
P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
1

Extending the QUDA library with the eigCG solver

Alexei Strelchenko∗
Scientific Computing Division, Fermilab, Batavia, IL 60510-5011, USA
E-mail: astrel@fnal.gov

Andreas Stathopoulos
Computer Science Department, College of William & Mary, Williamsburg, VA 23187-8795, USA
E-mail: andreas@cs.wm.edu

While the incremental eigCG algorithm [1] is included in many LQCD software packages, its
realization on GPU micro-architectures was still missing. In this session we report our experi-
ence of the eigCG implementation in the QUDA library. In particular, we will focus on how
to employ the mixed precision technique to accelerate solutions of large sparse linear systems
with multiple right-hand sides on GPUs. Although application of mixed precision techniques is
a well-known optimization approach for linear solvers, its utilization for the eigenvector com-
puting within eigCG requires special consideration. We will discuss implementation aspects of
the mixed precision deflation and illustrate its numerical behavior on the example of the Wilson
twisted mass fermion matrix inversions.

The 32nd International Symposium on Lattice Field Theory
23-28 June, 2014
Columbia University New York, NY

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

FERMILAB-CONF-14-576-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy

mailto:astrel@fnal.gov
mailto:andreas@cs.wm.edu


P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
1

Extending the QUDA library with the eigCG solver Alexei Strelchenko

1. Introduction

In the past few years, lattice QCD applications have been continually under intensive develop-
ment to address computationally demanding scientific problems in nuclear and high energy physics.
This development involves elaboration of sophisticated algorithms, on one the hand, and software
optimization, on the other, to efficiently exploit contemporary HPC ecosystems. A good example
of such efforts are QUDA and recently released QPhiX libraries which also provide with devel-
opment platforms to design software tools for performing calculations in lattice QCD on NVIDIA
Tesla and Intel Xeon Phi based clusters.

In this report we will consider implementation and optimization deflated solvers in the QUDA
library. In particular, we will discuss the incremental eigCG algorithm for computing and deflating
low-lying eigenmodes while solving multiple right hand side symmetric linear systems [1]. As a
by-product, we developed a general framework based on MAGMA GPU library [2], upon which
one can build future eigenvector solvers for the lattice QCD computations on GPUs.

2. The mixed precision incremental eigCG in QUDA

In this section we will briefly present our implementation of the mixed precision eigCG al-
gorithm in QUDA in more details. One of our main motivation here is grounded on the fact that
in all contemporary micro-architectures single precision arithmetic is at least twice as fast as dou-
ble precision arithmetic. (For recent HPC-oriented accelerators like NVIDIA Kepler GPUs these
differ by a factor of three.) When solving a linear system of equations, there are two widely used
approaches of exploiting the possible acceleration provided by single precision arithmetic units,
while aiming at a full precision result. The simplest one is to use an iterative refinement strategy,
also known as defect-correction method [3]. Such an approach allows the residual to be reduced
in an inner solve using low precision, while the residual calculation and solution accumulation
are done in high precision. The other approach is based on the reliable updates techniques [4].
Within this scheme, the iterated residual and the solution vector are updated using a low precision
matrix-vector product, while errors introduced by the low precision arithmetic in a Krylov solver
is rectified periodically by using group-wise updates of these vectors in high precision. The main
advantage of the reliable updates is that they do not lead to restarting of the previously generated
Krylov sub-space, that necessarily happens in the iterative refinement procedure (see, e.g., [5] for
the performance comparison of the techniques).

The advantage of the mixed precision approach in the context of the incremental eigCG is
twofold. First, computed eigenvectors can be accumulated in low precision format that will result
in both better execution time (for CG deflation) and essentially lower memory requirements. The
latter point is especially important for memory-restricted accelerators. Second, in a realistic sce-
nario, the mixed precision incremental eigCG might need a fewer number of right hand sides while
generating a required number of the eigenvectors. This point will be discussed in more details
in the next section. Regarding the algorithmic part we adopt a Matlab-like notations used in the
original paper on eigCG [1].

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
1

Extending the QUDA library with the eigCG solver Alexei Strelchenko

2.1 The algorithm

In this report we consider solving systems of linear equations of the form :

Axi = bi (2.1)

where i = 0, . . . ,s is the index of a system to solve, and A is a hermitian matrix. For instance, in
the QUDA library one is typically dealing with two equivalent types of "even-odd" precondition-
ing: the so-called symmetric and asymmetric preconditioning. In our analysis we will choose the
asymmetric preconditioning for which the matrix A can be represented, e.g., as A = M†

eeMee , where

Mee = (Ree−κ
2 /DeoR−1

oo /Doe). (2.2)

Here /D describes hopping terms of the fermion matrix and R stands for a local operator. For the
numerical experiments, we used a twisted mass fermion operator implementation in QUDA [6].

In the standard incremental eigCG workflow for the Hermitian systems with multiple right
hand sides, one distinguishes the incremental phase within which one incrementally computes
and improves the approximate Ritz vectors for a relatively small number of eigCG calls and the
deflation phase within which one utilizes the computed eigenvectors to deflate the CG for the
remaining systems. Our purpose is to combine the former phase with a mixed precision technique
and to investigate how this will effect the latter one in real-live scenarios.

Algorithm 1 depicts the iterative refinement version of the incremental eigCG. As in the con-
ventional method, we use a set of m search vectors V to compute nev Ritz vectors within a given
eigCG call. These resulting eigenvectors are then accumulated in a larger set U after each iteration
of the outer loop over the right hand sides. Unlike the full precision version, in addition to the
outer loop, the mixed precision scheme allows also to exploit the inner iterative refinement loop to
provide an extra source for the eigenvector accuracy improvement within a single right hand side.
Namely, given two different tolerances, an external tolerance εh and a "sloppy" tolerance εl , we
start with the deflated initial guess ŷ0, and call low precision eigCG inside the inner iterative refine-
ment loop, provided the residual gap is sufficient to construct nev eigenvalues. (In our experiments,
we demanded a few restarts of the search space V within a single eigCG call: using this parameter
we decided whether to accumulate the resulting nev Ritz vectors.) Otherwise, one can employ the
(deflated) low precision CG instead. The resulting nev Ritz vectors are then used to expand U , in
the same manner as it’s performed in the outer incremental loop. An important modification of the
naive iterative refinement scheme is that we utilize the constructed set U to perform the Galerkin
projection of the initial guess ŷ0 using the residual r̂k, which is a right hand side for the next sys-
tem in the iterative refinement procedure. Also, the computed eigenvectors can be stored in low
precision (e.g., signle or even half precision format) in the set U .

Let’s make a few remarks concerning the algorithm. The parameter εl is typically chosen to be
as small as possible to avoid unnecessary restarting, subject to the constraint εl > ul pl . In practice,
we work with IEEE single precision epsilon (εl ∼ 10−7) and we aim at a final norm of the residual
of the order of 10−10. Obviously, the initCG can be a mixed precision solver itself. In particular,
we made use of the single-half and double-half mixed precision CG based on reliable updates in
the incremental and initCG phases, respectively. Note, however, that the iterative eigCG is in single
precision.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
1

Extending the QUDA library with the eigCG solver Alexei Strelchenko

Set U = [],H[] % accumulated Ritz vectors;
for i = 1 : s1 or until U is complete do

Set k = 0, V = [] % restart index and the eigCG search space;

ŷ0 = x(i)0 +UH−1U†(b(i)−Ax(i)0 ) ;
r0 = b(i)−Aŷ0 ;
r̂0 = r0 ;
while‖rk‖> εh do

if δ‖rk‖> εh then
Solve [ŷ,V ] = eigCG(nev,m,A, ŷ0, r̂k) to precision εl;
V̄ = orthonormalize V against U ;
Set U = [U,V̄ ] % augment U ;
Update the projection matrix H ;

else
Solve Aŷ = r̂k with initial guess ŷ0 using initCG to precision εl;

end
x(i)k+1 = x(i)k + ŷ;
rk+1 = b−Aŷ ;
r̂k+1 = rk+1 ;
Deflate initial guess ŷ0 =UH−1U†r̂k+1 ;
k = k+1 ;

end
end

Algorithm 1: The mixed precision incremental eigCG(nev, m) algorithm with the outer
solver tolerance εh and inner solver tolerance εl , respectively. The upper index in parenthe-
ses corresponds to outer right hand side index and the lower index is a iterative refinement
loop index. (ˆ) denotes low precision. Parameter δ represents the leftover residual that
indicates how close the iterated residual rk to the tolerance εh.

2.2 Implementation notes

To integrate this algorithm in QUDA, we enhanced the spinor classes ColorSpinorParam
and ColorSpinorField to allow one to collect and work with eigenvectors sets. In particular,
one typically needs to perform operations like dslash application or BLAS operations including
spinor-matrix-complex-matrix multiplications. Currently, dslash can be applied on a single element
from the eigenvector set; operations with a subset or the whole set of the eigenvectors will be added
in the future optimizations.

Next, the incremental eigCG solver is provided by the IncEigCG class that encapsulates all
necessary parameters and methods, including the solver driver to execute the solver on GPUs. For
the end-user this driver is exposed via a convenient C-like interface function incrEigQuda.

Finally, for the search vector restarts within the eigCG we made use of MAGMA library that is
a collection of LAPACK routines ported on the CUDA platform. Based on this library we dveloped
an interface that can be exploited for the future eigenvector solvers in QUDA such eigBiCG or
GMRES-DR.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
1

Extending the QUDA library with the eigCG solver Alexei Strelchenko

Table 1: Mixed precision incremental eigCG performance for 164 right hand sides, 243× 48 dy-
namical twisted mass configuration with κ = 0.163270, µ = 0.0040

Solver type Inc. NRHS Iters. Time (sec.) Speed up

incremental eigCG (mixed) 29 453 345 x4.8
incremental eigCG (full) 36 411 476 x3.5
undeflated CG (mixed) N.A. 4200 1656 x1.0

Table 2: Mixed precision incremental eigCG performance for 176 right hand sides, 483× 96 dy-
namical twisted mass configuration with κ = 0.156361, µ = 0.0015

Solver type Inc. NRHS Iters Time (sec.) Speed up

incremental eigCG (mixed) 24 1285 1532 x5.9
incremental eigCG (full) 48 1008 3152 x2.9

undeflated CG (mixed) N.A. 10000 9000 x1.0

3. Numerical experiments

In this section we will demonstrate numerical behavior of the mixed precision incremental
eigCG combined with the asymmetric preconditioning for the twisted mass fermion matrix inver-
sions. All tests were performed on the recently deployed USQCD pi0g GPU cluster at Fermilab
equipped with NVIDIA Tesla K40 GPUs. Each compute node comprises four accelerators based
on Kepler GK110 micro-architecture and 12GB on-board memory. We investigated two cases:
243× 48 lattice with κ = 0.163270, µ = 0.0040, and 483× 96 lattice with κ = 0.156361, µ =

0.0015. The smaller lattice was executed on a single pi0g node, while for the bigger one we had to
utilized 24 compute nodes. We summarized our results (for the external tolerance 10−10) in Tables
1-2.

Now a few remarks about the obtained results. For the smaller lattice we considered 164 total
right hand sides and we computed 288 aproximate eigenvectors to perform deflation in the initCG
stage. For the bigger one we selected 176 systems and 384 aproximate eigenvectors, respectively.
In both cases, the eigCG parameters were chosen to be m = 144 and nev = 8. The first column
indicates which solver was used in the analysis: the mixed precision incremental eigCG, standard
(full precision) incremental eigCG and undeflated (mixed precision) CG. The second column in
the tables shows actual number of RHS in the incremental stage to compute eigenvectors, while
the third column collects average number of iterations taken by the (un)deflated CG to converge in
the initCG stage. Next, the forth column provides total execution times and the last one contains
information about the observed speed-up w.r.t. undeflated inversions in terms of the total execution
time required to solve all systems.

For the 243 × 48 lattice (see Table 1) one can see that the incremental stage requires less
number of right hand sides to get the given number of Ritz vectors, for the price of slightly worse

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
1

Extending the QUDA library with the eigCG solver Alexei Strelchenko

0 2000 4000 6000 8000 10000 12000
Iters

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

<
 r,

r >

(a) 1a: mixed precision

0 2000 4000 6000 8000 10000 12000
Iters

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

103

105

<
 r,

r >

(b) 1b: full precision

Figure 1: Convergence of the incremental eigCG for the first and the last RHS.

eigenvector quality. Nevetheless, our main observertion is that the mixed precision deflation results
in better total execution time and overall performance gain w.r.t. undeflated solves.

Next, Table 2 gives similar information for the 483×96 lattice, where efficiency of the mixed
precision incremental stage is the most prominent. Here we note an almost ×2 speed-up of the
mixed precision eigCG solves w.r.t. the full precision one. It should be emphazised, however, that
if the number of RHS would be sufficiently high, the performance difference will be eliminated
due to better deflation quality of the full precision incremental eigCG. That is, we conclude that the
mixed precision approach might be preferable for larger lattices (and smaller quark masses), and
when the number of systems to solve is not too high (say, of order O(100) or less).

Our next goal is to illustrate the performance profile of the mixed precision eigCG on the
example of the 483× 96 lattice. As we could see from Table 2, in the incremental stage required
half the number of RHS to get 384 eigenvectors. This means that the iterative refinement algorithm
allows to execute two eigCG calls per right hand side, to accumulate the eigenvectors. This fact
also explains significantly lower runtime for the mixed precision version.

Fig. 1 presents convergence plots for mixed (left side) and full (right side, resp.) precision
incremental stage inversions. Here we choose the first and the last right hand sides in each case.
Finally, Fig. 2 compares the residual norm of the computed eigenvalues computed by mixed (left
side) and full (right side, resp.) precision incremental eigCG.

4. Conclusion

We extended the QUDA library with the incremental eigCG solver. The main objective of
this study was to combine mixed precision technique with eigenvectors computing. In fact, our
aim is twofold. First, one can reduce the overall execution time using low precision arithmetics
(and more faster device-memory communications), and second, one can optimize global memory
usage for the computed eigenvectors. The last point is especially important since deflation methods
are usually resource demanding, which is critical for the accelerators. Currently, QUDA does not
support low precision storage for the eigenvectors; this feature will be included in future releases.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
3
1

Extending the QUDA library with the eigCG solver Alexei Strelchenko

0 50 100 150 200 250 300 350 400
Eigenvalue index

10-7

10-6

10-5

10-4

10-3

10-2

Ei
ge

nv
al

ue
 re

si
du

al

(a) 2a: mixed precision

0 50 100 150 200 250 300 350 400
Eigenvalue index

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Ei
ge

nv
al

ue
 re

si
du

al

(b) 2b: full precision

Figure 2: Eigenvalue residual norms computed within the incremental stage for the operator A =

M†M, where M is given in (2). Results were obtained using 24 (left plot) and 48 (right plot)
right-hand sides, respectively.

For the particular case of the 483×96 lattice we found that mixed precision eigCG can provide
around ×2 performance gain over the full precision eigCG. (And ∼ ×6 gain over the undeflated
CG solves). That is, in realistic scenarios, i.e., when the number of right hand sides is not too
big, mixed precision approach allows to achieve an appropriate deflation quality with significantly
better overall execution time. The code will be included in the next production release of QUDA
(ver. 0.7) and is available in the master branch [7].

5. Acknowledgements

This work was supported by the SciDAC 3 project. A. Stathopoulos was supported by grants
NSF CCF 1218349 and DOE DE-FC02-12ER41890. The computations for this report were done
on pi0g cluster at Fermilab.

References

[1] A. Stathopoulos and K. Orginos, SIAM J. Sci. Comput. 32, 439 (2010)

[2] http://icl.cs.utk.edu/magma/index.html

[3] R. S. Martin, G. Peters and J. H. Wilkinson, "Handbook series linear algebra: Iterative refinement of
the solution of a positive definite system of equations", Numerische Mathematik 8, 203216 (1966).

[4] G. L. G. Sleijpen, and H. A. van der Vorst, "Reliable updated residuals in hybrid Bi-CG methods",
Computing 56, 141 (1996)

[5] M. A. Clark et al, Comput. Phys. Commun. 181, 1517 (2010) [arXiv:0911.3191 [hep-lat]].

[6] A. Strelchenko et al, PoS LATTICE 2013, 415 (2014) [arXiv:1311.4462 [hep-lat]].

[7] QUDA library. http://lattice.github.io/quda/.

7




