
Proceedings of the Second Annual LHCP
FERMILAB-CONF-14-339-E
September 19, 2014

Properties of the top quark

Andreas W. Jung

On behalf of the ATLAS, CDF, CMS and D0 Experiments,

Particle Physics Department

Fermilab, Batavia ,IL 60510, U.S.A

ABSTRACT

Recent measurements of top-quark properties at the LHC and the Tevatron are
presented. Most recent measurements of the top quark mass have been caried out
by CMS using 19.7/fb of

√
s = 8 TeV data including the study of the dependence

on event kinematics. ATLAS uses the full Run I data at
√

s = 7 TeV for a ”3D”
measurement that significantly reduces systematic uncertainties. D0 employs the
full Run II data using the matrix element method to measure the top quark mass
with significantly reduced systematic uncertainties. Many different measurements
of the top quark exist to date and the most precise ones per decay channel per
experiment have been combined into the first world combination with a relative
precision of 0.44%. Latest updates of measurements of production asymmetries
include the measurement of the tt production asymmetry by D0 employing the
full Run II data set, by CMS and ATLAS (including the polarization of the top

quark) employing both the full data set at
√

s = 7 TeV. CMS uses the full√
s = 8 TeV data to measure the top quark polarization in single top production,

the ratio R of the branching fractions B(t → Wb)/B(t → Wq) and to search for
flavor changing neutral currents. The results from all these measurements agree

well with their respective Standard Model expectation.
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1 Introduction

The top quark is the heaviest known elementary particle and was discovered at the Tevatron pp collider in
1995 by the CDF and D0 collaboration [1, 2] with a mass around 173 GeV. At the Tevatron the production
is dominated by the qq annihilation process, where at the LHC the gluon-gluon fusion process dominates.
The top quark has a very short lifetime, which prevents the hadronization process of the top quark. Instead
bare quark properties can be observed by measuring top quark properties. Measurements in the top quark
sector are becoming highly precise nowadays, especially measurements of the top quark mass go well below
0.5% in relative uncertainties.
The measurements presented here are performed using either the dilepton (ℓℓ) final state or the lepton+jets
(ℓ+jets) final state. Within the ℓ+jets final state one of the W bosons (stemming from the decay of the
top quarks) decays leptonically, the other W boson decays hadronically. For the dilepton final state both
W bosons decay leptonically. The branching fraction for top quarks decaying into Wb is almost 100%. Jets
originating from a b-quarks are identified (b-tagged) by means of multi-variate methods employing variables
describing the properties of secondary vertices and of tracks with large impact parameters relative to the
primary vertex.

2 Top Quark Mass

The presented measurements rely on different techniques in order to extract the top quark mass. The mea-
surements either apply the leading order Matrix Element method based on differential cross sections, the
Ideogram method based on an event likelihood, the template method comparing histograms of sensitive vari-
ables in data to simulations or alternative methods, such as endpoint- or J/ψ-method. All top quark mass
measurements are dominated by systematic uncertainties and the most dominant ones are related to the
b-jet energy scale (JES), the choice of the signal generator and the modeling of the hadronization and color
reconnection effects. Furthermore there is an additional uncertainty, which originates from the implementa-
tion of the quark mass in the MC employed to measure the top quark mass. This is a theoretical uncertainty
on top of the experimental uncertainties and aims to answer whether the implemented mass definition is
close to the pole mass or MS mass and which uncertainty is associated with the definition. Currently this
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Figure 1: Summary of (a) input measurements to the first LHC + Tevatron top quark mass combination
compared to earlier combinations at LHC and Tevatron. Measurements are in good agreement with each
other as indicated by the (b) pulls.
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uncertainty is of the order of 0.5 to 1 GeV. Strategies to overcome the limitations in terms of experimental
and theoretical uncertainties are already persued and will become more important for the upcoming run of
the LHC. Measurements less sensitive to these uncertainties are, for example, employing multi-dimensional
fits to extract the top quark mass or alternative methods with largely orthogonal correlations of experimental
systematic uncertainties.
The first world combination of top quark mass measurements [3] by all four collaborations combines the
most precise measurement per decay channel and per experiment. After careful and detailed study of the
correlations of systematic uncertainties a total of 11 individual measurements are combined using the BLUE
method. Figure 1(a) shows the input measurements compared to the world average, Tevatron only and LHC
only combinations. The input measurements are in nice agreements as demonstrated by the pulls shown in
Figure 1(b). The combined top quark mass is mt = 173.34± 0.76 (stat. + sys. + JES) GeV, corresponding
to a total relative uncertainty of 0.44%.
In the following the latest updates by the four collaborations on top quark measurement are discussed. CMS
uses the full Run II data at

√
s = 8 TeV to measure the top quark mass in the ℓ+jets decay channel [4].

After requiring exactly 2 b-tags a purity of 95% is achieved allowing a precise measurement of the top quark
mass and its dependence of various kinematic quantities. These quantities are sensitive to the models and
MC tunes employed to study systematic uncertainties. Figure 2(a) shows that dependence as a function
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Figure 2: Kinematic dependence of the (a) top mass on ∆Rqq by CMS compared to various models sensitive
to color reconnection, more details in the text. The (b) two-dimensional likelihood as a function of the top
quark mass and the in-situ calibration factor as measured by D0.

of ∆Rqq . The distribution is sensitive to the modeling of color reconnections but currently all models are
in agreement with the various tunes indicating that more statistics is needed to understand the interplay.
The measurements yields mt = 172.04 ± 0.77 (stat. + sys. + JES) GeV corresponding to a relative uncer-
tainty of 0.45%. ATLAS employs the full

√
s = 7 TeV data for a three-dimensional template method to

determine mt, jet energy scale factor (JSF) for light quarks and the JSF for b-quarks [5]. Variables sensitive
to the top mass and the JSFs are mreco

t , reco
W and Rreco

ℓb depends more strongly on the number of b-tags.
The measurements yields mt = 172.31 ± 0.75 (stat. + JSF + bJSF) ± 1.35 (sys.) GeV. In the case of D0,
the most precise measurement is done in the ℓ+jets decay channel [6] employs the so-called matrix element
method (ME), which calculates an event probability density from differential cross sections and detector
resolutions. The transfer function relates the probability density of measured quantities to the partonic
quantities. As one of the W bosons decays hadronically, a constraint on the W mass can be used to fit
the jet energy scale in-situ and derive an additional calibration factor. The measurement uses 9.7/fb and
is currently one of the most precise mass measurements by all four collaborations. Figure 2(b) shows the
two-dimensional likelihood as a function of the top quark mass and the in-situ calibration factor. It yields
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a mass of mt = 174.98 ± 0.41 (stat.) ± 0.64 (sys. + JES) GeV, corresponding to a total relative uncertainty
of 0.43%. The CDF measurement in the ℓ+jets decay channel yields mt = 172.85 ± 1.12 (tot.) GeV [7],
corresponding to a total relative uncertainty of 0.65%.
The latest measurement of the mass difference between the top and anti-top quark is carried out by ATLAS
and yields ∆mt = 0.67 ± 0.61 (stat.) ± 0.41 (sys.) GeV [8]. All measurements of the mass difference of the
top and anti-top quark by CDF, CMS and D0 [9, 10, 11], as well as a search for Lorentz invariance violation
by D0 [12], are consistent with CPT invariance.
Direct measurements of the top quark mass are becoming ever more precise and provide a stringent self-
consistency test of the SM by correlating mt versus mW . Together with the measurement of the mass of
the recently discovered Higgs boson [13, 14] this is a strong self-consistency test of the SM [15]. Further-
more the stability of the electroweak vacuum can be studied and currently the preferred experimental range
indicates that the vacuum is meta-stable [16]. The current measurements and the theoretical extrapolation
seem to indicate that the vacuum is meta-stable, and more measurements are needed to fully understand
this relation.

3 Top quark production asymmetries

The different initial state makes measurements of angular correlations in tt events, such as production
asymmetries, complementary between the Tevatron and the LHC. Experimentally, there are two approaches
to measure these asymmetries: Either top quarks are fully reconstructed using a kinematic reconstruction or
only a final-state particle, e.g. a lepton (‘lepton-based asymmetries’) is reconstructed. The latter avoids the
reconstruction of top-quarks, which is usually more affected by detector resolution and migration effects. The
forward-backward asymmetry Att

FB
at the Tevatron measures ∆y = yt − yt, whereas the charge asymmetry

Att
C

at the LHC measures ∆|y| = |yt| − |yt| and employing these the production asymmetries are defined as

Att
FB =

N(∆y > 0) −N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
, and Att

C =
N(∆|y| > 0) −N(∆|y| < 0)

N(∆|y| > 0) +N(∆|y| < 0)
, respectively. (1)

As mentioned above an additional observable is given by the lepton-based asymmetries, which are similarly
defined only that instead of top quark rapidities, the rapidities of the decay leptons are used to measure the
production asymmetries.
One of the latest measurements of Att

C
at ATLAS uses the full

√
s = 7 TeV data in the ℓ+jets decay channel

(a) (b)

Figure 3: The (a) Att
C

at parton level as a function of (a) Mtt for βtt
z > 0.6 and a (b) summary of Att

C

measurements at the LHC compared to the predictions at
√
s = 7 or 8 TeV.
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with at least 1 b-tag [17]. In addition to the inclusive Att
C

also the kinematic dependencies of Att
C

from

m(tt) and βtt
z are measured and found to be in agreement with the SM predictions as shown in Figure 3(a).

Given the large uncertainties the data are also in agreement with two exemplary beyond the SM models
implementing contributions of axi gluons. The inclusive measurement yields Att

C
= 0.006 ± 0.010, and is in

agreement with the theory prediction of Att
C

= 0.0123± 0.0005.

The latest update by CMS measures Att
C

also employing the full
√
s = 7 TeV data, but the dilepton de-

cay channel with at least 1 b-tag [18]. Top quarks are reconstructed using the analytical matrix weighting

technique. The measurement also includes the kinematic dependency of Att
C

from m(tt) and in addition

the measurement of Att
C

using decay leptons, with results being in agreement to the SM predictions. The

inclusive measurements yield Att
C

= −0.010 ± 0.019 and Alep

C
= 0.009 ± 0.012 compared to the theoretical

prediction of Att
C

= 0.0123± 0.0005 and Alep

C
= 0.0070± 0.0003, respectively.

CDF uses data corresponding to 9.4 fb−1 of integrated luminosity and employs a kinematic reconstruction to
reconstruct the tt final state in the ℓ+jets decay channel [20]. CDF measures an inclusive asymmetry of Att

FB

= 0.164 ± 0.045 (stat. + syst.) at the parton level compared to the SM prediction of Att
FB

= 0.088 ± 0.005

(NLO QCD ⊕ electroweak corrections) [19]. In addition the kinematic dependency of Att
FB

is extracted, by
measuring ∆y in bins of Mtt, as shown in Fig. 4(a). The CDF results show a dependence on Mtt, which is
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Figure 4: The (a) Att
FB

at parton level as a function of the invariant mass of the tt pair Mtt as measured
by CDF and D0 compared to the predicted dependency by NLO QCD ⊕ electroweak corrections [19] or

mc@nlo. Summary of (b) Att
FB

and Alep

FB
measurements at the Tevatron. For Alep

FB
these are results of the

combination of results in the ℓ+jets and dilepton decay channel.

different from the SM expectation by 2.4 standard deviations.
D0 uses the full Run II data, corresponding to 9.7 fb−1 of integrated luminosity [21], and also fully recon-
structs the tt final state using a kinematic reconstruction. The measurement in the ℓ+jets decay channel
results in an inclusive asymmetry of Att

FB
= 0.106 ± 0.030 (stat. + syst.) at the parton level. The result is

compatible with the SM and results by CDF. D0 does not see an indication for a strong m(tt) dependency
beyond the one expected by the SM as shown in Fig. 4(a). It should be noted that very recently predictions
at NNLO pQCD by Mitov et al. became availabe (presented at the CKM14 conference) with a predicted

value at NNLO including electroweak corrections of Att
FB

≈ 10%. Differential predictions of Att
FB

in m(tt)
are needed to fully understand the picture.
The D0 result in terms of the lepton-based asymmetries in the ℓ+jets channel is Alep

FB
= 0.047 ± 0.026

(stat. + syst.) at the parton level [22] and in the dilepton channel the corresponding measurement is Alep

FB

= 0.044 ± 0.039 (stat. + syst.), whereas the dilepton asymmetry is measured to be Aℓℓ = 0.123 ± 0.056. A

summary of Att
FB

and Alep

FB
measurements at the Tevatron is given in Figure 4(b). It is interesting to note
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that the ratio of the two lepton-based asymmetries in the dilepton channel shows a deviation from the SM
prediction of about two standard deviations.
CDF employed data corresponding to up to 9.4 fb−1 of integrated luminosity and performed a combination
of Alep

FB
measurements. After combining results from ℓ+jets and dilepton channels Alep

FB
is 0.09+0.028

−0.026 [23], see
Figure 4(b).
Currently, the results from the LHC are not yet significant enough in order to make a precise statement on
the agreement with the SM. For measurements of Att

FB
the deviations from the SM predictions got smaller

with the new D0 measurement employing the full data set, but are still higher than the SM predictions. CDF
results with the full data set are showing deviations at the two s.d. level. It should be noted that the indi-
vidual results on Att

FB
and Alep

FB
employ the full data recorded by CDF and D0 and studies on combinations

are currently ongoing.

4 Top quark polarization
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Figure 5: The unfolded cos θ∗ distribution in measured in
t-channel single top quark events used to measure the po-
larization of the top quark.

Measurements of the polarization of the top
quark can provide hints on contributions of
new physics since new physics can polarize top
quarks. The latest measurement by ATLAS of
the top quark polarization assumes that the
polarization is either introduced by CP con-
serving (CPC) or violating processes (CPV )
[24]. With the spin analyzing power αl the
measurement assuming CPC processes yields
αlPCPC = −0.035± 0.014 (stat.) ± 0.037 (sys.)
and the measurement assuming CPV yields
αlPCPV = 0.020 ± 0.016 (stat.)+0.013

−0.017 (sys.),
both are in agreement with the SM expecta-
tion of negligible polarization. Good agreement
with the SM is also observed by earlier mea-
surements in CMS [25] and D0 [26].
In contrast to tt production, where negli-
gible top quark polarization is expected, in
the production of single top quarks the top
quarks are expected to be polarized in the
SM. CMS employed the full data set at

√
s =

8 TeV to select single top quark events in
the t-channel [27]. The polarization agrees
with SM expectations and is measured to be
Pt = 0.82 ± 0.12 (stat.) ± 0.32 (sys.).

5 Branching fraction R and

rare decays of the top quark

Measurements of the branching fraction R = B(t → Wb)/B(t → Wq) and deviations in R from SM
expectation could indicate contributions of new physics, such as a charged Higgs. The latest update is
carried out by CMS employing the full data set at

√
s = 8 TeV [28]. Events are selected in the dilepton

decay channel separated by the number of jets and b-tags for the three dilepton channels of ee, µµ and eµ.
The measurement is currently the most precise measurement of R and yields 1.014±0.003 (stat.)±0.032 (sys.)
with a lower limit of R > 0.955 at 95% confidence level (CL). In addition a lower limit for Vtb is extracted
as well and it is 0.975 at 95% CL. Other measurements are also in agreement with the SM and no hints for
contribution of new physics are seen [29, 30].
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Another probe to identify contributions of new physics are searches for processes involving flavor changing
neutral currents (FCNC). Such processes are highly suppressed in the SM but large enhancements are possibly
in many models of new physics. One of the latest updates in this area is the search for FCNC in ℓ+jets final
state with additional 2 leptons originating from the decay of the Z boson decay [31]. Limits on a variety
of FCNC processes, such as B(t → ug) and B(t → cg), are set but no indications of FCNC are observed.
Similar searches also showing no indication of FCNC have been performed earlier at ATLAS [32] and D0
[33].

6 Conclusions

Various recent measurements of top quark properties at the LHC and at the Tevatron are discussed. Direct
measurements of the top quark mass are becoming ever more precise and provide a stringent self-consistency
test of the SM and new insights into the question of the stability of the electroweak vacuum. Measurements
of production asymmetries at the LHC are not yet significant enough in order to see deviations from the SM
predictions. For measurements of Att

FB
and Alep

FB
at the Tevatron the deviations from the SM predictions

got smaller with the new D0 measurement employing the full data set. Studies on combinations of Att
FB

and

Alep

FB
at the Tevatron are currently ongoing. Top quark polarization has been observed in single top quark

production are is in agreement with the SM. All of the presented results in terms are in good agreement
with the Standard Model expectations and do not show any hints for new physics.
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