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Abstract. The transformer ratio of collinear beam-driven acceleration techniques can be significantly improved by shaping
the current profile of the drive bunch. To date, several current shapes have been proposed to increase the transformer ratio and
produce quasi-uniform energy loss within the drive bunch. Some of these tailoring techniques are possible as a result of recent
beam-dynamics advances, e.g., transverse-to-longitudinal emittance exchanger. In this paper, we propose an alternative class
of longitudinal shapes that enable high transformer ratio and uniform energy loss across the drive bunch. We also suggest a
simple method based on photocathode-laser shaping and passive shaping in wakefield structure to realize shape close to the
theoretically optimized current profiles.
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INTRODUCTION

In beam driven techniques, a “drive” bunch passes through a high-impedance medium and experiences a decelerating
field. The resulting energy loss can be transferred to a properly delayed “witness” bunch trailing the drive bunch in
the medium. The transformer ratio, defined as R = E+/E− [where E+ (reps. E−) is the maximum accelerating (reps.
minimum decelerating) field behind (reps. within) the drive bunch] is an important figure of merit as it describes the
energy transfer within the two bunches. For symmetric bunches, R ≤ 2. Going beyond R = 2 requires asymmetric
bunches and can be maximized by generating a flat decelerating field over the drive bunch; however, increasing R
generally reduces E+ and the relationship between them is left to a compromise [1].

In practice however, the acceleration gradients and acceleration frequencies depend on the interaction medium,
which for e.g. dielectric wakefield acceleration, depend on the dimensions of the structure. Therefore altogether,
the structure dimensions are also limited by the beam properties such as the beam energy and beta functions. At
low energy for example, due to the difficulty of fitting into relatively long structures, it is more valuable to excite
high-gradient wakes with shorter bunches with poor transformer ratios. On the other hand, high energy beams with
relatively smaller betatron functions can fit into much longer, and smaller structures. In this perspective it is more
useful to drive wakes efficiently with high transformer ratios.

To date, several current profiles capable of generating optimal transformer ratios have been proposed. These include
linearly ramped profile combined with a door-step or exponential initial distribution [2], and more recently the double-
triangle current profile [3]. In general, these shapes present discontinuities and rely on complicated beam manipulation
techniques which have limited applications [4, 5]. .

In this paper we introduce a new class of smooth current profiles which also lead to constant decelerating fields
across the drive bunch to lead to optimal transformer ratios. We also discuss a possible scheme for realizing these
shapes employing a shaped photocathode-laser pulse.

For simplicity we consider a wakefield structure that supports an axial wakefield described by the Green’s func-
tion [6]

G(z) = 2κ cos(ω0z/c), (1)

where κ is the loss factor and ω0 ≡ 2πc/λ with λ being the wavelength of the considered mode. Here z is the
distance behind the source particle responsible for the wakefield. We do not specialized to any wakefield mechanism
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and depending on the structure used many modes might be excited so that the Green’s function would consists of a
summation over these modes.

SMOOTH CURRENT PROFILES FOR ENHANCED TRANSFORMER RATIOS

Optimal-R shapes are useful for generating flat decelerating fields over the bunch; this inherently reduces the energy
spread incurred over the bunch. Additionally, these shapes lead to the most efficient energy transfer between a drive
and witness bunch which could lead to overall higher witness bunch energies.

Based on the work presented in Ref. [2], we consider a bunch-current profile described as a piecewise function I(t).
We take I(t) to be piecewise on two intervals [0,τ] and [τ,T ] and zero elsewhere. Also we constrain our search to
functions such that I(t) and İ(t)≡ dI/dt are continuous at t = τ .

As an example with consider a modulated linear ramp function over [0,τ] of the form

s(t) = at +bsin(ωt), (2)

where a and b are constant, and ω0 is the modulation frequency. We correspondingly introduce the current profile as
the piecewise )continuous) function

I(t) = I0


s(t) if 0≤ t < τ ,
s′(τ)t− s′(τ)τ + s(τ) if τ ≤ t ≤ T ,
0 elsewhere.

(3)

where I0 is the peak current. An example of current shape is depicted in Fig. 1 (a).

FIGURE 1. Example (a) of current profile (blue trace) described by Eq. 3 (a) and s(t) function (red trace). The corresponding
induced voltage (b) within (blue trace) and behind (red trace) the bunch. For these data I0 = 1, a = 1, b = 3a/5, n = 1, m = 5 and
q = 2. (the current and voltage units are arbitrary).

We further specialize, for simplicity, to the case where τ = 2nπ/ω (where n ∈ N) and ω0 = ω/q (where ω0 is
defined in Eq. 1 and m ∈ N) ) The decelerating field (V−) over the drive bunch is found to be

V−(t) = I0


− q2

ω2(q2−1)

(
[aq2− (bω +a)]cos ωt

q +bω cosωt−a(q2−1)
)

if 0≤ t < τ ,

− q2

ω2(q2−1)

(
bωq2 cos ωt−2πn

q +[aq2− (bω +a)]cos ωt
q +(bω +a)(1−q2)

)
if 0≤ t < τ ,

0 elsewhere.

(4)

The above decelerating voltage shows that when n
q = l

2 (where l ∈ N) the cos can be factored and results in a constant
decelerating field for t ∈ [τ,T ] of the form

V−t∈[τ,T ](t) =
−I0q2

ω2(q2−1)

(
[bω((−1)

2n
q q2−1)+a(q2−1)]cos

ωt
q

+(bω +a)(1−q2)

)
, (5)



so that the time dependence of the decelerating potential can be cancelled by choosing the ramp parameters a and b to
satisfy the equation

b =
a(1−q2)

ω[(−1)
2n
q q2−1]

. (6)

Specializing to the case where 2n/q is an odd number gives b = a(q2− 1)/[ω(1+ q2)] and the decelerating voltage
across the bunch takes the form

V−(t) = I0


aq2I0

ω2(1+q2)

(
q2 cos ωt

q +acosωt− (1+q2)
)

if 0≤ t < τ ,
2aI0q4

ω2(1+q2)
if τ ≤ t < T ,

0 elsewhere.

(7)

The latter case is illustrated in Fig. 1 (b) with l ≡ n/q= 1/2. Likewise the induced oscillating voltage behind the bunch
can be obtained from

V+(t) =
aq2I0

ω2(1+q2)

(
π[q2(1−2m)−1]sin

(
ωt
q
−πm

)
+2q2 cos

(
ωt
q
−πm

))
(8)

The second term can be dropped to good approximation to find a lower estimate on the transformer ratio, without
loss of generality

R =

(
m+

1−q2

2q2

)
π, (9)

where m is the number of the fundamental-mode wavelengths within the total bunch length. We note that for short
bunch durations (i.e. as needed to produce high accelerating fields), the latter transformer ratio is higher than other
proposed distributions.

BEAM SHAPING USING A TAILORED PHOCATHODE LASER

To date, longitudinal shaping for enhanced transformer ratios has only been demonstrated using a mask in a dispersive
section. Another proposed technique relies on using a mask to shape a beam transversely, and use an emittance
exchanger to rotate the shape longitudinally. In the former case, the scheme is limited to specific shapes in the mask,
and inherits beam losses. Additionally shapes which require sharp edges (e.g. double-triangle) are limited by the
dispersion and emittance of the beam at the mask. The latter scheme requires a deflection cavity in a dispersive section
which complicates the overall procedure; moreover, this scheme also inherits beam losses from a mask upstream, and
is also limited by beam emittances.

An alternative approach is to longitudinally tailor the laser profile in a high-gradient photoinjector. In such a
scenario, electrons emitted from the photocathode will have an initial longitudinal distribution similar to the injected
laser pulse. We consider an example of an S-Band gun [7] operating at 140 MV/m to reduce the space-charge
effects. Generally higher accelerating fields in a gun lead to higher charge densities which could drive larger gradient
wakefields inside DLWs. We use the particle-tracking program astra which takes into account space charge effects
using a cylindrical-symmetric algorithm [11]. We model the 1-nC electron bunch considered in our studies with 50,000
macroparticles. Additionally the laser is chosen to have a transverse rms spot size of σc = 0.8 mm and rms duration of
σt = 1 ps. A solenoidal lens is placed downstream of the gun to maintain the transverse size below 1 cm over a drift
length of 1 m.

In general, photoemission is a intricate process which depends on many parameters including the amplitude and
phase (with respect to the laser) of the applied accelerating field on the photocathode surface, the bunch charge, and
the cathode material properties. It is challenging to analytically find an optimum laser shape that provide a given
current distribution at a given location. Work toward the production of ramped current profile was investigated in
the context of seeded free-electron laser research [8] and experimentally demonstrated at the FERMI facility [9].
Additionally, we demonstrated in Ref. [10] that a passive technique employing a wakefield structure combined with a
non-ultra-relativistic bunch could produce ramped bunch.



Therefore to explore the production of tailored electron bunches using temporally-shaped photocathode laser pulses,
we carry numerical simulation using the ASTRA particle tracking program [11]. and explored the outcome of various
shapes. In this section we report on the performance of the exponential distribution given by:

f (t) = f0(eµt −1)H(θ − t), (10)

where µ is a growth rate and θ is the ending time of the pulse H(t) is the Heaviside function. The laser intensity
f0 has to be normalized to produce the required bunch charge after the photo-emission process. We consider three
case of exponentially-shaped laser distributions. All have a total pulse duration of θ = 5 ps but different steepness
characterized by a growth rate µ = 3.90×105, 6.92×105, 1.00×106; see Fig. 2 (upper-right plot).

The growth rate µ primarily influences the electrostatic field inside the bunch which affects the final longitudinal
phase space. The case of large growth rate yield the formation of ellipsoidal distribution via the blow-out regime. In the
limit of small growth rates, the laser profile become linearly ramped but the ramp quickly dissipates. Figure 2 (upper
right, and lower row plots) displays snapshots of the the longitudinal phase spaces and associated current distribution
for the three case of growth rate mentioned.

FIGURE 2. Initial photocathode laser pulse temporal distributions (top left) and snapshots of the current (a) and longitudinal
phase space (b) at 25 cm (red), 50 cm (green), 100 cm (blue) from the photocathode. The top-right, lower-left and lower-right plots
correspond respectively to the initial laser distributions appearing as a red, green, and blue trace (with increasing steepness) in the
top-left plot.

Finally, we quantify the capability of the formed electron bunches to serve as a wakefield drive by considering their
applications to drive wakefield in a dielectric structure. We therefore convolve the shapes with the one-dimensional
Green’s function associated to a cylindrically-symmetric dielectric-line waveguide (DLW) [12]. We choose a DLW
with inner radius a = 165 µm, outer radius b = 195 µm, and relative dielectric permittivity ε = 5.7; here we note
that in order to fit the beam into a structure with such dimensions would require a significant increase in beam energy
which could also “freeze” the evolution of the beam. For the three cases, we record E+ and R along the drift following
the photocathode, the results are shown in Fig. 3. The results indicate that both large E+ and R are achievable for the
different laser distribution along the beamline. The variation parameter µ adds some flexibility between large E+ and
R and generally larger µ lead to larger E+. Although in our examples, the bunch shape is still evolving, it could in



FIGURE 3. The calculated E+ (blue trace) and R (red trace) as a function of drift length from the photocathode in a DLW with
dimensions described above. The top left, right, and and bottom left plots correspond to initial exponential distributions red, green,
blue shown in Fig. 2 (top left) respectively.

principle be possible to add a booster cavity and optimize the setup to ensure the optimum shape is formed downstream
of the booster cavity at a sufficiently high energy to freeze the longitudinal motion within the bunch.

ACKNOWLEDGMENTS

This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-10-1-0051, to
Northern Illinois University, by US DOE contracts No. DE-SC0011831 to Northern Illinois University and DE-AC02-
07CH11359 to the Fermi research alliance LLC.

REFERENCES

1. F. Lemery, P. Piot, International Particle Accelerator Conference (IPAC). WEPPR035 (2012).
2. K. L. F. Bane, P. Chen, P. B. Wilson, “On collinear wakefield acceleration", SLAC-PUB-3662 (1985).
3. B. Jiang, C. Jing, P. Schoessow, J. Power, and W. Gai, Phys. Rev. ST Accel. Beams 15, 011301 (2012).
4. P. Muggli, V. Yakimenko, M. Babzien, E. Kallos, and K. P. Kusche, Phy. Rev. Lett. 101, 054801 (2008).
5. P. Piot, Y.-E Sun, J. G. Power, and M. Rihaoui, Phys. Rev. ST Accel. Beams 14, 022801 (2011).
6. A. Chao, Physics of Collective Instabilities in High-Energy Accelerators, Wiley Series in Beams & Accelerator Technologies,

John Wiley and Sons (1993).
7. D. T. Palmer, R. H. Miller, H. Winick, X.J. Wang, K. Batchelor, M. Woodle, and I. Ben-Zvi, “Microwave measurements of

the BNL/SLAC/UCLA 1.6-cell photocathode RF gun", in Proceedings of the 1995 Particle Accelerator Conference, PAC’95
(Dallas, TX, 1995), 982 (1996).

8. G. Penco, M. Trovøand S. M. Lidia, Proceedings of FEL 2006, BESSY, Berlin, Germany, 621 (2006).
9. G. Penco, M. Danailov, A. Demidovich, E. Allaria, G. De Ninno, S. Di Mitri, W. M. Fawley, E. Ferrari, L. Giannessi, and M.

Trovó, Phys. Rev. Lett. 112, 044801 (2014).
10. F. Lemery, and P. Piot, these proceedings.
11. K. Flöttmann, ASTRA: A space charge algorithm, User’s Manual, available from the world wide web at

http://www.desy.de/∼mpyflo/AstraDokumentation (unpublished).
12. M. Rosing, and W. Gai, Phys. Rev. D 42, 1829 (1990).




