
Overhead-Aware-Best-Fit (OABF) Resource Allocation
Algorithm for Minimizing VM Launching Overhead

Hao Wu
∗

Illinois Institute of Technology
10 w 31 St.

Chicago, IL, 60616
hwu28@hawk.iit.edu

Shangping Ren
†

Illinois Institute of Technology
10 w 31 St.

Chicago, IL, 60616
ren@iit.edu

Steven Timm
‡

Fermi National Accelerator
Laboratory

Batavia, IL, USA
timm@fnal.gov

Gabriele Garzoglio
Fermi National Accelerator

Laboratory
Batavia, IL, USA

garzogli@fnal.gov

Seo-Young Noh
§

National Institute of
Supercomputing and

Networking,
Korea Institute of Science and

Technology Information
Daejeon, Korea

rsyoung@kisti.re.kr

ABSTRACT
FermiCloud is a private cloud developed in Fermi National
Accelerator Laboratory to provide elastic and on-demand
resources for different scientific research experiments. The
design goal of the FermiCloud is to automatically allocate
resources for different scientific applications so that the QoS
required by these applications is met and the operational
cost of the FermiCloud is minimized. Our earlier research
shows that VM launching overhead has large variations. If
such variations are not taken into consideration when mak-
ing resource allocation decisions, it may lead to poor perfor-
mance and resource waste. In this paper, we show how we
may use an VM launching overhead reference model to mini-
mize VM launching overhead. In particular, we first present
a training algorithm that automatically tunes a given refer-
ence model to accurately reflect FermiCloud environment.
Based on the tuned reference model for virtual machine
launching overhead, we develop an overhead-aware-best-fit
resource allocation algorithm that decides where and when

∗Hao Wu works as an intern in Fermi National Accelerator
Laboratory, Batavia, IL, USA
†The research is supported in part by NSF under grant num-
ber CAREER 0746643 and CNS 1018731.
‡This work is supported by the US Department of Energy
under contract number DE-AC02-07CH11359
§This work is supported by KISTI under a joint Cooperative
Research and Development Agreement CRADA-FRA 2013-
0001 / KISTI-C13013.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to allocate resources so that the average virtual machine
launching overhead is minimized. The experimental results
indicate that the developed overhead-aware-best-fit resource
allocation algorithm can significantly improved the VM launch-
ing time when large number of VMs are simultaneously
launched.

1. INTRODUCTION
Because of its elasticity and flexibility, cloud technology

has not only benefited general purpose computing we en-
counter in our daily life, such as Gmail, Google docs, iCloud,
to name a few. It also brings new opportunities to scientific
applications. For instance, the Nimbus team at Argonne
National Laboratory successfully migrates the STAR exper-
iment at the Brookhaven National Laboratory to Amazon
EC2 to avoid the shortage from local grid service [2]. An-
other successful example of deploying scientific applications
on computer clouds is the ATLAS experiment at the Large
Hadron Collider at CERN which uses Google Cloud to im-
prove the efficiency of its research process [4].

One of the main advantages of deploying scientific ap-
plications on computer cloud is that computer cloud has
”infinite” amount of resources. Scientific applications often
require large amount computational resources and have long
execution time. With a traditional grid system, if local re-
sources are fully occupied by some applications, the newly
arrived applications have to wait until one of the running ap-
plications finishes and releases its resources. However, with
the cloud technology, even if local resources are fully occu-
pied, public cloud resources are always available to execute
newly arrived applications.

Many institutions and companies have already foreseen
the advantages of deploying scientific applications on cloud
and have developed their specific cloud services for scientific
applications. For instance, Amazon provides a HPC cloud
for scientific applications [1], Microsoft [3] and Google [4]
also provide specific cloud services for scientific applications.

Fermi National Laboratory (Fermilab), as a leading physics

FERMILAB-CONF-14-467-CD

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy

research institution in United States, has developed its own
private cloud – the FermiCloud to support scientific appli-
cations within Fermilab and its collaboration institutions.
Since the establishment of the FermiCloud in 2010, the Fer-
milab Grid and Cloud Services department has smoothly
integrated its grid computing infrastructure with the Fermi-
Cloud. The FermiCloud project has made significant progress
through the collaboration between Fermilab, Korea Institute
of Science Technology and Information (KISTI) global sci-
ence experimental data hub center and Illinois Institute of
Technology(IIT). In particular, we have successfully imple-
mented an automation tool the ”vcluster”, which allows grid
worker virtual machines to run on the cloud in response to
increased demand of grid jobs [11, 13]. The design goal of
the vcluster is to automatically provisioning resources for
different scientific applications so that the QoS of the sci-
entific application is met and the operational cost of the
FermiCloud is minimized.

Many solutions have been proposed by researchers to achieve
the objectives that are similar to the FermiCloud design
goal. The research includes minimizing application’s makespan
in cloud [10], reducing energy consumption of datacenters [12],
minimizing cost of the application execution [8], to name
a few. However, these researches assume that virtual ma-
chine launching overhead is a constant or even negligible. As
Mao et al. pointed out that the virtual machine launching
overhead can have a very large variation in public cloud [9].
Without considering the variations of virtual machine launch-
ing overhead when designing resource allocation algorithm
in cloud may lead to cost increase and resource waste.

Our earlier work has studied virtual machine launching
overhead under different system conditions and developed a
reference model to predict virtual machine launching over-
head [14]. However, as each physical host machine has its
own characteristics. Even two host machines that have the
same configuration may differ in performances. In order to
obtain accurate predictions, the parameters of the reference
model need to be adjusted for each host machine. In this pa-
per, we first present a training algorithm that automatically
tunes the accuracy of the virtual machine launching over-
head reference model for a given physical platform. Based
on the tuned virtual machine launching overhead reference
model, we present an overhead-aware-best-fit (OABF) re-
source allocation algorithm that decides where and when
to allocate resources so that the average virtual machine
launching overhead is minimized is proposed.

The rest of the paper is organized as follows: In Section 2,
we present our prior work regarding virtual machine launch-
ing overhead and the software we have developed for virtual
resource management . Section 3 discuss the details of the
automatic model training algorithm. The OABF algorithm
is presented in Section 4. Section 5 discusses the experimen-
tal results. We conclude our work in Section 6.

2. PRELIMINARY WORK

2.1 The vcluster System
The vcluster is a middleware jointly developed by KISTI

and Fermilab for automatically managing virtual resources
according based on batch job load in system [11, 13]. It
consists of four major components: batch system plugin in-
terface, cloud plugin interface, monitoring module and load
balancer plugin interface. The batch system plugin interface

provides supports for communicating with different batch
job systems such as HTCondor, Torque, and Sun Grid En-
gine (SGE). The cloud plugin interface is responsible for
communicating with different cloud platforms such as Fer-
miCloud in Fermilab, GCloud in KISTI, and public clouds
such as Amazon EC2. The monitoring module collects all
the information from connected batch job systems and cloud
platforms. It translates the data from different batch job
systems and cloud platforms into a uniform data format that
can be used by load balancer interface. With the design of
plugable modules for different batch job system, cloud plat-
forms and load balancers, the vcluster can be easily extended
and modified if needed.

The vcluster has been successfully implemented on Fer-
miCloud GCloud and Amazon EC2 [11, 13]. The source
code of the vcluster can be found in [6, 5]. In this paper, we
present the design of resource allocation mechanism used in
the vcluster ’s load balancer module which decide when and
where to deploy virtual machines so that the average virtual
machine launching overhead is minimized.

2.2 VM Launching Overhead Reference Model
Our early study reveals that virtual machine launching

overhead has large variations under different system condi-
tions. Based on large set of experiments conducted under
operational FermiCloud [14], we have established a virtual
machine launching overhead reference model. It models the
CPU utilization overhead and IO utilization overhead dur-
ing the process of launching a virtual machine. The CPU
utilization overhead consists of two main parts. One is at
the virtual machine image transferring time:

(1)
UTt(t) =

1

1 + e−0.5(Tt+t)(t−tr)
−

1

1 + e−0.5(Tt+tr)(t−(Tt+tr))

where Tt is the image transferring time and tr is the vir-
tual machine release time. The image transferring time is
impacted by the system IO utilization and network band-
width.

The second part of CPU utilization overhead is at the
virtual machine booting time:

Ub(t) = c ∗ 1

m
e−γ(1−IOs(h,t−1))(t−Tt)) (2)

where c and γ are two system configuration dependent con-
stants, m is the number of cores on the host machine and
IOs(h, t) represents the system’s disk IO utilization at time
t. The CPU utilization overhead is also impacted by the IO
utilization.

The main IO utilization overhead occurs at the time when
virtual machine image is transferred. The overhead is pro-
portional to the ratio of available IO bandwidth to the total
IO bandwidth on the physical host machine. The virtual
machine launching time tb can be predicted based on the
CPU utilization overhead, i.e.,

tb = max{t||U ′b(t)|≤ ε} (3)

where U ′b(t) is the first derivative of Ub(t) and ε is the thresh-
old to determine whether the virtual machine’s CPU uti-
lization consumption become stable. The virtual machine
launch time is calculated by adding image transfer time and
boot time.

In [14], we have empirically shown that the developed
reference model can accurate predict the virtual machine
launching overhead. However, under different systems, the
parameters of the model may change. In the next section,
we present a training mechanism that can automatically ad-
just the parameters of the model to accurately reflect a given
physical platform.

3. CALIBRATING VM LAUNCHING OVER-
HEAD REFERENCE MODEL ON FER-
MICLOUD PLATFORM

3.1 Prediction Accuracy Evaluation
There are many different benchmark methods to evaluate

the accuracy of predictions. One of the most widely used
approach is to compared the absolute error between the ac-
tual data and predicted data. Benchmarks such as mean
square error (MSE), root mean square error (RMSE), mean
absolute error (MAE), and median absolute error (MdAE)
are the different ways to measure the absolute errors. How-
ever, as pointed by Hyndman et al., one of the disadvantages
the absolute error based measurements face is that they are
scale-dependent [7].

Another category of measurement methods is based on
the percentage error. In contrast to the absolute error based
measurements, the advantage of percentage error based mea-
surements is that they are scale-independent. The percent-
age error based measurement methods include mean abso-
lute percentage error (MAPE), median absolute percentage
error (MdAPE), root mean square percentage error (RM-
SPE), and root median square percentage error (RMdSPE).
However, the percentage error based measurements do not
come flawless either. One of the main concerns with the
percentage error based measurements is that the error can
be infinite or undefined if the actual value is close to zero or
being zero [7].

To overcome the disadvantages of the measurement meth-
ods mentioned above, Hyndman et al. proposed a new mea-
surement method, i.e., the Mean Absolute Scaled Error [7].
The idea of their method is to scale the absolute error based
on the in-sample MAE obtained from a benchmark predic-
tion method. The scaled error is defined as:

qt =
et

1
n−1

n∑
i=2

|Yi −Yi−1|
(4)

where, et is the absolute error between the actual data Yt
and predicted data Ft at time point t; and Yi represents the
actual data from ith prediction. The Mean Absolute Scaled
Error is:

MASE = mean(|qt|) (5)

In our model training mechanism, we use MASE to cali-
brate the VM launching overhead reference model for Fer-
miCloud platforms. It is worth pointing out that though
the paper focuses on FermiCloud platforms, the methodol-
ogy developed in this paper can be applied to any physical
cloud platforms.

3.2 Model Training Algorithm

The basic idea of the proposed training algorithm is to ad-
just the ε in equation(3) so that the mean absolute scaled er-
ror of the predicted VM launching time is maintained within
a reasonable error range. The detailed algorithm is illus-
trated in Algorithm 1.

Each time when a new actual virtual machine launch-
ing time is read from the system, the training algorithm
is executed to calibrate the accuracy of the virtual ma-
chine launching overhead model. As Line 1 to Line 4 in
Algorithm 1 indicate, if the new MASE value is within the
designed error range, no new calibration needs to be per-
formed. Otherwise, a new ε needs to be calculated. We use
an example to explain how to calculate the new ε.

Assume the calibrated value from last round training is
ε = 0.032. Intuitively, since all historical predictions are ac-
curate with ε, when a new actual value is observed, if needed,
just small calibration needs to be performed on ε to ensure
MASE within the error range. In this case, the precision
of ε is at thousandth level (calculated by Line 5 and obtain
0.001), then the calibration is performed at thousandth pre-
cision level. To start calibration, we first treat ε = 0.032 as
ε′ = 0.030 (Line 6) and use ε′ as a middle start point. Then,
we search the new ε above and below the ε′ in a small range
(±0.001×10). In this case, the search range is [0.021, 0.039].

Next, the algorithm calculates the MASE of the each cor-
responding ε′ from 0.021 to 0.039 and selects the ε′ that
has the smallest MASE(Line 10 to Line 30). If the smallest
MASE is within the error range, the search is terminated.
Otherwise, the algorithm increases the precision (Line 31)
and repeat the search procedure. For instance, suppose the
ε′ = 0.033, and the precision is increased to 0.0001. Since
ε′ = 0.033 gives smallest MASE in the range [0.021, 0.039],
the desired ε must exist in the range of (0.0320, 0.0340). The
algorithm continues the search in the range of (0.0320, 0.0340)
starting from 0.0330 (Line 9 to Line 31). The search termi-
nates when a ε′ is found such that the MASE value calcu-
lated by it satisfies the error range. It is possible that the
search never find such an ε′. Hence the other terminate con-
dition for the algorithm is the precision reaches a predefined
precision threshold.

4. OVERHEAD-AWARE-BEST-FIT RESOURCE
ALLOCATION DESIGN AND IMPLEMEN-
TATION

The previous section has discussed how we automatically
calibrate the accuracy of the virtual machine launching over-
head model. In this section, we present an overhead-aware-
best-fit resource allocation algorithm, i.e., the OABF algo-
rithm, that aims to reduce average virtual machine launch-
ing time and show an implementation of the OABF on the
FermiCloud.

4.1 The OABF Algorithm
Our preliminary study [14] reveals that when multiple vir-

tual machines are launched simultaneously, the VM launch-
ing time increases as the number of simultaneous launches
increases. We also have noticed that when a virtual ma-
chine that being deployed uses the same image as the last
virtual machine that has been deployed on the same host
machine, the virtual machine takes less time to launched.
In other words, the VM launching time is significantly re-
duced if memory cache can be used.

Algorithm 1: Model Training Algorithm

Input : Threshold ε, Predicted Time Set TP , Actual Time
Set TA

Output: Threshold ε

1 e← calculateMASE(TP , TA)
2 if e ≤ ErrorThreshold then
3 return ε
4 end
5 g ← calculateCurrentPrecision(ε)
6 ε′ ← max{b ε

g×10
c, 1} × g × 10

7 Recalculate predicted time set TP using ε′

8 e← calculateMASE(TP , TA)
9 do

10 for i← 1 to 9 do
11 ε′′ ← ε′ − i× g
12 if ε′′ ≤ 0 then
13 break
14 end
15 Recalculate predicted time set TP using ε′′

16 e′ ← calculateMASE(TP , TA)
17 if e′ ≤ e then
18 e← e′

19 ε← ε′′

20 end
21 end
22 for i← 1 to 9 do
23 ε′′ ← ε′ + i× g
24 Recalculate predicted time set TP using ε′′

25 e′ ← calculateMASE(TP , TA)
26 if e′ ≤ e then
27 e← e′

28 ε← ε′′

29 end
30 end
31 g ← g/10
32 while e ≤ ErrorThreshold ∨g ≤ PrecisionThreshold ;
33 return ε

Based on the our previous experimental work and exper-
imental observation, we develop an overhead-aware-best-fit
resource allocation algorithm. The fundamental drive be-
hind the algorithm is to avoid simultaneous launches and to
deploy virtual machines with the same image on the same
host machine sequentially. Algorithm 2 gives the pseudo
code of the OABF algorithm.

Each virtual machine v in the system is characterized by
its release time tr, host h that v is deployed on and waiting
time tw that denotes the offset from its release time. Once
a virtual machine is released, its release time is recorded
but without any host and waiting information. By running
Algorithm 2, the virtual machine is assigned to the host that
is predicted to have the shortest launching time. Its waiting
time that indicates actual deploy time point offsets from its
release time is given.

In particular, the algorithm compares the predicted launch
time for v when it is deployed on each of the hosts (Line 3
to Line 22). For each host, the algorithm calculates the vir-
tual machine launching overhead using equation 1 and 2
and its predicted launch time using equation 3. Then it
compares the predicted launch time for v when v starts at
different time points (Line 9 to Line 21). As mentioned
before, the intuition of the OABF algorithm is trying to
avoid simultaneous launch, hence we only check the time
points that the virtual machines that have been deploy on
the same host before v have predicted to finish image trans-

Algorithm 2: overhead-aware-best-fit Algorithm

Input : Empty Virtual Machine v = {tr, h, tw}, Host set
H = {h1, . . . , hn}, VM waiting queue
Q = {vq1 , . . . , v

q
m}

Output: Virtual Machine v = {tr, h, tw} with host and
waiting time information

1 v.h← null; v.tw ← 0; h′ ← null
2 t′w ← 0; tb ←∞; t′r ← v.tr
3 for i← 1 to n do
4 v.tr ← t′r
5 tp ← calculatePredictLaunchTime(hi, v)
6 if tp ≤ tb then
7 tb ← tp; h′ ← hi
8 end
9 for j ← 1 to m do

10 if vqj is deployed on hi then

11 tt ← vqj ’s predicted image transfer time

12 if tt + vqj .tr + vqj .tw ≥ v.tr then

13 v.tr ← tt + vqj .tr + vqj .tw

14 tp ← calculatePredictLaunchTime(hi, v)

15 if tp + tt + vqj .tr + vqj .tw − v.tr ≤ tb then

16 tb ← tp; h′ ← hi
17 t′w ← tt + vqj .tr + vqj .tw − v.tr
18 end

19 end
20 end

21 end

22 end
23 v.tr ← t′r; v.h← h′; v.tw ← t′w
24 return v

ferring process(Line 10 to Line 20). Finally, a best fit host h
with shortest predicted virtual machine launching time and
waiting time tw are assigned to v (Line 23).

4.2 Implementation
The implementation of the resource allocation automation

process is embedded into the load balancer module that in
the vcluster. Figure 1 depicts the architecture of load bal-
ancer in the vcluster.

Figure 1: Architecture of Load Balancer

As shown in Figure 1, the load balancer has four sub-
modules: job information update module, cloud informa-
tion synchronization module, launch time monitoring mod-
ule, and decision making module. The job information up-
date module is responsible for fetching information from the
batch job system. Since this paper focuses on reducing the
virtual machine launching overhead, we skip the details of
the job information update module.

The cloud information synchronization module is used to
synchronize real time virtual machine information, host in-

formation and cloud platform information with the informa-
tion predicted by load balancer. Due to the system error or
manual operations, the information predicted and kept in
load balancer may not be consistent with the real system
information. Hence, the cloud information synchronization
module is to check the consistence of stored predicted data
and real system information, and ensure the correct infor-
mation is provided to decision making process.

The launch time monitoring module is used to collect vir-
tual machine’s actual launching time. Once a virtual ma-
chine is actually launched and running, it reports the time
stamp to the launch time monitoring module. After the
launch time monitoring module receives the time stamp,
it calculates the launch time for that virtual machine and
record the time for the virtual machine launching overhead
training process. In the system, there is a virtual machine
waiting queue contains all the virtual machine that yet to
be launched or the virtual machine under launching process.
Once a virtual machine that in the waiting queue reports its
actual launching time, the virtual machine is removed from
the waiting queue.

The decision making module executes the resource allo-
cation algorithm. It takes the information from other three
modules to decide where, when and what to launch virtual
machines. In this paper, we only focus on when and where
to launch the virtual machine so that the average virtual
machine launching overhead is minimized.

Figure 2 depicts the workflow of resource allocation au-
tomation process. It illustrates how different modules coop-
erate to automatically allocate resources and calibrate the
virtual machine launching overhead reference model.

Figure 2: Resource Allocation Automation Workflow

When the load balancer starts, it first benchmarks all host
machine’s performance, i.e. disk I/O bandwidth, network
bandwidth, etc. It then goes into waiting state. Once a
virtual machine request is released, the load balancer needs
to decide when and where to launch the virtual machine.
Based on the virtual machine launching overhead reference
model, a predicted launch time is calculated. The predicted
launch time is adapted by OABF algorithm to determine the
host machine where the virtual machine should be deployed
on. Finally, the virtual machine is initialized and deployed
on the assigned host machine. After the virtual machine is
launched, the load balancer uses the actual launch time to
calibrate the accuracy of the model using Algorithm 1.

5. EVALUATION

The overhead-aware-best-fit algorithm is evaluated under
real cloud environment–FermiCloud. Since FermiCloud is
designed for scientific applications and it is very likely that
when an application that needs large amount resources is
submitted to the system, large number of virtual machines
are needed to be launched simultaneously. Hence, our eval-
uation focuses on the performance of the propose OABF
algorithm under larger number of simultaneous launches.

5.1 Experiment Setting
The experiments are performed under FermiCloudẆe use

total ten host machines for the experiment. All ten hosts
are configured with 8-core Intel(R) Xeon(R) CPU X5355 @
2.66GHz and 16GB memory. All these machines are con-
nected through high speed Ethernet. We use OpenNebula
as the cloud platform. The OpenNebula front end server
has 16-core Intel(R) Xeon(R) CPU E5640 @ 2.67GHz, 48GB
memory.

5.2 Launching Time Comparison
In order to evaluate the performance of the developed

OABF algorithm, we compare the virtual machine launching
time when the OpenNebula default scheduler is used with
the virtual machine launching time when the OABF algo-
rithm is used. Each time, we launch seventy (70) virtual
machines simultaneously. All virtual machines are using the
same image. Same set of contextualization scripts are used
for launching VMs. The first experiment is to launch virtual
machines using QEMU Copy On Write images (QCOW2)
with size 2.6GB.

0 20 40 60

500

1,000

1,500

2,000

Number of VMs

S
ec

o
n
d
s

Default Scheduler

OABF

Figure 3: VM Launching Time Comparison using QCOW2
Image

Figure 3 depicts the comparison of virtual machine launch-
ing time with the OpenNebula default scheduler and virtual
machine launching time with the OABF algorithm. All the
virtual machines are ordered by their launching time in in-
creasing order. From the Figure 3, it is clear that with the
OABF algorithm, virtual machines take less time to launch
than using OpenNebula default scheduler. The launching
time reduction from the OABF is rather stable from the
first virtual machine to the last virtual machine. The max-
imum reduction among the seventy virtual machine is 349
seconds. On average, the virtual machine launching time re-
duction is 245.44 seconds, which is more than four minutes
reduction compared to the OpenNebula default scheduler.

The second experiment is to test the performance on large
images. We also launch seventy (70) virtual machines at a

0 10 20 30 40 50 60 70

0

50

100

150

Number of VMs

M
in

u
te

s

Default Scheduler

OABF

Figure 4: VM Launching Time Comparison using RAW
image

time. Each virtual machine now use RAW image with size
16 GB. Figure 4 dispatches the comparison results between
virtual machines’ launching time with the OpenNebula de-
fault scheduler and virtual machines’ launching time with
the OABF algorithm. As shown in Figure 4, when the image
size is large, the virtual machine launching time reduction
from OABF can be clearly observed. The maximum reduc-
tion from OABF algorithm is 907 seconds which is about 15
minutes saving.

In our experiments, we have also observed that after 50
virtual machines being launched, the remaining virtual ma-
chines takes longer time to launch when using the OABF al-
gorithm than with the OpenNebula default scheduler. This
is because most of the remaining virtual machines (15 out of
20) are failed to launch under OpenNebula default scheduler
due to large amount I/O operations, hence there are just few
virtual machines are actually undergoing launching process.
On the other hand, when using the OABF algorithm, only
five virtual machines are failed to launch. The OABF al-
gorithm not only reduces the virtual machines’ launching
times when large amount simultaneous launches occur but
also can improve the success rate of such extreme scenario.
With the OABF algorithm, on average, the virtual machine
saves 103 seconds on launching process compared with the
OpenNebula default scheduler.

6. CONCLUSION
The FermiCloud is a private cloud built in Fermi National

Accelerator Laboratory to provide on-demand resources for
different scientific applications. The design goal of Fermi-
Cloud is to automatically provision resources for different
scientific applications so that the QoS of the scientific ap-
plication is met and the operational cost of FermiCloud is
minimized. The main challenge of designing the FermiCloud
system is to decide when and where to allocate resources so
that the goals are met. In this paper, we present a mech-
anism to automatically train the VM launching overhead
reference model that we previously developed. Based on
the virtual machine launching overhead reference model, we
have developed in this paper an overhead-aware-best-fit re-
source allocation algorithm to help the cloud reduce the av-
erage VM launching time. In the paper, we have also pre-
sented an implementation of the developed OABF algorithm
on FermiCloud. The experimental results indicate that the

OABF can significantly reduce the VM launching time (re-
duced VM launch time by 4 minutes on average) when large
number of VMs are launched simultaneously.

7. REFERENCES
[1] AWS HPC cloud computing.

http://aws.amazon.com/hpc/.

[2] Feature - clouds make way for STAR to shine.
http://www.isgtw.org/feature/isgtw-feature-clouds-
make-way-star-shine.

[3] High performance computing on microsoft azure for
scientific and technical applications.
http://research.microsoft.com/en-
us/projects/azure/high-perf-computing-on-windows-
azure.pdf.

[4] Mapping the secrets of the universe with google
compute engine.
https://cloud.google.com/developers/articles/mapping-
the-secrets-of-the-universe-with-google-compute-
engine?hl=ja.

[5] Source code for FermiCloud version vcluster.
https://github.com/philip-wu5/project/tree/fermi.

[6] Source code for KISTI version vcluster.
https://github.com/vcluster/project.

[7] R. J. Hyndman and A. B. Koehler. Another look at
measures of forecast accuracy. International journal of
forecasting, 22(4):679–688, 2006.

[8] M. Mao and M. Humphrey. Auto-scaling to minimize
cost and meet application deadlines in cloud
workflows. In High Performance Computing,
Networking, Storage and Analysis (SC), 2011
International Conference for, pages 1–12. IEEE, 2011.

[9] M. Mao and M. Humphrey. A performance study on
the vm startup time in the cloud. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference
on, pages 423–430. IEEE, 2012.

[10] Y. Z. Mengxia Zhu, Qishi Wu. A cost-effective
scheduling algorithm for scientific workflows in cloud.
Proceedings of 31st IEEE International Performance
Computing and Communications Conference, 2012.

[11] S.-Y. Noh, S. C. Timm, and H. Jang. vcluster: A
framework for auto scalable virtual cluster system in
heterogeneous clouds. Cluster Computing. To appear.

[12] A. M. Sampaio and J. G. Barbosa. Optimizing
energy-efficiency in high-available scientific cloud
environments. In Cloud and Green Computing (CGC),
2013 Third International Conference on, pages 76–83.
IEEE, 2013.

[13] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu,
H. W. Kimy, K. Chadwick, H. Jang, and S.-Y. Noh.
Automatic cloud bursting under fermicloud. In
Parallel and Distributed Systems (ICPADS), 2013
International Conference on, pages 681–686. IEEE,
2013.

[14] H. Wu, S. Ren, G. Garzoglio, S. Timm, G. Bernabeu,
and S.-Y. Noh. Modeling the virtual machine
launching overhead under fermicloud. In Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on, pages

374–383. IEEE, 2014.

