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Abstract. We discuss the lattice QCD simulations that search for the Z+
c with the unconventional quark content c̄cd̄u in the

channel IG(JPC) = 1+(1+−). The major challenge is presented by the two-meson states J/ψ π , ψ2Sπ , ψ1Dπ , DD̄∗, D∗D̄∗,
ηcρ that are also inevitably present in this channel. The available lattice simulations find expected two-meson eigenstates,
but no additional eigenstate as a candidate for Z+

c . This is in a striking contrast to the lattice results in the flavour non-exotic
channels, where additional states are found in relation to the most of known resonances and bound states.
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INTRODUCTION

Several charged-charmonia with quark content c̄cd̄u were discovered recently in experiment, as reviewed in [1, 2].
The first of these states was the Z+(4430), discovered in 2007 by Belle [3], remained unconfirmed by BaBar [4], and
was recently confirmed by LHCb [5]. The Z+

c (3900)→ J/ψ π+ was discovered in 2013 slightly above DD̄∗ threshold
by BESIII [6], and was confirmed by Belle [7] as well as using CLEO-c data [8]. The spin and parity of Z+

c (3900) are
unclear, and it may correspond to the same state as Z+

c (3885)→ (DD̄∗)+ with JP = 1+ [9]. The pair Z+
c (4020)→ hcπ+

[10] and Z+
c (4025)→ (D∗D̄∗)+ [11] was found by BESIII slightly above D∗D̄∗ threshold. Their spin and parity are

unclear and JP = 1+ is preferred. Finally, Z+(4200)→ J/ψ π+ was reported in 2014 by Belle [12] favoring JP = 1+.
All these states have G-parity G=+1 while their neutral partners have charge conjugation C=−1. Therefore we focus
on the channel with IG(JPC) = 1+(1+−).

We note that Z+
c (3900) was found in J/ψ π invariant mass only through e+e−→ Y → (J/ψ π+)π−. No resonant

structure in J/ψ π+ was seen in B̄0 → (J/ψ π+)K− by BELLE [12], in B̄0 → (J/ψπ+)π− by LHCb [13] or in
γ p→ (J/ψ π+)n by COMPASS [14]. This might indicate that the Z+

c peak might not be of dynamical origin [15, 16],
which was recently questioned in [17].

It is an important theoretical task to establish whether QCD supports the presence of an exotic state with quark
content c̄cd̄u using ab-initio lattice QCD. So far lattice QCD found evidence for most of the observed flavour non-
exotic states: those include for example all charmonia below open charm threshold, shallow bound states X(3872) with
I = 0, D∗s0(2317), Ds1(2460), and meson resonances ρ , a1, b1, K∗(892), K∗0 (1430), D∗0(2400), D1(2430). All these
manifest themselves via an additional energy level in the discrete spectrum, as discussed bellow. On the other hand,
lattice QCD has not found yet reliable evidence for the mesons with manifestly exotic flavour, for example X(3872)
with I = 1, Z+

c ' c̄cd̄u or ccd̄ū.
Here we report on the search for Z+

c in the energy region below 4.2 GeV. In a lattice QCD simulation, the states
are identified from discrete energy-levels En and in principle all physical eigenstates with the given quantum number
IG(JPC) = 1+(1+−) appear. So the two-meson states J/ψ π , ψ2Sπ , ψ1Dπ , DD̄∗, D∗D̄∗, ηcρ are eigenstates and their
presence is the major challenge in searching for Z+

c candidates.

TWO-MESON STATES IN Zc CHANNEL

All the states with given quantum numbers IG(JPC) = 1+(1+−) appear as eigenstates of lattice QCD in principle.
The eigenstate of interest, Z+

c , gives an energy level at En ' mZc if it exists. However, various two-meson states
M1(p)M2(−p) have the same quantum numbers and give also rise to physical eigenstates, which presents a major
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challenge. Individual momenta are discretized due to the periodic boundary conditions in space. If the two mesons do
not interact, then p = 2π

L k with k ∈ N3, and the energies of M1(k)M2(−k) states for a→ 0 are

En.i. = E1(k)+E2(k) , E1,2(k) =
√

m2
1,2 + k( 2π

L )2 . (1)

with k ≡ k2. These values are slightly shifted in presence of the interaction. In experiment, these states correspond to
the two-meson decay products with a continuous energy spectrum.

Our simulation employs dynamical u and d quarks that correspond to the pion mass mπ ' 266 MeV [18]. The lattice
spacing is a=0.1239(13) fm. The rather small box V = 163× 32 with L ' 2 fm may lead to sizable finite volume
corrections, but it is responsible for a crucial practical advantage. It makes the Z+

c search tractable since it reduces the
number of M1(k)M2(−k) states in the considered energy range.

On this lattice the two-particle states with IG(JP)= 1+(1+) and total momentum zero in the energy region of interest
E ≤ 4.3 GeV are1

J/ψ(0)π(0), ηc(0)ρ(0), J/ψ(1)π(−1), D(0)D̄∗(0), ψ2S(0)π(0), D∗(0)D̄∗(0),ψ1D(0)π(0),
ηc(1)ρ(−1), D(1)D̄∗(−1), ψ3(0)π(0), J/ψ(2)π(−2), D∗(1)D̄∗(−1), D(2)D̄∗(−2) (2)

in order of increasing energy. Their lattice energies En.i. in the non-interacting limit are denoted by the horizontal
lines in Fig. 1b and the values follow from the masses and single-meson energies determined on the same set of gauge
configurations [19, 20]. Establishing two-meson states up to 4.3 GeV at mπ = 266 MeV should suffice for searching
fairly narrow exotic candidates with mass below 4.07 GeV for physical pion mass.

Our aim is to extract and identify all two-particle energy-levels (2) from the full, coupled correlator matrix of hadron
operators and establish whether QCD predicts additional states related to the exotic Z+

c hadron.
This goal presents a considerable challenge by itself. Note that a rigorous treatment (via a Lüscher-type finite volume

formalism) would require the determination of the scattering matrix for all two-particle channels that couple, and a
subsequent determination of the mass and the width for any Z+

c resonance(s). The elastic scattering within a single
channel has been rigorously treated by a number of lattice simulations recently. The first lattice simulation aimed at
determining scattering matrix for two-coupled channels [21] also shows promise in this respect, while the rigorous
treatment of seven coupled channels is still beyond the capabilities of any lattice simulation at present.

Therefore we take a simplified approach where the existence of Z+
c is investigated by analyzing the number of

energy levels, their positions and overlaps with the considered lattice operators 〈Ω|O j|n〉. The formalism does predict
an appearance of a level in addition to the (shifted) two-particle levels if there is a relatively narrow resonance in one
channel. Additional levels have been, for example, found for resonances ρ [20], K∗(892) [22, 21], D∗0(2400) [19], and
the bound state D∗s0(2317) [23]. Additional levels related to K∗0 (1430) [21] and X(3872) [24? ] have been found in the
simulations of two coupled channels. Based on this experience, we expect an additional energy level if Zc is of similar
origin.

TOWARDS THE LATTICE ENERGY SPECTRUM

The energies En and the overlaps Z j of the physical eigenstates n are extracted from the correlator matrix

C jk(t) = 〈Ω|O j(tsrc + t)O†
k (tsrc)|Ω〉= ∑

n
Zn

j Zn∗
k e−Ent , Zn

j ≡ 〈Ω|O j|n〉 . (3)

The physical system for given quantum numbers is created from the vacuum |Ω〉 using creation operators O†
k at time

tsrc and the system propagates for time t before being annihilated at tsink = tsrc + t by O j. The creation/annihilation
operators are called interpolators. Our correlation matrix is averaged over every second tsrc.

We employ 22 interpolators OM1M2 that couple well to the two-meson states and the choice is expected to be
complete enough to render all two-meson states listed in (2) [18]. In addition, we implement 4 diquark-antidiquark
interpolators O4q with structure [c̄d̄]3c [cu]3̄c

which is expected to couple well to possible Z+
c if it has a sizable Fock

1 The appearance of ψ3π , where ψ3 denotes the charmonium with JPC =3−−, is an artifact due to reduced symmetry on the cubic lattice.



component of this kind. We point out that O4q ' [c̄d̄]3c [cu]3̄c
couples also to two-meson states via Fierz rearrangement.

Representative examples of employed interpolators are

O
ψ(0)π(0)
1 = c̄γic(0) d̄γ5u(0) , (4)

Oψ(1)π(−1) = ∑
ek=±ex,y,z

c̄γic(ek) d̄γ5u(−ek) ,

Oψ(2)π(−2)= ∑
|uk|2=2

c̄γic(uk) d̄γ5u(−uk) ,

Oηc(0)ρ(0) = c̄γ5c(0) d̄γiu(0) ,

O
D(0)D∗(0)
1 = c̄γ5u(0) d̄γic(0)+{γ5↔ γi} ,

OD∗(0)D∗(0) = εi jk c̄γ ju(0) d̄γkc(0) ,

O4q
1 ∝ εabcεab′c′(c̄bCγ5d̄c cb′γiCuc′ − c̄bCγid̄c cb′γ5Cuc′) ,

O4q
2 ∝ εabcεab′c′(c̄bCd̄c cb′γiγ5Cuc′ − c̄bCγiγ5d̄c cb′Cuc′) ,

while the full list of interpolators together with related details is provided in [18]. The momenta are projected separately
for each meson in OM1M2 as M(k)' q̄1Γq2(k)≡ ∑x ei2πk·x/Lq1(x, t)Γq2(x, t). All quark fields are smeared according
to the distillation method [25, 19].

The Wick contractions for the matrix of correlators (3) with I =1 involve only diagrams where the light quarks d̄
and u propagate from source to sink. Concerning charm quarks, there are diagrams where they propagate from source
to sink and diagrams where charm quarks annihilate (Figure in Appendix of [18]). The second class represents mixing
with channels that contain no charm quarks, their effect is suppressed due to the Okubo-Zweig-Iizuka rule, and the
experiments do not observe these decay channels in the region of interest. The results in the present work are therefore
based on the contractions, where charm quarks propagate from source to sink.
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FIGURE 1. The spectrum in Z+
c channel with IG(JPC) = 1+(1+−) [18]. (a) Position of the experimental Z+

c candidates [30]. (b,c)
The discrete energy spectrum from our lattice simulation: (b) shows energies based on complete 22×22 matrix of interpolators, (c)
is based on the 18×18 correlator matrix without diquark-antidiquark interpolating fields O4q

1−4 (4). The thirteen lowest lattice energy
levels (black circles) are interpreted as two-particle states, which are inevitably present in a dynamical lattice QCD simulation. No
additional candidate for the exotic Z+

c is found below 4.2 GeV. The experimental widths of the resonances is indicated by the dashed
vertical lines.



The energies En and overlaps Zn
j are obtained from the 22×22 correlator matrix (3) using the generalized eigenvalue

method C(t)u(n)(t) = λ (n)(t)C(t0)u(n)(t) [26]. The energies En are extracted from the asymptotically exponential
behaviour of the eigenvalues: λ (n)(t) ∝ e−Ent at large t.

The treatment of the charm quarks requires special care due to discretization errors. We employ the Fermilab method
[27, 28], where discretization uncertainties are suppressed in the difference En−ms.a. with the spin-average mass
ms.a.≡ 1

4 (mηc +3mJ/ψ). The same method and tuning of the charm quark mass mc lead to a good agreement with
experiment for conventional charmonium [19], masses and widths of D mesons [19], and the Ds spectrum [23, 29]
on this ensemble. In view of this, we will compare E lat

n −mlat
s.a.+mexp

s.a. to experiment where amlat
ηc =1.47392(31) and

amlat
J/ψ

=1.54171(43).

RESULTS

The central result of simulation [18] is the discrete spectrum in Fig. 1b, while experimental candidates in the same
channel are collected in Fig. 1a. In the energy region below E ≤ 4.3 GeV one expects thirteen discrete two-particle
states (2) near the horizontal lines, which continue in Fig. 1a to show their relation to the continuum of scattering states
in experiment.

We interpret the lowest thirteen levels (indicated by black circles) as interacting two-particle states: the levels appear
near the non-interacting energies (1) of the two-particle states (2), and each of these levels n has the largest overlap
〈Ω|O j|n〉 with the corresponding OM1M2 [18].

The main conclusion of our simulation is that we do not find any additional state below 4.2 GeV that could be
related to an exotic candidate. We only find the expected two-meson states (2).

It is indeed surprising that with a basis, which contains a great variety of interpolating fields with the quantum
numbers of interest (IG(JPC) = 1+(1+−)), one does not, for example, induce Zc(3900)/Z+

c (3885) that has been
confirmed by several experiments [6, 7, 8, 9]. Note that our list of creation/annihilation operators (4) contains also
a number of field structures J/Ψπ and DD̄∗ which correspond to channels where these resonances have been found in
experiments.

We envisage several possible reasons for the absence of an energy levels related to the exotic Z+
c candidate in our

simulation. Based on the experience, discussed in Section II, we would expect an additional energy level if the Z+
c state

was a resonance associated to pole near the real axis in the unphysical Riemann sheet. The absence of an additional
energy level could indicate a different origin of the experimental peak like, e.g., a coupled-channel threshold effect.
Even if the Z+

c resonant structure seen in experiment is due to a relatively narrow c̄cd̄u state, there might be several
reasons that an additional state is absent in our simulation. It is possible that Zc exists only at physical mu/d and is
absent at unphysical mu/d in our simulation. Furthermore, our set of eighteen interpolators OMM may not be complete
enough to render a Z+

c candidate in addition to thirteen two-meson states, even if Z+
c existed at mπ = 266 MeV.

Further analytical work and lattice simulations are needed to resolve the question on the existence of Z+
c from first

principle QCD.

OTHER LATTICE SIMULATIONS AIMED AT Z+
c

All lattice searches for Z+
c considered IG(JPC) = 1+(1+−) channel, which is the most relevant experimentally. The

first lattice search for Z+
c (3900) considered J/ψ π and DD̄∗ scattering and only two-meson states J/ψ π and DD̄∗

were found, but no additional candidate for Z+
c (3900) [32].

The DD̄∗ interpolators were used to determine the s-wave and p-wave phase shift near DD̄∗ threshold where
experimental Zc(3900) is located. Partially twisted boundary conditions were applied taking into account s/p-wave
mixing [33]. The authors conclude that no evidence for Z+

c (3900) is found.
The lattice simulation of the same channel based on the HISQ action gives the energies in Fig. 2 for various

interpolator basis [31]. The figure illustrates that the two-meson states are seen if the corresponding interpolators
are employed. No additional state that could represent Z+

c is found, in agreement with our results.
The HALQCD is also simulating this channel and their interesting preliminary results have been reported at the

meetings that took place after this meeting [HALQCD].
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FIGURE 2. The spectrum in the Z+
c channel with I(JPC) = 1(1+−) [31]. The red and blue boxes are energies obtained from

the simulation for various interpolator basis indicated at the bottom. The cc and cc π denote basis including charmonium and
charmonium-pion interpolators. The green levels denote non-interacting ψπ states, while the light blue levels denote DD̄∗.

CONCLUSIONS

We discuss the lattice QCD simulations for the c̄cd̄u channel with JPC = 1+− where exotic charmonia have been
found in recent experiments. In the scanned energy region these find the expected meson-meson signals (mostly close
to the non-interacting levels) but no convincing signal for an extra Z+

c state. Possible physics and methodology-related
reasons for the absence of the exotic candidates are mentioned. This is in striking contrast to the lattice results in the
flavour non-exotic channels, where the extra states are found in relation to the most of known resonances and bound
states.
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