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ABSTRACT
We discuss the role of recombinations in the IGM, and the related concept of the clumping factor, during

cosmic reionization. The clumping factor is, in general, a local quantity that depends on the local over-density
and the scale below which the baryon density field can be assumed smooth. That scale, called the filtering
scale, is itself depended on over-density and local thermal history. We present a method for building the self-
consistent analytical model, which accounts for all these effects. We show that taking into account the local
clumping factor introduces significant corrections to the total recombination rate, comparing to the model with
a globally uniform clumping factor.
Subject headings: cosmology: theory – methods: analytical – intergalactic medium

1. INTRODUCTION

Studying cosmic reionization is first and foremost a count-
ing exercise. Ionizing photons are being produced in sources,
used up to ionize fresh hydrogen (in this paper we focus on
hydrogen reionization, although helium reionization is qual-
itatively similar), and are being wasted in ionizing those of
hydrogen atoms that managed to recombine after the first ion-
ization. It is these, wasted photons, that are the subject of this
study.

Let us consider some region of the universe, and let Ni/H
be the number of ionizations per hydrogen nucleus required
to keep the region ionized. If we ignore recombinations, then,
obviously, Ni/H = 1. With recombinations

Ni/H(t) = 1 +

∫ t

0

dt
t̄rec
, (1)

where t̄rec is the average recombination time in the region.
If now Nγ/H is the number of hydrogen ionizing photons per

one hydrogen nucleus in this region that are either produced
inside the region or arrive into it from the external sources,
then the condition for the region to be reionized is simply

Nγ/H = Ni/H. (2)

Perhaps not surprisingly, this simple equation encapsulates
most of existing models of reionization. For example, the
original Furlanetto et al. (2004) model is a limiting case of
Equation (2) with Ni/H = 1 and Nγ/H set as a fraction of all
matter in the region that is collapsed into virialized objects
times some photon production efficiency factor,

Nγ/H ≡ ζmcoll/mtot = 1.

Another commonly used model of reionization by Madau
et al. (1999a) is obtained from Equation (2) by differentiating
with respect to cosmic time t the both sides of the equation,
averaged over the probability QH II that the region is ionized,

d
dt
〈Nγ/HQH II〉 =

dQ̄H II

dt
+

1
t̄rec

Q̄H II.

1 Department of Astronomy & Astrophysics, The University of
Chicago, Chicago, IL 60637 USA; kaurov@uchicago.edu

2 Particle Astrophysics Center, Fermi National Accelerator Laboratory,
Batavia, IL 60510, USA; gnedin@fnal.gov

3 Kavli Institute for Cosmological Physics and Enrico Fermi Institute,
The University of Chicago, Chicago, IL 60637 USA

Yet another commonly used model of Miralda-Escudé et al.
(2000, see their Equation (5)) is a generalization of Equation
(2) with an additional term on the right hand side that accounts
for ionizing photons stored in the cosmic background radia-
tion and that expands the recombination time as an integral
over the density PDF.

Given a source model, Nγ/H can be computed. The chal-
lenge of modeling the spatially inhomogeneous reionization
is then in accounting for recombinations in the second term
of Equation (1). In principle, one can model the average re-
combination time over any spatial region. In practice, this
is virtually impossible because recombinations take place in
greatly varied physical conditions.

Some of the ionizing photons that leave the surface of a
massive star or the accretion disk around a black hole will
be lost in the ISM of the parent galaxy. Following such re-
combinations is a nightmare, as it would require detailed ISM
models of high redshift galaxies and quasars. Therefore such
recombinations are commonly treated not as actual recombi-
nations, but as imperfect escape of ionizing photons from the
source, and quantified by the escape fraction - i.e. these re-
combinations are moved to the left-hand-side of Equation (2).
It is useful to remember, however, that the escape fraction ac-
tually quantifies (a portion of) photon loss due to recombina-
tions.

After leaving the source, escaped ionizing photons move
through space. Some of these photons will be expended on
ionizing fresh hydrogen atoms (a unity factor in Equation 1);
most of those that manage to fly unimpeded for a mean-free-
path will be absorbed by Lyman Limit systems (LLS). Ab-
sorptions in LLS are also recombinations, but just like the
photon loss in the source ISM, it is cumbersome to account for
them by actually counting recombinations. Instead, it is more
convenient to treat the effect of LLS as the finite mean-free-
path for ionizing photons (Miralda-Escudé 2003; Songaila &
Cowie 2010). In the language of Equation (2) these recom-
binations are again counted as a reduction in Nγ/H - photons
from not all distant sources can reach a given place in the uni-
verse, but only from those located no more than a mean free
path away.

Yet, there will be some atoms in the general IGM that
will recombine, and these extra recombinations should be ac-
counted for by the second term of Equation (1). Hence, Equa-
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tion (1) can be written as

Ni/H(t) = 1 +
1

NH

∫ t

0
dt
∫

V
α(T )nenH IIdV, (3)

where NH is the total number of hydrogen nuclei (ionized
and neutral) in the volume V . Because the volume integral
in Equation (3) cannot be evaluated directly without a highly
detailed numerical simulation, it is often parametrized by a
clumping factor CHII,

Ni/H(t) = 1 +

∫ t

0
dtαACHII(t,V )〈ne〉V 〈xH II〉M, (4)

where αA is some reference value for the recombination rate,
and 〈〉M,V denote mass and volume average over the volume V
respectively. The definition of CHII then simply follows from
the comparison of Equations (3) and (4),

CHII(t,V )≡ 〈α(T )nenH II〉V
αA〈ne〉V 〈nH II〉V

.

Hereafter, we choose the case-A recombination coefficient
at T = 20,000 K as our reference recombination rate,

αA = 2.51×10−13 cm3/ s.

In the Appendix (§A) we show that during reionization case
A recombination photons are mostly redshifted out of reso-
nance, and therefore the case A recombination coefficient is
the proper choice for modeling reionization.

Changing αA rescales the clumping factor. Notice, how-
ever, that in the limit of the perfectly homogeneous universe
the clumping factor CHII is not necessarily 1, since it depends
on the actual recombination rate that may be different from
the reference value. In particular, CHII can be less than 1 if
α(T ) is below αA.

The paper is organized as follows. In the §2.1 we briefly
describe the analytical model of reionization first introduced
by Furlanetto et al. (2004) and the extension of this model by
Kaurov & Gnedin (2013), which is important for this paper.
In §2.2 the usual notation of the clumping factor is presented
and compared with our approach. In §2.4 we describe how
the local clumping factor can be implemented. We show the
results in §3 and in the last section §4 we conclude.

2. METHOD

2.1. Analytical model of reionization
We use the analytical model of the epoch of reionization by

Furlanetto et al. (2004), which is based on the excursion set
formalism. It provides information not only about the global
ionization history, but also about the distribution of sizes of
ionized bubbles. In Kaurov & Gnedin (2013) this model was
extended in order to match the actual observed galaxy lumi-
nosity functions, to account for galaxy biasing, and for ab-
sorption by LLS. We also included tracking of merging of
separate ionized bubbles, which is necessary for the calcula-
tion of the recombination rate.

The main ingredient of any model of reionization is a model
for the escape fraction of ionizing photons. We use a simple
model with only two parameters – the minimum mass Mcrit
and the amplitude fesc,rel,0,

fesc,rel(M) =
{

fesc,rel,0, M >Mcrit

0, M ≤Mcrit.
(5)

Note, that since the observed UV galaxy luminosity functions
serve as the direct input of our model, we only need to know
the relative escape fraction, i.e. the ratio of the escape fraction
of ionizing photons to that of the UV photons.

Throughout this paper we adopt the values fesc,rel,0 = 0.2 and
Mcrit = 109. Also we use the source model and Lyman Limit
systems abundance same as in Kaurov & Gnedin (2013). Ac-
counting for bubble merging allows us to track the informa-
tion about the moment of ionization at each point in the uni-
verse, and, therefore, implicitly calculate how many recombi-
nations took place in each region.

The excursion set formalism is based on the idea of repre-
senting each point in the universe as a one-dimensional func-
tion (a random walk trajectory) of matter over-density ver-
sus the smoothing scale R or, alternatively, the variance of
the density field σ2

R. The crucial ingredient in the excursion
set formalism is a barrier. The barrier is a one-dimensional
function of the smoothing scale R (or, again, the variance σ2

R).
The barrier is used to separate all trajectories into two classes:
those that cross the barrier and those that do not. The two
classes are then identified with some physical properties of
the modeled objects. For example, in the Press-Schechter for-
malism (Press & Schechter 1974) all trajectories that cross the
barrier are identified with collapsed objects, dark matter ha-
los. In the Furlanetto et al. (2004) model trajectories that cross
the barrier at each redshift are identified with spatial locations
that have been already ionized.

2.2. Clumping factor
The clumping factor is often used in analytical models of

reionization for taking into account the inhomogeneities in
the IGM (c.f. Madau et al. 1999b). Let us take a look at the
equation for the average recombination rate in a volume V :

R = CHIIαA 〈nHII〉V 〈ne〉V , (6)

where 〈nHII〉V is the number density of hydrogen ions and 〈ne〉
is the number density of free electrons, which can be written
in terms of ionized hydrogen density, assuming that the first
ionized state of helium follows the ionization of hydrogen,

〈ne−〉V =
(
1 +Yp/4Xp

)
〈nHII〉V (7)

Let us look closer at the origin of the clumping factor. In
an approximation where we ignore temperature fluctuations
and assume that helium is always ionized once together with
hydrogen (ne ∝ nHII), the clumping factor CHII takes a more
familiar form

CHII =
〈n2

HII〉V
〈nHII〉2V

.

In the excursion set formalism we consider the density field
smoothed on different spatial scales R. The scale of smooth-
ing is more conveniently quantified by σ2(R), the variance
of the density field on scale R. In that framework the local
clumping factor in a finite region of scale R (rms density fluc-
tuation σ2(R)) with the mean overdensity δ̄ becomes the inte-
gral over the linear density PDF,

Cloc
HII(δ̄,σ

2) =
1√

2π(σ2
∞ −σ2)

∫ +∞

−∞
dδ e

−

(δ − δ̄)2

2(σ2
∞ −σ2)

× (1 + δHII)2 , (8)
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where σ2
∞ is the rms density fluctuation on the smallest scale

(it must be finite, or the clumping factor becomes infinite), and
δHII(δ) is the fluctuation in the ionized hydrogen density. One
can interpret this integral as subdividing the region in smaller
pieces of scale σ2

∞, each one of which is uniform, i.e. with a
unit clumping factor.

In the linear regime δHII = δ, and integral in Equation 8 can
be taken analytically:

Cloc
HII(δ̄,σ

2) = (1 + δ̄)2
+ (σ2

∞ −σ2). (9)

This is the lower limit since any model for remapping linear
overdensities into non-linear on small scales (e.g. Carron &
Szapudi 2013) will predict higher clumping factor.

Physical meanings of the two terms in Equation (9) are
rather obvious. The first term is the overall, large-scale
change in the gas density inside an ionized bubble - in denser
bubbles the recombination rate is enhanced (compared to
the mean), in the under-dense bubbles recombinations it is
suppressed. The second term accounts for the small-scale
clumpiness of the gas inside the ionized bubble. In the lin-
ear approximation (9) those two terms are independent and
additive.

To extend the model even further, one may consider σ2
∞ as

a function of overdensity δ̄. We discuss our particular choice
for σ2

∞ in the next subsection.
Plugging the local clumping factor into the Equation (6) the

recombination rate in a particular ionized bubble (QHII = 1)
becomes:

R(δ) = αA 〈nH〉V 〈ne−〉V
(
(1 + δ)2

+ (σ2
∞ −σ2)

)
(1 − fcoll)2 ,

(10)
where ne− is taken from Equation (7) and fcoll is the fraction of
matter collapsed into galaxies and LLS (and, hence, not mak-
ing the IGM). We add the term (1 − fcoll)2 for completeness. It
takes away all collapsed hydrogen atoms and electrons from
〈nH〉V and 〈ne−〉V . In general, fcoll is a strong function of red-
shift, δ and (the scale of the region that we consider). In
the simplest way it can be calculated by integrating the Press-
Schechter mass function above some minimum mass for col-
lapse (Furlanetto et al. 2004). This factor is negligible if we
consider the universe on average; however, during the very
early stages of reionization individual bubbles surrounding
galaxies can be small, and, therefore, the collapsed fraction
inside them might be significant.

Equation (10), with the linear ansatz for the local clumping
factor, is our fiducial model. Since in the linear regime the
cross-correlation between the large-scale term (1+ δ̄)2 and the
small-scale term (σ2

∞ −σ2) is zero, our fiducial model always
underestimates the real clumping.

2.3. Filtering scale
We associate the rms density fluctuation on the smallest

scale σ2
∞ with the filtering scale kF over which the linear fluc-

tuations in the baryonic component are suppressed by the gas
pressure forces (Gnedin & Hui 1998; Gnedin et al. 2003).

The filtering scale depends on the cosmological parameters
and thermal history of the universe or a finite region inside
the universe (Gnedin & Hui 1998). In order to define thermal
history for each region, we assume that each point in space be-
came ionized instantly. The temperature at that point is neg-
ligibly small until the moment of ionization, when it jumps
to 2.5× 104K and cools down afterward as (1 + z)0.9 (Hui &
Gnedin 1997).
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FIG. 1.— The local filter scale at redshift z0 of the region which was ionized
at zion, assuming that the temperature is negligible before zion and cools down
afterward as (1 + z)0.9.

In Fig. 1 the filtering scale is presented as a function of
current redshift z0 and ionization redshift zion.

2.4. Applying local clumping factor
Given the model for the thermal history, we compute σ2

∞
for each ionized bubble. The excursion set formalism allows
us to build merger trees for ionized bubbles (Furlanetto & Oh
2005). Integrating along the merger tree, we find volume av-
eraged distribution of ionization redshifts inside bubbles of a
specific scale.

In practice we find the barriers by performing the integra-
tion in redshift space. Beside the barrier itself, we keep two
other pieces of information for each scale: the number of pho-
tons that were lost by recombination and absorption by LLS,
and the distribution of the first time crossing redshifts, i.e. the
ionization histories. At the next time step we numerically find
a new barrier. Here we outline the basics of the algorithm:

1. For a given σ2 we make guess for δ.

2. Calculate the total number of produced photons inside
the region of given scale σ2 and overdensity δ using
halo mass function and luminosity function. Reduce
the number of photons due to escape fraction4.

3. Calculate the merger tree.

4. Integrate the distribution of progenitors to find out how
many photons were already lost due to LLS and recom-
binations, and also we find the distribution of ionization
histories.

5. Calculate the number of photons that are lost in the cur-
rent time step. The losses due to LLS can be found
using known mean free path. The distribution of ioniza-
tion histories is used for calculating the σ2

∞ and there-
fore the total recombination rate.

4 This step is described in details in Kaurov & Gnedin (2013).
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FIG. 2.— Ionized fraction of hydrogen as a function of redshift for differ-
ent recombination models. Thick solid line corresponds to the model with-
out recombination in IGM (only LLS). Dot-dashed line calculated with the
clumping factor equal unity everywhere. Dashed line corresponds to the
model without the large-scale contribution to the clumping factor in Equa-
tion (10), δ̄ = 0. Dotted line is for the same model, but with the small-scale
term (σ2

∞ − σ2) set to zero. Thin solid line corresponds to the full model
with both terms included. All models are calculated with fixed parameters:
Mcrit = 109 M� and fesc,rel,0 = 0.2.

6. Finally, we have the number of produced photons and
the number of lost photons due to LLS and recombina-
tions. If the number of photons equal to the number of
baryons plus calculated losses within given threshold,
than we save this guess for δ as well the number of to-
tal lost photons and distribution of ionization history. If
the this criteria is not met, we start from the beginning.

We do not discuss how we are making the guess for δ at
step 1. It can be done in many intelligent ways in order to
reduce number of iterations. The integration is started at red-
shift 15, assuming nothing was ionized at that moment. We
found the convergence for time steps below 0.01 in redshift
space and binning below 0.1 in σ2 space. Monte Carlo sim-
ulations of random walks are used to calculate merger trees
and total ionized fractions.

3. RESULTS

First we explore the effect of the local clumping factor on
the global reionization history. Five models that are displayed
in Figure 2 include: a model without any recombinations, a
model without the clumping factor (CHII = 1), two models with
each of the large- and small-scale terms removed in Equation
(9), and, finally, our fiducial model with full accounting for
Cloc

HII.
By coincidence the effects on the global reionization his-

tory from the overall change in the mean density of the ion-
ized bubble and from the gas clustering inside the bubble are
approximately the same (dotted and dashed lines in Figure 2).
However, their contributions to the clumping factor are differ-
ent. They are further explored in Figure 3, where we show
the evolution of the averaged over the whole universe clump-
ing factor, as well as evolution of the spatially averaged large-
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FIG. 3.— Average clumping factor of ionized regions versus redshift for
the model shown in Fig. 2 with the solid thick line. Solid line shows the total
value of the clumping factor from Equation (9). The dashed line shows the
contribution of the large-scale term (1 + δ̄)2 term averaged over all ionized
regions. The dot-dashed line tracks the small-scale contribution (σ2

∞ −σ2).
The dotted line represents the total (not only in ionized regions) gas clumping
factor Cb = 1 + 〈σ2

∞〉.

and small-scale contributions. Notice that the averaging is
done over the ionized regions only, so the spatial average of
the (1 + δ̄)2 term from Equation (9) is not identical to the one
plus the rms value of the gas density.

Since at the end of reionization the mean densities of ion-
ized bubbles approach the cosmic mean, with time the con-
tribution of the large-scale, (1 + δ̄)2 term decreases, while the
growth of structure causes the small-scale, σ2

∞ − σ2 term to
increase.

The average over the whole universe clumping factor fol-
lows the clumping factor of ionized regions at smaller red-
shifts, since the universe is already mostly ionized. At higher
redshifts it is, however, substantially lower, since higher den-
sity (i.e. more biased) regions reionize first. For example, at
z∼ 15 only about 3−σ regions are ionized, resulting in the re-
combination clumping factor being a factor of up to 10 times
higher than the total gas clumping factor.

The value of clumping factor at z = 6 in recent numerical
studies (Pawlik et al. 2009; McQuinn et al. 2011; Shull et al.
2012; Finlator et al. 2012) varies between 2 and 4 with av-
erage around 3 (see Figure (1) in Finlator et al. (2012) for
comparison). The value we obtain is Cb = 2.9 (Figure 3). This
comparison is not completely fair, however. In the simula-
tions the clumping factor is usually computed in the regions
with density below a given density threshold, which serve as
an approximation to the general IGM. In our model recombi-
nations in the IGM are counted by explicitly excluding recom-
binations local to a source (imposing the escape fraction) and
recombinations in the LLS. Whether the two definitions of
the general IGM are sufficiently compatible has not yet been
tested properly.

4. CONCLUSIONS
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The ionization photon losses during cosmic reionization are
associated with spontaneous recombination. Recombinations
can be subdivided into three categories. The first is recombi-
nations inside galaxies and their hosting halos; such, internal
to the source photon losses are commonly parametrized by the
escape fraction.

The other two categories are recombinations in the general
IGM and in the Lyman Limit systems. Recombinations in-
side LLS are more intuitively described by the finite mean
free path of ionizing radiation, rather than by explicit count of
individual recombinations.

The recombination rate in the IGM is proportional to the
second power of density, and therefore is highly sensitive
to the local overdensity and clumpiness of gas. In this pa-
per we complement the Furlanetto et al. (2004) semi-analytic
model of cosmic reionization, as extended by Kaurov &
Gnedin (2013), with the treatment of the time- and spatially-
dependent local clumping factor, that allows us to model the
rate of recombination in the general IGM (in addition to al-
ready accounted for escape fraction and LLS).

The local clumping factor inside an ionized bubble can be
split into two separate contributions: the "large-scale" one due
to the overall variation in the mean density inside an ionized
region, and a "small-scale" contribution due to gas clumpi-
ness inside the ionized bubble. Both contributions can be cor-
related, enhancing the total clumping of the gas; they both

depend on the local ionization and thermal histories, which
control the evolution of the filtering scale and the small-scale
distribution of inhomogeneities in the gas.

While for reionization histories consistent with the exist-
ing observational constraints the numeric value of the aver-
age clumping factor is not large (a few), it postpones the end
of reionization (as compared to models without accounting
for gas clumping) by a non-trivial amount. It is important to
re-iterate that the recombination clumping factor is computed
over the distribution of ionized bubbles only, and as such is
substantially larger than the total baryonic clumping factor
Cb = 1 + 〈σ2

∞〉 (the latter does not enter the ionization balance
equation and, therefore, does not directly affect the progress
of reionization). Since higher density regions are more biased,
and, hence, contain disproportionally larger fraction of ioniz-
ing sources, they reionize first, leading to higher clumping of
ionized gas (as compared to the total gas) at earlier times.

Fermilab is operated by Fermi Research Alliance, LLC,
under Contract No. DE-AC02-07CH11359 with the United
States Department of Energy. This work was also supported
in part by the NSF grant AST-1211190 and by the NASA
grant NNX-09AJ54G. This work made extensive use of the
NASA Astrophysics Data System and arXiv.org preprint
server. This work was done with significant usage of Cos-
moloPy Python package5.

APPENDIX

RECOMBINATION COEFFICIENT

The hydrogen recombination to the ground level produces a photon which can ionize another atom or can be absorbed by
different processes. Two limiting cases are usually considered. Case A corresponds to the optically thin environment, where
all recombination photons escape from the system. In the opposite, optically thick case B, all these photons are immediately
absorbed, ionizing nearby hydrogen atoms.

During reionization four things can happen to a recombination photon:

1. it can be redshifted out of resonance, ceasing to be an ionizing photon;

2. another neutral hydrogen atom inside the ionized bubble can absorb it;

3. it can reach the boundary of the ionized bubble and ionize an atom in the still neutral IGM, thus contributing to the process
of reionization; and

4. it can be absorbed by a LLS.

In this section we compare the characteristic spatial scales of all these processes.
In order to estimate the light travel distance before getting out of resonance, we assume the typical temperature of the environ-

ment to be T . The line broadening due to Doppler effect can be estimated as:

σν =
√

(kT )/(mpc2)ν0. (A1)

To get out of this line, the photon should travel distance DR:

DR =
2σν

H(z)ν0
, (A2)

factor of 2 appears because both the emitting and absorbing atoms have temperature T , H(z) is the Hubble constant at redshift z.
The second effect, absorption inside an ionized bubble, can not be easily estimated, because a photon crosses a large region

with variable ionization fraction and density. The framework of our analytical model does not provide any information about local
ionization fraction (it is assumed to be 0 or 1). However, for as long as the ionized bubble continues to grow, inside-the-bubble
absorption should be small, or the bubble would not be growing. Hence, we neglect this process in our model.

The scale of the third process is set by the typical bubble size, which is directly predicted by our model. We plot this scale in
Figures 2 with the solid line. Finally, the mean free path due to LLS absorption can be extrapolated to the redshifts of interest
from the fits given in Songaila & Cowie (2010).

5 http://roban.github.com/CosmoloPy/



6

6 8 10 12 14

Redshift

1

10

102

103

104

S
ca

le
[p

ro
p

er
k
p

c]

6 8 10 12 14

Redshift

0.0

0.2

0.4

0.6

0.8

1.0

Io
n

iz
ed

fr
ac

ti
on

6.0 6.5 7.0

0.90

0.95

1.00

FIG. 4.— Left: Comparison of several spatial scales. The out of resonance scale for temperatures in range (1..2.5)× 104 K is presented by region with vertical
hatching. Solid line represents the mean size of ionized bubbles in our fiducial model. Dotted line corresponds to the mean free path due to LLS absorption from
Songaila & Cowie (2010). Right: Ionized fraction of hydrogen as a function of redshift for three models with different recombination coefficients. Dotted line
corresponds to αB, dashed line – αA, solid line – αX (see Equation A3).

In Figure 4 we compare these scales. The temperature T of ionized medium is varied in the range 1 − 2.5× 104K. We can
immediately conclude that LLS do not play any role in absorption of recombination photons until the end of reionization, because
the mean free path due to them is the longest characteristic scale.

The mean bubble size is larger than the light travel distance before redshifted out of resonance at all redshifts, and, consequently,
the mean free path in the ionized IGM is also longer. Therefore we may conclude that all recombination photons are redshifted
out of resonance before they have a chance to ionize another atom.

However, the average bubble size says nothing about the actual size distribution. Some bubbles might still be small enough for
photons not being able to redshift enough before they hit the bubble wall. We can estimate this effect by comparing three different
variations of our fiducial model. Two of these variations are with uniform recombination coefficients αA = 2.51×10−13 cm2 and
αB = 1.43×10−13 cm2 for case A and B recombination. The third variation accounts for the bubble size in a following manner:

αX = αB + F(DR/Dbubble)× (αA −αB), (A3)

where Dbubble and DR are the characteristic size of a bubble and the light travel distance before it is redshifted out of resonance
correspondingly. The function F(x) can be simply exp(−x) or a more complicated function that accounts for the distribution of
recombination inside the bubble (see Appendix in Kaurov & Gnedin (2013)). We found that for any reasonable choice of F(x)
the fraction of photons that ionize another atoms before they redshifted out of resonance is negligible. The result is shown in the
right panel of Fig. 4, where solid line, which corresponds to the model with recombination coefficient from Equation A3, lies
almost exactly on top of dashed line, the model with constant coefficient αA.
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