer and requires some trial and error before the opti-
mal solution is found. With some additional work, this procedure could be
automated and made available in control room applications.
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