
Eur. Phys. J. C manuscript No.
(will be inserted by the editor)

Boosted objects and jet substructure at the LHC
Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012.

A. Altheimer1, A. Arce2, L. Asquith3, J. Backus Mayes4, E. Bergeaas Kuutmann5,
J. Berger6, D. Bjergaard2, L. Bryngemark7, A. Buckley8, J. Butterworth9,
M. Cacciari10, M. Campanelli9, T. Carli11, M. Chala12, B. Chapleau13, C. Chen14,
J.P. Chou15, Th. Cornelissen16, D. Curtin17, M. Dasgupta18, A. Davison9,
F. de Almeida Dias19, A. de Cosa20, A. de Roeck11, C. Debenedetti8, C. Doglioni21,
S. D. Ellis22, F. Fassi23, J. Ferrando24, S. Fleischmann16, M. Freytsis25,
M.L. Gonzalez Silva26, S. Gonzalez de la Hoz23, F. Guescini21, Z. Han27, A. Hook4,
A. Hornig22, E. Izaguirre4, M. Jankowiak4, J. Juknevich28, M. Kaci23, D. Kar24,
G. Kasieczka29, R. Kogler30, A. Larkoski4, P. Loch31, D. Lopez Mateos27,
S. Marzani32, L. Masetti33, V. Mateu34, D. W. Miller35, K. Mishra36, P. Nef4,
K. Nordstrom24, E. Oliver Garcia23, J. Penwell37, J. Pilot38, T. Plehn29,
S. Rappoccio39, A. Rizzi40, G. Rodrigo23, A. Safonov41, G. P. Salam10,11, J. Salt23,
S. Schaetzel29, M. Schioppa42, A. Schmidt29, J. Scholtz22, A. Schwartzman4,
M. D. Schwartz27, M. Segala43, M. Son44, G. Soyez45, M. Spannowsky32, I. Stewart34,
D. Strom46, M. Swiatlowski4, V. Sanchez Martinez23, M. Takeuchi29, J. Thaler34,
E. Thompson1, N. V. Tran36, C. Vermilion25, M. Villaplana23, M. Vos23, J. Wacker4,
and J. Walsh47

1Columbia University, Nevis Laboratory, Irvington, NY 10533, USA
2Duke University, Durham, NC 27708, USA
3Argonne National Laboratory, Lemont, IL 60439, USA
4SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
5Deutsches Elektronen-Synchrotron, DESY, D-15738 Zeuthen, Germany
6Cornell University, Ithaca, NY 14853, USA
7Lund University, Lund, SE 22100, Sweden
8University of Edinburgh, EH9 3JZ, UK
9University College London, WC1E 6BT, UK
10LPTHE, UPMC Univ. Paris 6 and CNRS UMR 7589, Paris, France
11CERN, CH-1211 Geneva 23, Switzerland
12CAFPE and U. of Granada, Granada, E-18071, Spain
13McGill University, Montreal, Quebec H3A 2T8, Canada
14Iowa State University, Ames, Iowa 50011, USA
15Rutgers University, Piscataway, NJ 08854, USA
16Bergische Universitaet Wuppertal, Wuppertal, D-42097, Germany
17YITP, Stony Brook University, Stony Brook, NY 11794-3840, USA
18University of Manchester, Manchester, M13 9PL, UK
19UNESP - Universidade Estadual Paulista, Sao Paulo, 01140-070, Brazil
20INFN and University of Naples, IT80216, Italy
21University of Geneva, CH-1211 Geneva 4, Switzerland
22University of Washington, Seattle, WA 98195, USA
23Instituto de F́ısica Corpuscular, IFIC/CSIC-UVEG, E-46071 Valencia, Spain
24University of Glasgow, Glasgow, G12 8QQ, UK
25Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
26Universidad de Buenos Aires, AR-1428, Argentina
27Harvard University, Cambridge, MA 02138, USA
28Weizmann Institute, 76100 Rehovot, Israel
29Universitaet Hamburg, DE-22761, Germany
30Universitaet Heidelberg, DE-69117, Germany
31University of Arizona, Tucson, AZ 85719, USA
32IPPP, University of Durham, Durham, DH1 3LE, UK
33Universitaet Mainz, DE 55099, Germany
34MIT, Cambridge, MA 02139, USA
35University of Chicago, IL 60637, USA
36Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
37Indiana University, Bloomington, IN 47405, USA
38University of California, Davis, CA 95616, USA
39Johns Hopkins University, Baltimore, MD 21218, USA
40INFN and University of Pisa, Pisa, IT-56127, Italy
41Texas A & M University, College Station, TX 77843, USA
42INFN and University of Calabria, Rende, IT-87036, Italy
43Brown University, Richmond, RI 02912, USA
44Yale University, New Haven, CT 06511, USA
45CEA Saclay, Gif-sur-Yvette, FR-91191, France
46University of Illinois, Chicago, IL 60607, USA
47University of California, Berkeley, CA 94720, USA

ar
X

iv
:1

31
1.

27
08

v2
  [

he
p-

ex
] 

 4
 D

ec
 2

01
3

Fermilab-Pub-13-669

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.



2 BOOST2012 participants

Abstract This report of the BOOST2012 workshop

presents the results of four working groups that stud-

ied key aspects of jet substructure. We discuss the po-

tential of the description of jet substructure in first-

principle QCD calculations and study the accuracy of

state-of-the-art Monte Carlo tools. Experimental limi-

tations of the ability to resolve substructure are evalu-

ated, with a focus on the impact of additional proton

proton collisions on jet substructure performance in fu-

ture LHC operating scenarios. A final section summa-

rizes the lessons learnt during the deployment of sub-

structure analyses in searches for new physics in the

production of boosted top quarks.

Keywords boosted objects · jet substructure ·
beyond-the-Standard-Model physics searches · Large

Hadron Collider

1 Introduction

With a centre-of-mass energy of 7 TeV in 2010 and 2011

and of 8 TeV in 2012 the LHC has pushed the energy

frontier well into the TeV regime. Another leap in en-

ergy is expected with the start of the second phase of

operation in 2014, when the centre-of-mass energy is to

be increased to 13-14 TeV. For the first time experi-

ments produce large samples of W and Z bosons and

top quarks with a transverse momentum pT that con-

siderably exceeds their rest mass m (pT � m). The

same is true also for the Higgs boson and, possibly,

for as yet unknown particles with masses near the elec-

troweak scale. In this new kinematic regime, well-known

particles are observed in unfamiliar ways. Classical re-

construction algorithms that rely on a one-to-one jet-

to-parton assignment are often inadequate, in particu-

lar for hadronic decays of such boosted objects.

A suite of techniques has been developed to fully

exploit the opportunities offered by boosted objects at

the LHC. Jets are reconstructed with a much larger ra-

dius parameter to capture the energy of the complete

(hadronic) decay in a single jet. The internal structure

of these fat jets is a key signature to identify boosted

objects among the abundant jet production at the LHC.

Many searches use a variety of recently proposed sub-

structure observables. Jet grooming techniques1 improve

the resolution of jet substructure measurements, help

1 We refer to three related techniques as jet grooming: fil-
tering [1], trimming [2] and pruning [3]. Unless stated oth-
erwise, all studies in this paper of these techniques apply a
common set of parameters that is widely used in the commu-
nity.

to reject background, and increase the resilience to the

impact of multiple proton-proton interactions.

In July 2012 IFIC Valencia organized the 2012 edi-

tion [4] of the BOOST series of workshops, the main

forum for the physics of boosted objects and jet sub-

structure2. Working groups formed during the 2010 and

2011 workshops prepared reports [9,10] that provide an

overview of the state of the field and an entry point

to the now quite extensive literature and present new

material prepared by participants. In this paper we

present the report of the working groups set up dur-

ing BOOST2012. Each contribution addresses an im-

portant aspect of jet substructure as a tool for the study

of boosted objects at the LHC.

A good understanding of jet substructure is a pre-

requisite to further progress. Predictions of jet sub-

structure based on first-principle, analytical calculations

may provide a more precise description of jet substruc-

ture and allow deeper insight. However, resummation of

the leading logarithms in this case is notoriously diffi-

cult and the predictions may be subject to considerable

uncertainties. In fact, one might ask:

– Can jet substructure be predicted by first-principle

QCD calculations and compared to data in a mean-

ingful way?

The findings of the working group that was set up to

evaluate the limitations and potential of the most pop-

ular approaches are presented in Section 2.

While progress toward analytical predictions contin-

ues, searches for boosted objects that employ jet sub-

structure rely on the predictions of mainstream Monte

Carlo models. It is therefore vital to answer this ques-

tion:

– How accurately is jet substructure described by state-

of-the-art Monte Carlo tools?

The BOOST2010 report [9] provided a partial answer,

based on pre-LHC tunes of several popular leading-

order generators. After the valuable experience gained

in the first three years of operation of the LHC, it seems

appropriate to revisit this question in Section 3.

A further potential limitation to the performance

of jet substructure is the level to which the detector re-

sponse can be understood and modelled. Again, the first

years of LHC operation have provided valuable experi-

ence on how well different techniques work in a realis-

tic experimental environment. In particular, the impact

of multiple proton-proton interactions (pile-up) on sub-

structure measurement has been evaluated exhaustively

2 Previous BOOST workshops took place at SLAC (2009,
[5]), Oxford University (2010, [6]) and Princeton University
University (2011, [7]). BOOST2013 [8] was organized by the
University of Arizona from August 12th to 16th.
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and mitigation schemes have been developed. Antici-

pating a sharp increase in the pile-up activity in future

operating scenarios of the LHC, one might worry that in

the future the detector performance might be degraded

considerably for the sensitive substructure analyses. A

third working group was therefore given the following

charge:

– How does the impact of additional proton proton

collisions limit jet substructure performance at the

LHC, now and in future operating scenarios?

Section 4 presents the contributions regarding jet re-

construction performance under extreme contributions,

with up to 200 additional proton-proton collisions in

each bunch crossing. We present the prospects for fake

jet rates and the impact of pile-up on jet mass mea-

surements under these conditions.

In the first years of operation of the LHC several

groups in ATLAS and CMS have deployed techniques

specifically developed for the study of boosted objects

in several analyses. Jet substructure has become an

important tool in many searches for evidence for new

physics. In Section 5 we present the lessons learnt in

several studies of boosted top quark production that

have been the first to apply these techniques and an-

swer the following question:

– How powerful is jet substructure in studies of boosted

top production, and how can it be made even more

powerful?

We hope that the answers to the above questions

prepared by the working groups may shed some light

on this rapidly evolving field.

2 Measurements and first-principle QCD

predictions for jet substructure

Section prepared by the Working Group: ’Predictions

and measurements of jet substructure observables’, A.

Davison, A. Hornig, S. Marzani, D.W. Miller, G. Salam,

M. Schwartz, I. Stewart, J. Thaler, N.V. Tran, C. Ver-

milion, J. Walsh)

The internal structure of jets has traditionally been

characterized in jet shape measurements. A detailed in-

troduction to the current theoretical understanding and

of the calculations needed for observables that probe

jet substructure is provided in last year’s BOOST re-

port [10]. Here, rather than give a comprehensive re-

view of the literature relevant to the myriad of devel-

opments, we focus on the progress made in the last

year in calculations of jet substructure at hadron col-

liders. Like the Tevatron experiments ATLAS and CMS

have performed measurements of the energy flow within

the jet [11,12]. Both collaborations have moreover per-

formed dedicated jet substructure measurements on large-

R jets that are briefly reviewed before we introduce an-

alytical calculations and summarize the status of the

two main approaches.

2.1 Jet Substructure Measurements by ATLAS

The first measurement of jet mass for large-radius jets

(R = 1.0, 1.2) and several substructure observables was

performed by ATLAS on data from the 2010 run of

the LHC [13]. These early studies include also a first

measurement of the jet mass distribution for filtered [1]

Cambridge-Aachen jets. A number of further jet shapes

were studied with the same data set in Reference [14].

These early studies were crucial to establish the jet

substructure response of the experiment and validate

the Monte Carlo description of substructure. They are

moreover unique, as the impact of pile-up could be triv-

ially avoided by selecting events with a single primary

vertex. The results, fully corrected for detector effects,

are available for comparison to calculations.

Since then, the ATLAS experiment has performed

a direct and systematic comparison of the performance

of several grooming algorithms on inclusive jet sam-

ples, purified samples of high-pT W bosons and top

quarks, and Monte Carlo simulations of boosted W and

top-quark signal samples [15]. The parameters of large-

radius (R = 1.0) trimmed [2], pruned [3] and mass-

drop filtered jet algorithms were optimized in the con-

text of Standard Model measurements and new physics

searches using multiple performance measures, includ-

ing efficiency and jet mass resolution.

For a subset of the jet algorithms tested, dedicated

jet energy scale and mass scale calibrations were derived

and systematic uncertainties evaluated for a wide range

of jet transverse momenta. Relative systematic uncer-

tainties were obtained by comparing ratios of track-

based quantities to calorimeter-based quantities in the

data and MC simulation. In situ measurements of the

mass of jets containing boosted hadronically decaying

W bosons further constrain the jet mass scale uncer-

tainties for this particular class of jets to approximately

±1%.

2.2 Jet Substructure Measurements by CMS

The CMS experiment measured jet mass distributions

with approximately 5 fb−1 of data at a center-of-mass

energy of
√
s = 7 TeV [16]. The measurements were

performed in several pT bins and for two processes, in-

clusive jet production and vector boson production in
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association with jets. For inclusive jet production, the

measurement corresponds to the average jet mass of

the highest two pT jets. In vector boson plus jet (V+

jet) production the mass of the jet with the highest

pT was measured. The measurements were performed

primarily for jets clustered with the anti-kt algorithm

with distance parameter R = 0.7 (AK7). The mass of

ungroomed, filtered, trimmed, and pruned jets are pre-

sented in bins of pt. Additional measurements were per-

formed for anti-kt jets with smaller and larger radius

parameter (R = 0.5, 0.8), after applying pruning [3]

and filtering [1] to the jet, and for Cambridge-Aachen

jets with R =0.8 and R = 1.2.

The jet mass distributions are corrected for detector

effects and can be compared directly with theoretical

calculations or simulation models. The dominant sys-

tematic uncertainties are jet energy resolution effects,

pileup, and parton shower modeling.

The study finds that, for the grooming parameters

examined, the pruning algorithm is the most aggressive

grooming algorithm, leading to the largest average re-

duction of the jet mass with respect to the original jet

mass. Due to this fact, CMS also finds that the prun-

ing algorithm reduced the pileup dependence of the jet

mass the most of the grooming algorithms.

The jet mass distributions are compared against dif-

ferent simulation programs: Pythia 6 [17,18] (version

424, tune Z2), Herwig++ [19,20] (version 2.4.2, tune

23), and Pythia 8(version 145, tune 4C), in the case of

inclusive jet production. In general the agreement be-

tween simulation and data is reasonable although Her-

wig++ appears to have the best agreement with the

data for more aggressive grooming algorithms. The V+

jet channel appears to have better agreement overall

than the inclusive jets production channel which indi-

cates that quark jets are modeled better in simulation.

The largest disagreement with data comes from the low

jet mass region, which is more affected by pileup and

soft QCD effects.

The jet energy scale and jet mass scale of these al-

gorithms were validated individually. The jet energy

scale was investigated in MC simulation, and was found

to agree with the ungroomed energy scale within 3%,

which is assigned as an additional systematic uncer-

tainty. The jet mass scale was investigated in a sample

of boosted W bosons in a semileptonic tt sample. The

jet mass scale derived from the mass of the boosted W

jet agrees with MC simulation within 1%, which is also

assigned as a systematic uncertainty.

2.3 Analytical predictions for jet substructure

Next-to-leading order (NLO) calculations in the strong

coupling constant have been performed for multi-jet

production, even in association with an electro-weak

boson. This means that substructure observables, such

as the jet mass, can be computed to NLO accuracy us-

ing publicly available codes [21,22]. However, whenever

multiple scales, e.g. a jet’s transverse momentum and

its mass, are involved in a measurement, the prediction

of the observables will contain logarithms of ratios of

these scales at each order in perturbation theory. These

logarithms are so important for jet shapes that they

qualitatively change the shapes as compared to fixed or-

der. Resummation yields a more efficient organization

of the perturbative expansion than traditional fixed-

order perturbation theory. Accurate calculations of jet

shapes are impossible without resummation. In general

one can moreover interpolate between, or merge, the

resummed and fixed-order result.

In resummation techniques the perturbative expan-

sion of cross-sections for generic observables v is schemat-

ically organized in the form3

σ(v) =

∫ v

0

dv′
dσ

dv′
=

∑

partonic
configurations

δ

σ
(δ)
0 g

(δ)
0 (αs)e

β , (1)

β = Lg
(δ)
1 (αsL) + g

(δ)
2 (αsL) + αsg

(δ)
3 (αsL) + . . . (2)

where σ0 =
∑
σ

(δ)
0 is the corresponding Born cross-

section and L = ln v is a logarithm of the observable in

question4.

The notation used in traditional fixed-order per-

turbation theory refers to the lowest-order calculation

as leading order (LO) and higher-order calculations as

next-to-leading order (NLO), next-to-next to leading

order (NNLO), and so on (with NnLO referring to the

O(αns ) correction to the LO result). When organized

instead in resummed perturbation theory as in Eq. (1),

the lowest order, in which only the function g
(δ)
1 is re-

tained, is referred to as leading-log (LL) approximation.

Similarly, the inclusion of all g
(δ)
i with 1 ≤ i ≤ k + 1

and of g0 up to order αk−1
s gives the nextk-to-leading

3 The actual form of Eq. (1) is in general rather complex.
For more than three hard partons it involves a non-trivial
matrix structure in colour space. Moreover, the actual form
of the constant terms g0(αs) depends on the flavor of the jet
under consideration.

4 In the following we concentrate on the case of jet masses
with a cut on the jet pT . In this case L = lnm2

J/p
2
T and

σ(v) in Eq. (1) is the integrated (cumulative) distribution for
m2

J < vp2T .
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log approximation to lnσ; this corresponds to the re-

summation of all the contributions of the form αns lnmN

with 2(n−k) + 1 ≤ m ≤ 2n in the cross section σ. This

can be extended to 2(n−k) ≤ m ≤ 2n by also including

the order αks contribution to g
(δ)
0 .

Typical Monte Carlo event generators such as Pyth-

ia, Herwig++ and Sherpa [23] are correct at LL. NLL

accuracy has also been achieved for some specific ob-

servables, but it is difficult to say whether this can be

generally obtained. Analytic calculations provide a way

of obtaining precise calculations for jet substructure.

Multiple observables have been resummed (most often

at least to NLL but not uncommonly to NNLL and as

high as NNNLL accuracy for a few cases) and others

are actively being studied and calculated in the theory

community.

Often for observables of experimental interest, non-

global logarithms (NGLs) arise [24], in particular when-

ever a hard boundary in phase-space is present (such as

a rapidity cut or a geometrical jet boundary). These

effects enter at NLL level and therefore modify the

structure of the function g
(δ)
2 in Eq. (1). Until very re-

cently [25], the resummation of NGLs was confined to

the limit of large number of colours NC [24,26,27].

Moreover, we should stress that another class of con-

tributions, usually referred to as clustering logarithms,

affects the g
(δ)
2 series of Eq. (1) if an algorithm other

than anti-kt is used to define the jets [28,29]. The an-

alytic structure of these clustering effects has been re-

cently explored in Ref. [30,31] for the case of Cambridge-

Aachen and kt algorithms.

Furthermore, recent studies have shown that strict

collinear factorization is violated if the observable con-

sidered is not sufficiently inclusive [32,33]. As a con-

sequence, coherence-violating (or super-leading) loga-

rithms appear, which further complicate the resumma-

tion of certain observables. These contributions affect,

for example, non-global dijets observables [34,35] but

also some classes of global event shapes [36].

Of course, to fully compare to data one needs to in-

corporate the effects of hadronization and multi-particle

interactions (MPI). Progress on this front has also been

made, both in purely analytical approaches (especially

for hadronization effects [37]) and in interfacing analyt-

ical results with parton showers that incorporate these

effects.

The two main active approaches to resummation

are referred to as traditional perturbative QCD resum-

mation (pQCD) and Soft Collinear Effective Theory

(SCET). They describe the same physical effects, which

are captured by the Eqs. 1 and 2. However, the tech-

niques employed in pQCD and SCET approaches often

differ. Calculations in pQCD exploit factorization and

exponentiation properties of QCD matrix elements and

of the phase-space associated to the observable at hand,

in the soft or collinear limits. The SCET approach is

based on factorization at the operator level and exploits

the renormalization group to resum the logarithms. The

two approaches also adopt different philosophies for

the treatment of NGLs. A more detailed description

of these differences is given in the next Sections.

2.4 Resummation in pQCD

Jet mass was calculated in pQCD in [39]. A more exten-

sive study can be found in Ref. [40] where the jet mass

distribution for Z+jet and inclusive jet production, with

jets defined with the anti-kt algorithm, were calculated

at NLL accuracy and matched to LO. In particular, for

the Z+jet case, the jet mass distribution of the highest

pT jet was calculated whereas for inclusive jet produc-

tion, essentially the average of jet mass distributions of

the two highest pT jets was calculated. For the Z+jet

case, one has to consider soft-wide angle emissions from

a three hard parton ensemble, consisting of the incom-

ing partons and the outgoing hard parton. For three

or fewer partons, the colour structure is trivial. Dijet

production on the other hand involves an ensemble of

four hard partons and the consequent soft wide-angle

radiation has a non-trivial colour matrix structure. The

rank of these matrices grows quickly with the number

of hard partons, making the calculations for multi jet

final states a formidable challenge 5.

The jet mass is a non-global observable and NGLs

of mJ/pT for jets with transverse momentum pT are in-

duced. Their effect was approximated using an analytic

formula with coefficients fit to a Monte Carlo simula-

tion valid in the large NC limit, obtained by means of

a dipole evolution code [24]. It was found that in inclu-

sive calculations6 the effects of both the soft wide-angle

radiation and the NGLs, both of which affect the g
(δ)
2

series in Eq. (1), play a relevant role even at relatively

small values of jet radius such as R = 0.6 and hence in

general cannot be neglected

A restriction on the number of additional jets could

be implemented, for instance, by vetoing additional jets

with pT > pcut
T . The presence of a jet veto modifies the

calculation in several ways. First of all, it affects the

5 The colour structure of soft gluon resummation in a multi
jet environment has been studied in [41,42] and resummed
calculations for the case of five hard partons in the context of
jet production with a central jet veto can be found in Refs [34,
35,43,44]

6 We refer to inclusive calculations if no requirements were
made on the number of additional jets in the selection of the
event.
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argument of the non-global logarithms: lnn(m2
J/p

2
T )→

lnn(m2
J/(pT p

cut
T )). Thus pcut

T could be in principle used

to tame the effect of NGLs. However, if the veto scale

is chosen such that pcut
T � pT , logarithms of this ratio

must be also resummed. Depending on the specific de-

tails of the definition of the observable, this further re-

summation can be affected by a new class of NGLs [45,

46].

An obstacle to inclusive predictions in the number

of jets is that the constant term g
(δ)
0 in Eq. (1) receives

contributions from higher jet topologies that are not

related to any Born configurations. For instance, the

jet mass in the Z+jet process would receive contribu-

tions from Z+2jet configurations, which are clearly ab-

sent in the exclusive case. The full determination of the

constant term to O(αs) and the matching to NLO is

ongoing.

2.5 Resummation in SCET

There have been several recent papers in SCET directly

related to substructure in hadron collisions7. Ref. [47]

discusses the resummation of jet mass by expanding

around the threshold limit, where (nearly) all of the

energy goes into the final state jets. Expanding around

the threshold limit has proven effective for other observ-

ables, see Ref. [48] and references in Ref. [47]. The large

logarithms for jet mass are mainly due to collinear emis-

sion within the jet and soft emission from the recoiling

jet and the beam. These same logarithms are present

near threshold and the threshold limit automatically

prevents additional jets from being relevant, simplifying

the calculation. The study in Ref. [47] performs resum-

mation at the NNLL level, but does not include NGLs.

Instead, their effect is estimated and found to be sub-

dominant in the peak region, where other effects, such

as nonperturvative corrections, are comparable. Thus

NGLs could be safely ignored where the calculation was

most accurate.

An alternative approach using SCET is found in

Ref. [49]. Beam functions are used to contain the collinear

radiation from the beam remnants. The jet mass distri-

bution in Higgs+1jet events is studied via the factoriza-

tion formula for 1-jettiness, that is calculated to NNLL

accuracy. Using 1-jettiness, the jet boundaries are de-

fined by the distance measure used in 1-jettiness itself,

instead of a more commonly employed jet algorithm,

although generalizations to arbitrary jet algorithms are

possible.

7 We consider here only research made publicly available at
the time of BOOST 2012 or soon after.

For a single jet in hadron collisions, 1-jettiness can

be used as a means to separate the in-jet and out-of-jet

radiation (see for a review the BOOST2011 report[10]).

The observable studied in Ref. [49] is separately differ-

ential in the jet mass and the beam thrust. The in-jet

component is related to the jet mass, and can be con-

verted directly up to corrections that become negligible

for higher pT (up to about 3% for pT = 300 GeV in the

peak of the distribution of the in-jet contribution to

1-jettiness which is smaller than NNLL uncertainties).

The beam thrust8 is a measure of the out-of-jet con-

tributions, equivalent to a rapidity-weighted veto scale

pcut on extra jets. The calculation can be made exclu-

sive in the number of jets by making the out-of-jet con-

tributions small. Where Ref. [47] ensures a fixed num-

ber of jets by expanding around the threshold limit,

Ref. [49] includes an explicit jet veto scale.

Exclusive calculations in the number of jets avoid

some of the issues mentioned in Sec. 2.4. An important

property of 1-jettiness is that, when considering the

sum of the in- and out-of-jet contributions, no NGLs

are present, and when considering these contributions

separately, only the ratio pcut/mJ of these two scales is

non-global. A smart choice of the veto scale may then

allow to minimize the NGL and make the resummation

unnecessary. This corresponds to the NGLs discussed

in Sec. 2.4 that are induced in going from the inclusive

to the exclusive case. These are the only NGLs present;

the additional NGLs of the measured jet pT to their

mass discussed for the observable of Sec. 2.4 are absent

in this case. By using an exclusive observable, with an

explicit veto scale, NGLs are controlled. For compari-

son with inclusive jet mass measurements, such as those

discussed in Sections 2.1 and 2.2, the uncertainty asso-

ciated with the veto scale can be estimated in a similar

fashion as the NGL estimate in Ref. [47].

It was argued in Ref. [49] that the NGLs induced by

imposing a veto on both the pT and jet mass are smaller

than the resummable logarithms of the measured jets

over a range of veto scales. In contrast, in the inclu-

sive case the corresponding pT value that appears in

the NGLs is of the order of the measured jet pT (since

all values less than this are allowed), making it a large

scale and the NGLs as large as other logarithms. For

a fixed veto cut, it was argued that the effect of these

NGLs (at least of those that enter at the first non-trivial

order, O(α2
s)), can be considered small enough to jus-

tify avoiding resummation for a calculation up to NNLL

accuracy for 1/
√

8 < mcut
J /pcut <

√
8 (cf. Ref. [53]) in

the peak region where a majority of events lie. It is also

worth noting that the effect of normalizing the distribu-

8 The resummation of beam thrust is analogous to that of
thrust in e+e− collisions [50,51,52].
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tion by the total rate up to a maximum mcut
J and pcut

has several advantages and in particular has a smaller

perturbative uncertainty than the unnormalized distri-

bution, in addition to having smaller experimental un-

certainties.

We also note that while jet mass is now the most

well-understood substructure observable, it is also clearly

much simpler than the more complicated techniques of-

ten employed by experimentalists in boosted studies.

There has also been progress in understanding more

complicated measurements using SCET, and in partic-

ular a calculation of the signal distribution in H → bb̄

was performed in Ref. [54]. While it is probably fair

to say that our theoretical understanding (or at least

the numerical accuracy) of such measurements are cur-

rently not at the same level as that of the jet mass, this

is a nice demonstration that reasonably accurate calcu-

lations of realistic substructure measurements can be

performed with the current technologies and that it is

not unreasonable to expect related studies in the near

future.

2.6 Discussion and recommendations for further

substructure measurements

We have presented a status report for the two main ap-

proaches to the resummation of jet substructure observ-

ables, with a focus on their potential to predict the jet

invariant mass at hadron colliders. In both approaches

recent work has shown important progress

We hope that providing predictions beyond the ac-

curacy of parton showers may help both discovery and

measurement. Beyond the scope of improving our un-

derstanding of QCD, gaining intuition for which treat-

ments work best is an important step towards adopt-

ing such predictions as an alternative to parton show-

ers. Non-perturbative corrections like hadronization are

more complicated at the LHC due to the increased

colour correlations. Entirely new perturbative and semi-

perturbative effects such as multiple-particle interac-

tions appear. Monte Carlo simulations suggest that these

have a significant impact.

The treatments of non-perturbative corrections and

NGLs are often different in pQCD and SCET 9 and

this leads to slight differences in which measurements

are best suited for comparison to predictions. The first

target for the next year should be a phenomenological

study of the jet mass distribution in Z+jet, for which

9 We have focused on differences in our discussion, but typ-
ically both communities have the option to adopt the treat-
ments commonly employed in the other community. That is,
the treatments typically utilized are not features inherent to
the approach.

we encourage ATLAS and CMS measurements. Ideally,

since the QCD and SCET literature have emphasized a

difference in preference for inclusive or exclusive mea-

surements (in the number of jets), both should be mea-

sured to help our understanding of the two techniques.

The importance of boosted-object taggers in searches

for new physics will increase strongly in the near fu-

ture in view of the higher-energy and higher-luminosity

LHC runs. However, the theoretical understanding of

these tools is in its infancy. Analytic calculations must

be performed in order to understand the properties

of the different taggers and establish which theoreti-

cal approaches (MC, resummation or even fixed order)

are needed to accurately compute these kind of observ-

ables 10.

3 Monte Carlo Generators for Jet Substructure

Observables

Section prepared by the Working Group: ’Monte Carlo

predictions for jet substructure’, A. Arce, D. Bjergaard,

A. Buckley, M. Campanelli, D. Kar, K. Nordstrom.

In order to use boosted objects and substructure

techniques for measurements and searches, it is im-

portant that Monte Carlo generators describe the jet

substructure with reasonable precision, and that vari-

ations due to the choice of parton shower models and

their parameters are characterized and understood. We

study jet mass, before and after several jet grooming

procedures, a number of popular jet substructure ob-

servables, colour flow and jet charge. For each of these

we compare the predictions of several parton shower

and hadronisation codes, not only in signal-like topolo-
gies, but also in background or calibration samples.

3.1 Monte Carlo samples and tools

Three processes in pp collisions are considered at
√
s =

7 TeV: semileptonic tt decays, boosted semileptonic tt

decays, and (W± → µν)+jets. These processes pro-

vide massive jets coming from hadronic decays of a

colour-neutral boson as well as jets from heavy and light

quarks.

Like Z+jets, the (W → µν)+jets process provides a

well-understood source of quarks and gluons, and addi-

tionally allows an experimentally accessible identifica-

tion (“away-side-tag”) of the charge of the leading jet.

10 Before the completion of this manuscript, two papers ap-
peared [55,56] which perform analytic resummed calculations
for boosted-object methods, such as trimming, pruning and
mass drop, and energy correlations were computed and used
for quark and gluon discrimination in Ref. [57].
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Assuming that the charge of this jet is opposite to the

muon’s charge leads to the same charge assignment as a

conventional parton matching scheme in approximately

70% of simulated events in leading order Monte Carlo

simulation; in the remaining 30% of cases, the recoiling

jet matches a (charge-neutral) gluon.

The selection of t, W±, and quark jet candidates for

the distributions compared below include event topolo-

gies that can be realistically collected in the LHC exper-

iments, with typical background rejection cuts, so that

these studies, based on simulation, could be reproduced

using LHC data.

The most commonly used leading order (LO) Monte

Carlo simulation codes are the Pythia and Herwig

families. Here, predictions from the Perugia 2011 [58]

tune with CTEQ5L [59] parton density function (PDF)

and corresponding NOCR tunes of pythia6 [60,17]

(version 6.426), tune 4C [61] with CTEQ6L1 PDF [62]

of the newer C++Pythia8 generator [18] (version 8.170),

and the LHC-UE-EE-4 [63] tune of Herwig++ [20,

64] (version 2.6.1) with CTEQ6L1 PDF are compared.

The default parameter tune of the next-to-leading order

(NLO) parton shower model implemented in Sherpa [23]

(version 1.4.2) with CT10 PDF [65] is also included in

comparisons. The Pythia6 generator with the Peru-

gia2011 tune is taken as a reference in all comparisons.

For each generator, tune and process 1 million proton-

proton events at
√
s = 7 TeV are produced.

The analysis relies on the FastJet 3.0.3 package [66,

67] and Rivet analysis framework [68]. All analysis rou-

tines are available on the conference web page [69]. In

the boosted semileptonic tt analysis, large-radius jets

were formed using the anti-kt algorithm [70] with a ra-

dius parameter of 1.2 using all stable particles within

pseudorapidity |η| < 4. The jets are selected if they

passed the following cuts: pjet
T > 350 GeV, 140 GeV

< mjet < 250 GeV. Only the leading and subleading

jets were selected if more than two jets passed the cuts.

The subjets were formed using the Cambridge-Aachen

algorithm [71,72] with radius 0.3.

3.2 Jet mass

The jet mass distribution for the leading jet in the

boosted semi-leptonic tt sample is shown in Fig. 1. The

parton shower models in Pythia6, Pythia8, Her-

wig++ and Sherpa yield significantly different pre-

dictions. Important differences are observed in the loca-

tion and shape of the top quark mass peak. The largest

deviations of the normalized cross section in a given

jet mass bin amount to approximately 20%. Much bet-

ter agreement is obtained for predictions with different

tunes of a single generator.

The effect of different grooming techniques on jet

mass is also shown in Fig. 1. For filtering, three hardest

subjets with Rsub = 0.3 are used. The trimming uses

all subjets over 3% of pjetT and Rsub = 0.3. For prun-

ing, z = 0.1 and D = mjet/pjetT is used. As expected, a

much narrower top quark mass peak is obtained, with a

particularly strong reduction of the high-mass tail. The

grooming procedure improves the agreement among the

different Monte Carlo tools, as expected from previous

Monte Carlo studies with a more limited set of genera-

tors [9] and comparison with data [13].

3.3 Jet substructure observables

We investigate the spread among generators for a num-

ber of other substructure observables on the market:

– The Angular Correlation Function [73] measures the

∆R scale of a jet’s radiation. It is defined as:

G(R) =
1∑

pT,ipT,j∆R2
i,j

∑
pT,ipT,j∆R

2
i,jΘ(R−∆Ri,j)

where the sum runs over all pairs of particles in

the jet, and Θ(x) is the Heaviside step function.

The Angular Structure Function is defined as the

following derivative:

∆G(R) =
d log G(R)

d log R

Peaks in ∆G(R) 11 can then be found which cor-

respond to ∆R scales with excess radiation in the

jet. The variable r1∗ is the point in the dR-spectrum

that the first peak in the angular structure function

appears at, and np is the total number of peaks in

the jet’s angular structure function. The prominence

h of the highest peak is defined as its height. The

prominence of any lower peak is defined as the min-

imum vertical descent that is required in descending

from that peak before ascending a higher, neighbor-

ing peak. A prominence of h > 4 for peaks in the

angular structure function is required and the par-

tial mass and ∆R scale of the most prominent peaks

are retained.

– N -subjettiness [74,75] measures how much of a jet’s

radiation is aligned along N subjet axes in the y−φ
plane. It is defined as:

τN =
1

∑
k

pT,kR
β
jet

∑

k

pT,k min(∆Rβ1,k, ∆R
β
2k
, ...)

11 In this analysis the derivatives are smoothed using a
Gaussian in the numerator and an error function in the de-
nominator, both with σ = 0.06
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Fig. 1 The jet invariant mass distribution for the leading jet in the boosted semileptonic tt event sample, before and after
jet grooming.

where ∆Rn,k is the distance from k to the nth sub-

jet axis in the y − φ plane, Rjet is the radius used

for clustering the original jet, and β is an angular

weighting exponent12.

– Angularity [76] introduces an adjustable parameter

a that interpolates between the well-known event

shapes thrust and jet broadening. Jet angularity is

an IRC safe variable (for a < 2) that can be used to

separate multijet background from jets containing

boosted objects [77]. It is defined as:

τa =
1

mjet

∑

i∈jets
ωi sina θi(1− cos θi)

1−a

12 To improve the performance of N-subjettiness it is pos-
sible to use a k-means clustering algorithm to find (locally)
optimal locations for the subjet axes. In this analysis β = 1 is
used to find the subjet axes by reclustering with the kt algo-
rithm. The k-means clustering algorithm is run once, as with
this angular weighting exponent it finds a local minimum im-
mediately. No attempt is made to find the global minimum.

where ωi is the energy of a constituent of the jet.

– Eccentricity [78] of jets is defined by 1− vmax/vmin,

where vmax and vmin are the maximum and mini-

mum values of the variances of jet constituents along

the principle and minor axes13.

Most models predict very similar behavior for an-

gularity, eccentricity and the ∆R scale of the peak in

the np = 1 bin for the angular structure function. De-

viations are typically below 10% for these observables.

The harder jet mass distribution in SHERPA and the

softer spectrum in Pythia8 are reflected in the edges

of the τ3/2 distribution.

13 Eccentricity is strongly correlated with the planar flow,
and it is a measure of jet elongation ranging from 0 for per-
fectly circularly symmetric jet shapes to 1 for infinitely elon-
gated jet shapes. This is primarily useful for identifying high
pT merged jets.
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Fig. 2 The distribution of four different measures of jet substructure for leading jet of a boosted semileptonic top sample. The
C-A algorithm is used in reclustering, as mentioned in the text.

3.4 Colour flow

Colour flow observables offer a complimentary way to

probe boosted event topologies. Pull [79] is a pT -weighted

vector in η − φ space that is constructed so as to point

from a given jet to its colour-connected partner(s). The

pull is measured with respect to the other W± daugh-

ter jet. The W -boson is selected kinematically in 4-jet

events with 2 b-quarks, and flavors are labelled using the

highest pT cone. In Fig. 3, the top left plot shows this

variable for a background-like distribution. The com-

parisons demonstrate that Herwig produces a different

colour flow structure.

Dipolarity [80] can distinguish whether a pair of

subjets arises from a colour singlet source. In the top

right plot of Fig. 3, the dipolarity predictions are seen

to be similar for all models considered.

3.5 Jet charge

Jet charge [81,82,83] is constructed in an attempt to

associate a jet-based observable to the charge of the

originating hard parton. The pT -weighted jet charge

Qj =
1

pT κj

∑

i∈T
qi × (piT )κ

is shown with κ = 0.3 in Fig. 3, using anti-kt 0.6 jets.

The comparison displays the most relevant distribu-

tions for typical quark tagging and boson tagging anal-

yses. Different MC models are seen to have very similar

predictions for this observable too.

3.6 Summary

We have prepared the Rivet routines to evaluate the

predictions of Monte Carlo generators for the internal

structure of large area jets. The normalized predictions
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Fig. 3 Upper row: Comparison of colour-flow observables: pull angle of leading jet attributed to the hadronic W decay in tt

events, and dipolarity of leading jet produced in association with a leptonically decaying W. Lower row: Comparison of jet
charge observables (κ = 0.3): charge observable for leading jet produced in association with a leptonically decaying W (left
panel), and sum of jet charge observables for the two jets attributed to the hadronic W decay in tt events (right panel).

from several mainstream Monte Carlo models are com-

pared. Several aspects of jet substructure are evaluated,

from basic jet invariant mass to colour flow observables

and jet charge.

We find that for jet mass large variations are ob-

served between the various MC models. However, for

groomed jets the deviations between different model

predictions are smaller. The differences between sev-

eral recent tunes of the Pythia generator are much

smaller. The MC model predictions are similar for N -

subjettiness, angularity and eccentricity. The Herwig++

model gives different predictions than other models for

colour flow observables, but since the implementation

of colour connection in Herwig++ model is very recent,

this may lead to improvement of the model.

4 The impact of multiple proton-proton

collisions on jet reconstruction

Section prepared by the Working Group: ’Jet substruc-

ture performance at high luminosity’, P. Loch, D. Miller,

K. Mishra, P. Nef, A. Schwartzman, G. Soyez.

The first LHC analyses exploring the experimen-

tal response to jet substructure demonstrated that the

highly granular ATLAS and CMS detectors can yield

excellent performance. They also confirmed the suscep-

tibility of the invariant mass of large-area jets to the

energy flow from the additional proton-proton interac-

tions that occur each bunch crossing. And, finally, they

provided a first hint that jet grooming could be a pow-

erful tool to mitigate the impact of pile-up. Since then,

the LHC collaborations have gained extensive experi-

ence in techniques to correct for the impact of pile-up

on jets. In this Section these tools are deployed in an



12 BOOST2012 participants

extreme pile-up environment. We simulate pile-up lev-

els as high as 〈µ〉 = 200, such as may be expected in a

future high-luminosity phase of the LHC. We evaluate

the impact on jet reconstruction, with a focus on the

(substructure) performance.

4.1 Pile-up

Each LHC bunch crossing gives rise to a number of

proton-proton collisions and typically the hard scat-

tering (signal) interaction is accompanied by several

additional pile-up proton-proton collisions. The total

proton-proton cross-section is about σtot = 98 mb (in-

elastic σinel = 72.9 mb) at
√
s = 7 TeV [84], and even

slightly higher at
√
s = 8 TeV in 2012. With a peak in-

stantaneous luminosity of about 7.7×1033 cm−2 s−1 in

2012, the resulting average number of pile-up collisions

reached 〈µ〉 = 20 at the highest intensities. The 2012

data set has a rather flat µ distribution extending from

µ = 5 to µ = 35. In future LHC running even higher

〈µ〉 are expected.

Pile-up manifests itself mostly in additional hadronic

transverse momentum flow, which is generated by over-

laid and statistically independent, predominantly soft

proton-proton collisions that we refer to as “minimum

bias” (MB). This diffuse transverse energy emission in-

terferes with the signal of hard scattering final state

objects like particles and particle jets, and typically re-

quires corrections, in particular for particle jets. In ad-

dition, it can generate particle jets (pile-up jets) either

from any of the individual MB collisions (QCD jets), or

by stochastically forming jets in the high density parti-

cle flow generated by the multitude of them (stochastic
jets).

4.2 Monte Carlo event generation

We model the pile-up with MB collisions at
√
s = 8

TeV and a bunch spacing of 50 ns, generated with the

Pythia Monte Carlo (MC) generator [85,86], with its

4C tune [61]. All inelastic, single diffractive, and dou-

ble diffractive processes are included, with the default

fractions as provided by Pythia(tune 4C).

Overall 100 × 106 MB events are available for pile-

up simulation. The corresponding data are generated in

samples of 25000 MB collisions, with the largest possi-

bly statistical independence between samples, including

new random seeds for each sample. To model pile-up for

each signal interaction, the stable particles14 generated

14 A particle is considered stable if its lifetime τ in the lab-
oratory frame of reference passes cτ > 10 mm.

in a number µ of MB collisions, with µ being sampled

from a Poisson distribution around the chosen 〈µ〉, are

added to the final state stable particles from the sig-

nal. This is done dynamically by an event builder in

the analysis software, and is thus not part of the signal

or MB event production. All analysis is then performed

on the merged list of stable particles to model one full

collision event at the LHC.

The example signal chosen for the Monte Carlo sim-

ulation based studies presented in this Section is the de-

cay of a possible heavy Z ′ boson with a chosen MZ′ =

1.5 TeV to a (boosted) top quark pair, at
√
s = 8 TeV.

The top- and anti-top-quarks then decay fully hadron-

ically (t → Wb → jj b-jet) or semi-leptonically (t →
Wb → `ν b-jet). The Pythia generator [85,86] is used

to generate the signal samples. The soft physics mod-

eling parameters in both cases are from the pre-LHC-

data tune 4C [61]. The pile-up is simulated by overlay-

ing generated minimum bias proton-proton interactions

at
√
s = 8 TeV using Poisson distributions with aver-

ages 〈µ〉 = {30, 60, 100, 200}, respectively, thus focusing

on the exploration of future high intensity scenarios at

LHC.

All analysis utilizes the tools available in the Fast-

Jet [66] package for jet finding and jet sub-structure

analysis. The larger jets used to analyze the final state

are reconstructed with the anti-kT algorithm [70] with

R = 1.0, to assure that most of the final state top-quark

decays can be collected into one jet. This corresponds

to top-quarks generated with pT & 400 GeV. The con-

figurations for jet grooming are discussed in Section 4.6.

4.3 Investigating jets from pile-up

Stable particles emerging from the simulated proton-

proton collisions are clustered into anti-kT jets [70] with

a radial distance parameter R = 0.4, using the Fast-

Jet [66] implementation:

Truth jets are obtained by clustering all stable parti-

cles from a given individual MB interactions. For an

event containing µ pileup interactions, jet finding is

therefore executed µ times. The resulting truth jets

are required to have pT ≥ 5 GeV.

Pileup jets are obtained by clustering the stable par-

ticles from all MB interactions forming the pile-up

event. They are subjected to the kinematic cuts de-

scribed below.

Jets with rapidity |y| < 2 are accepted.

The contribution of pile-up to jets can be corrected

using the jet area based method in Ref. [87]. It employs

the median transverse momentum density ρ, which here

is determined using kT jets with R = 0.4 within |y| < 2.
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To evaluate the effect of this correction, the transverse

momentum ratio RpT is introduced as

RpT =
pmatchT

pT − ρA
=
pmatchT

pcorrT

. (3)

Here A is the catchment area [67] of the pile-up jet, and

pmatchT is the matching truth jet pT. The matching cri-

terion is similar to the one suggested in Ref. [88], where

the truth jet matching uses the constituents shared be-

tween the truth jet and the pile-up jet. The jets are

considered matched if the fraction of constituents of

the truth jet that are also contained in the pile-up jet

contribute to at least 50% of the truth jet pT. In the

following, pile-up jets are only considered if their cor-

rected transverse momentum is pcorrT ≥ 20 GeV, and

they are matched to at least one truth jet.

μ
0 50 100 150 200 250

 >
 0

.8
)

m
at

ch

T
ef

fi
ci

en
cy

( 
p
  
  
  
  
 /

 

0

0.5

1  A<30 GeV-
T

20<p

 A<40 GeV-
T

30<p

 A>40 GeV-
T

p

Pythia 8, MB

Anti-k
t
 R=0.4

 c
o

rr

 T
  
  
  
  
  
  
  
  
  
 p

  
  

Fig. 4 The fraction of pile-up jets with RpT > 0.8 (QCD-like)
as a function of the number of minimum-bias interactions per
event for different values of pcorrT . A fit of the exponential form
f = c0 + c1 exp(c2 · NPV) is superposed where one degree of
freedom is fixed via the constraint f(0) = 1, i.e. c1 = (1− c0).

The contribution of particles from any vertex to a

given pile-up jet can be measured using the jet vertex

fraction (Fjvf). It is defined as

Fjvf(Vi) =

∑Npart(Vi)
k=1 pT,k∑Ncoll

i=1

∑Npart(Vi)
k=0 pT,k

=
1

pT

Npart(Vi)∑

k=1

pT,k,

(4)

where Npart(Vi) is the number of particles from a given

vertex Vi, and Ncoll is the number of collision vertices

contributing particles to the jet. Fjvf is calculated for

each of these vertices. Note that pT corresponds to

the uncorrected jet transverse momentum and conse-

quently, the value of each component of Fjvf(Vi) de-

pends on µ.

4.4 Evaluation of the pile-up jet nature

It follows from the definition of RpT that pile-up jets

with values of RpT close to unity are matched to a truth

jet with pT ≈ pcorrT of the pile-up jet itself. Conse-

quently, there is a single MB interaction which predom-

inantly contributes to the jet. On the other hand, jets

with a small value of RpT are mostly stochastic, as no

single minimum-bias collision contributes in a dominant

way to the pile-up jet. We characterize jets as stochas-

tic if RpT is smaller than 0.8. This threshold value is

arbitrary and the fraction of QCD-like and stochastic

jets depends on the exact choice. The conclusion of our

study holds for a broad range of cut values.

The fractions of QCD-like and stochastic pile-up jets

change as a function of pileup jet pT and µ. This can

be seen in Fig. 4, where QCD jet-like samples are de-

fined by RpT > 0.8 for each pile-up level. The fraction

of these jets at a given pcorrT decreases exponentially

with µ. The exponential decrease is slower for larger

the pcorrT . At a pile-up activity of µ = 100, the fraction

of pile-up jets that are QCD-like is about 40% (20%)

for pcorrT > 40 GeV (20 < pcorrT < 30 GeV). At µ = 150,

these numbers decrease to about 25% and 15%, respec-

tively.

4.5 Pile-up jet multiplicity

The mean number of pileup jets per event, as a function

of jet pcorrT and NPV, is indicative of the efficiency of

the jet area based method to suppress jets generated by

pile-up. It is shown in Fig. 5 for the inclusive pile-up jets

and separately for the subsample of QCD-like pile-up

jets satisfying RpT > 0.8. It is observed that the aver-

age inclusive number 〈N〉 of low (pcorrT ' 20 GeV) pile-

up jets per event increases rather linearly with µ, i.e.

∂〈N〉/∂µ ≈ const. For higher pile-up jet pT, ∂〈N〉/∂µ
is significantly smaller, and displays an increase with

increasing µ.

The sub-sample of QCD-like jets in the inclusive

pile-up jet sample shows a different behavior, as in-

dicated in the righmost panel of Fig. 5. In this case

∂〈N〉/∂µ decreases with increasing µ in all considered

bins of pcorrT . This contradicts the immediate expecta-

tion of an increase following the inclusive sample, but

can be understood from the fact that with increasing µ
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the likelihood of QCD-like jets to overlap with (stochas-

tic) jets increases as well. The resulting (merged) pile-

up jets no longer display features consistent with QCD

jets (e.g., loss of single energy core), and thus fail the

RpT > 0.8 selection.

The pile-up jet multiplicity shown in Fig. 5 is eval-

uated as a function of the pile-up corrected transverse

momentum of the jet (pcorrT ). This means that after the

correction approximately two pile-up jets with pcorrT >

pmin
T = 20 GeV can be expected for 〈µ〉 ' 100. This

number decreases rapidly with increasing pmin
T . The mean

number of QCD jets is small, at about 0.4 at 〈µ〉 = 100,

for pmin
T = 20 GeV.

4.6 Jet grooming configurations

Three jet grooming techniques are used by the LHC

experiments:

Jet trimming Trimming is described in detail in Ref. [2].

In this approach the constituents of the large anti-

kT jet formed with R = 1.0 are re-clustered into

smaller jets with Rtrim = 0.2, using the anti-kT al-

gorithm again. The resulting sub-jets are only ac-

cepted if their transverse momentum is larger than

a fraction f (here f = 0.03) of a hard scale, which

was chosen to be the pT of the large jet. The sur-

viving sub-jets are recombined into a groomed jet.

Jet filtering Filtering was introduced in the context

of a study to enhance the signal from the Higgs bo-

son decaying into two bottom-quarks, see Ref. [1]. In

its simplified configuration without mass-drop cri-

terion [89] applied in this study it works similar to
trimming, except that in this case the sub-jets are

found with the Cambridge-Aachen algorithm [72,90]

with Rfilt = 0.3, and only the three hardest sub-jets

are retained. The groomed jet is then constructed

from these three sub-jets.

Jet pruning Pruning was introduced in Ref. [91].

Contrary to filtering and trimming, it is applied dur-

ing the formation of the jet, rather than based on

the recombination of sub-jets. It dynamically sup-

presses small and larger distance contributions to jet

using two parameters, Zcut for the momentum based

suppression, and Dcut = Dcut,fact × 2m/pT (here m

and pT are the transverse momentum and mass of

the original jet) for the distance based. Pruning ve-

toes recombinations between two objects i and j

for which the geometrical distance between i and

j is more than Dcut and the pT of one of the ob-

jects is less than Zcut×pi+jT , where pi+jT is the com-

bined transverse momentum of i and j. In this case,

only the hardest of the two objects is kept. Typi-

cal values for the parameters are: Zcut = 0.1 and

Dcut,fact = 0.5.

In this study, trimming and filtering are applied to

the original anti-kT jets with size R = 1.0. We study the

interplay between jet grooming and area-based pile-up

correction. The subtraction is applied directly on the

4-momentum of the jet using:

pµjet,sub = pµjet−[ρAxjet, ρA
y
jet, (ρ+ρm)Azjet, (ρ+ρm)AEjet] ,

(5)

with

ρ = median
patches

{
pt,patch

Apatch

}
, ρm = median

patches

{
mδ,patch

Apatch

}
,

(6)

mδ,patch =
∑
i∈patch

(√
m2
i + p2

t,i − pti
)
, and Aµ is the

active area of the jet as defined in Ref. [67] and com-

puted by FastJet. The ρ term, mentioned above is the

standard correction typically correcting the transverse

momentum of the jet. The ρm term corrects for con-

tamination to the total jet mass due to the PU particle.

When applying this subtraction procedure, we discard

jets with negative transverse momentum or (squared)

mass of the jet.

The estimation of ρ and ρm is performed with Fast-

Jet using15 kt jets with R = 0.4. Corrections for the

rapidity dependence of the pileup density ρ are applied

using a rapidity rescaling.

When we apply this background subtraction together

with trimming or filtering, the subtraction is performed

directly on the subjets, before deciding which subjets

should be kept, so as to limit the potential effects of

pileup on which subjets are to be kept.

4.7 Jet substructure performance

The various methods and configurations discussed in

the previous section are applied to the jets reconstructed

with the anti-kT algorithm with R = 1.0 in the Z ′ → tt

final state in the presence of pile-up. For the studies

presented in this report we require jet pT before groom-

ing and pileup subtraction to be greater than 100 GeV

and consider the two hardest pTjets in the event. We

further require that the rapidity difference between the

two jets |y1 − y2| is less than one. The immediate ex-

pectation for the reconstructed jet mass m is the top

mass, i.e. m ≈ 175 GeV, and no residual dependence

on the pile-up activity given by 〈µ〉, after the pile-up

15 Ghosts are placed up to ymax = 3 and explicit ghosts are
enabled.
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Fig. 5 The mean number of pileup jets per event inclusively (a) and for QCD-like pileup jets with RpT > 0.8 (b), as a function
of µ and pcorrT .

subtraction. The two plots in the upper row of Figure 6

show the distributions of the reconstructed jet masses

without any grooming and with the pile-up subtraction

discussed in Section 4.6 applied. The effect of pile-up

on the mass scale and resolution is clearly visible. Ap-

plying only the pile-up subtraction, without changing

the composition of the jets, already improves the mass

reconstruction significantly. All 〈µ〉 dependence is re-

moved from the jet mass spectrum, as shown in Fig. 6.

In particular, the position of the mass peak is recovered.

With increasing pileup, the mass peak gets more and

more smeared, an effect due to the fact that the pileup

is not perfectly uniform. These point-to-point fluctua-

tions in an event lead to a smearing ±σ
√
A in (5). For

very large pileup, this smearing extends all the way to

m = 0 as seen in Fig. 6.

The effect of the other grooming techniques on the

reconstructed jet mass distributions is summarized in

Fig. 6, with and without the pile-up subtraction applied

first. The spectra show that both trimming and filtering

can improve the mass reconstruction. The application

of the pile-up subtraction in addition to trimming or

filtering further improves the mass reconstruction per-

formance.

The findings from the spectra in Figs. 6 are quan-

titatively summarized in Fig. 7 for the mass scale and

resolution. Here the resolution is measured in terms of

the mass range in which 67% of all jet masses can be

found (Q67%(mjet) quantile). Maintaining the jet mass

scale around the expectation value of 175 GeV works

well for trimming and filtering with and without pile-

up subtraction, see Fig. 7. The same figure indicates

that for very high pile-up (〈µ〉 = 100 − 200), the jet

mass after trimming and filtering without pile-up sub-

traction shows increasing sensitivity to the pile-up. The

additional pile-up subtraction tends to restore the mass

scale with better quality.

Both trimming and filtering improve the mass reso-

lution to different degrees, but in any case better than

pile-up subtraction alone, as expected. Applying the
additional pile-up subtraction to trimming yields the

least sensitivity to the pile-up activity in terms of mass

resolution and scale.

These effects can be explained as follows. As dis-

cussed earlier, pileup has mainly two effects on the jet: a

constant shift proportional to ρA and a smearing effect

proportional to σ
√
A, with σ a measure of the fluctu-

ations of the pileup within an event. In that language,

the subtraction corrects for the shift leaving the smear-

ing term untouched. Grooming, to the contrary, since it

selects only part of the subjets, acts as if it was reducing

the area of the jet16. This reduces both the shift and

the dispersion. Combining grooming with subtraction

thus allows to correct for the shift leftover by grooming

16 Note that grooming techniques do more than reducing
the catchment area of a jet. Noticeably, the selection of the
hardest subjets introduces a bias towards including upwards
fluctuations of the background. This positive bias is balanced
by a negative one related to the perturbative radiation dis-
carded by the grooming. These effects go beyond the generic
features explained here.
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(a) raw, ungroomed jets
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(b) raw jets with pile-up subtraction
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(d) trimmed jet with pile-up subtraction
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(e) filtered jets
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Fig. 6 The impact of pile-up on the jet mass distribution. Top row: the raw jet mass distribution for jets reconstructed with
the anti-kT algorithm and R = 1.0 in Z′ → tt final states with mZ′ = 1.5 TeV, in the presence of pile-up with 〈µ〉 = 30, 60,
100, and 200, before and after pile-up subtraction. The second and third row show the same result after trimming (middle
row) and filtering (lower row).
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Fig. 7 Average (leftmost figure) and RMS (rightmost figure) of the reconstructed jet mass distribution in Z′ → tt final states,
as a function of the pile-up activity 〈µ〉, for various jet grooming techniques.

and reduce the smearing effects at the same time. All

these effects are observed in Figures 7.

4.8 Concluding remarks

The source of jets produced in minimum bias collisions

in the presence of pile-up is analyzed using a technique

relating the single collision contribution in the jet to its

transverse momentum after pile-up correction in parti-

cle level Monte Carlo. The rate of pile-up jets surviv-

ing after application of the jet area based pile-up sub-

traction is about two with pcorrT > 20 GeV and within

|y| < 2, at a pile-up activity of 〈µ〉 = 100. It rises about

linearly with increasing pile-up for this particular selec-

tion. Higher pT jets occur at a much reduced rate, but

with a steeper than linear rise with increasing µ.

The rate of QCD-like jets is significantly smaller,

and shows a less-than-linear increase with increasing µ

even for pmin
T = 20 GeV. This can be understood as

a sign of increased merging between QCD-like jets and

stochastic jets. The merged jets are less likely to display

features characteristic for QCD-like jets, and therefore

fail the selection.

The fraction of QCD-like jets with a core of energy

arising from a single proton-proton interaction of at

least 0.8pcorrT is found to decrease rapidly with increas-

ing µ. At µ = 50 about 60% of the pile-up jets with

pcorrT > 50 GeV are found to be QCD-like, whereas at

µ = 200 this number is decreased to about 20%.

A brief Monte Carlo study of the effect of jet groom-

ing techniques on the jet mass reconstruction in Z ′ → tt

final states has been conducted. Jet trimming and fil-

tering are used by themselves, or in combination with

the pile-up subtraction using the four-vector area, to

reconstruct the single jet mass and evaluate the stabil-

ity of the mass scale and resolution at pile-up levels of

30, 60, 100, and 200 extra proton-proton collisions, in

addition to the signal event. It is found that for this

particular final state trimming and filtering work well

for maintaining the mass scale and resolution, provided

they are applied together with pile-up subtraction so as

to benefit both from the average shift correction from

subtraction and noise reduction from the grooming.

The studies presented here are performed with Monte

Carlo simulated signal and pile-up (minimum bias) in-

teractions. No considerations have been given to detec-

tor sensitivities and other effects deteriorating the sta-

ble particle level kinematics and flows exploited here.

With this respect the conclusions of this study are lim-

ited and can be considered optimistic until shown oth-

erwise. Note also that comparing the performance of

filtering and trimming would require varying their pa-

rameters and that this goes beyond the scope of this

study.

5 The potential of boosted top quarks

Section prepared by the Working Group: ’Prospects for

boosted top quarks’, A. Altheimer, J. Ferrando, J. Pilot,

S. Rappoccio, M. Villaplana, M. Vos.

Among the many applications of the strategies for

boosted objects discussed in the literature (the bibliog-
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raphy of References [9,10] is a good starting point to

navigate the extensive literature), the study of highly

energetic top quarks forms the case that has been stud-

ied in greatest detail by the experiments. Several studies

of the production of boosted top quarks have set limits

on new physics scenarios. The first sample of boosted

top quarks has also been used to understand the mod-

elling of the parton shower and the detector response.

In this section we present a summary of achievements

so far, discuss how existing analyses could benefit from

an improved understanding of jet substructure, and ex-

plore possible directions for future work.

5.1 Boosted top quark production

The top quark decay topology observed in the detec-

tor depends strongly on the kinematic regime. The de-

cays products of top quarks produced nearly at rest

(pT < 200 GeV/c) are well-separated, leading to ex-

perimental signatures such as isolated leptons and a

relatively large number of clearly resolved jets. With

increasing transverse momentum, the decay products

of the top quark will become collimated and possibly

reconstructed in the same final state object. For inter-

mediate boosts (200 < pT <400 GeV), the daughters

of the W boson from a fully-hadronic top decay will

be close enough to be clustered into the same jet. At

this point, the use of jet substructure techniques be-

comes important to efficiently identify these decay sig-

natures. At even larger pT top quarks become truly

boosted objects: all decay products of the top will be

strongly collinear, with the ∆R ∼ 2mtop/pT . Hadronic

top quarks can be reconstructed in a single jet, and

top quarks with leptonic decays generally contain non-

isolated leptons due to the overlap with the b-quark jet.

Table 1 presents the expected numbers of boosted

top quark pairs according to the Standard Model at

past, present and future colliders. The numbers show

clearly how the study of boosted top quarks becomes

viable only with the start of the LHC. The first phase of

operation yields a sample of several tens of thousands

of boosted top quark pairs. The next-to-last column

indicates the size of the sample expected in a 13 or

14 TeV run of the LHC, that is to start by the end of

2014. The increase in the centre-of-mass energy and the

larger integrated luminosity each bring an increase of

an order of magnitude in the production of boosted top

quarks.

We expect, therefore, that boosted topologies will

gain considerable importance as the LHC program de-

velops. To exploit the LHC data to their full potential

it is critical that existing experimental strategies are

adapted to this challenging kinematical regime. Before

we turn to the results of analyses of boosted object pro-

duction, we discuss a number of new tools that were de-

veloped to identify and reconstruct boosted top quarks

efficiently.

5.2 Top Tagging.

Excellent reviews of top tagging algorithms exist [93].

Previous BOOST reports have compared their perfor-

mance for simulated events (at the particle level). In

this Section we present a very brief review for com-

pleteness.

The Johns Hopkins (JHU) tagger [94] identifies sub-

structure by reversing through the iterative clustering

process used to form jets. Subjets are found using sev-

eral criteria – the ratio of their individual pT to the

original jet pT must be above a given threshold, and the

subjets must be spatially separated from each other to

give a valid decomposition. In this way, a jet can be de-

constructed into up to four subjets, and jets with three

or more subjets are analyzed further, requiring the in-

variant mass of the identified subjets to be in the range

[145, 205] GeV, and two of the subjets to be consistent

with mW , in the range [65, 95] GeV. There is an addi-

tional cut on the W boson helicity angle, cos θh < 0.7.

The variant of the JHU tagger used by CMS[95]

uses a similar jet decomposition, with slight differences

in the selections of top quark and W boson masses from

the subjets. Additionally, the CMS top tagger does not

apply the W boson helicity angle requirement, but in-

stead selects jets with the minimum pairwise mass of

the subjets larger than 50 GeV. The JHU and CMS top

tagging algorithms have been developed with jet dis-

tance parameters up to R = 0.8, and therefore are only

efficient for top quarks with pT above approximately

400 GeV/c.

The HEP top tagger [96], is designed to use jets

with distance parameter R = 1.5, thereby extending

the reach of the tagging algorithm to lower jet pT val-

ues. The algorithm uses a mass drop criterion to iden-

tify substructure within the jet, but also uses a filtering

algorithm to remove soft and large-angle constituents

from the individual subjets. The three subjets with a

combined mass closest to mt are then chosen for further

consideration. Cuts are then applied to masses of sub-

jet combinations to ensure consistency with mW and

mt. Specifically, for the three subjets sorted in order

of subjet pT , having masses m1,m2,m3, the quantities

m23/m123 and arctanm13/m12 are computed. Geomet-

rical cuts can be applied in the phase space defined by

these two quantities to select top jets and reject quark

or gluon jets.
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Table 1 The top pair production rate at past, present and future colliders, calculated with the MCFM code [92]. The inclusive
production rate is given in the first row. The expected number of events with boosted top quarks (Mtt̄ > 1 TeV) and highly
boosted top quarks (Mtt̄ > 2 TeV) is given in the second and third row, respectively.

Collider & phase Tevatron run II LHC 2012 LHC phase II HE-LHC
process & energy, pp̄ at

√
s = 1.96 TeV pp at

√
s =8 TeV pp at

√
s =13 TeV pp at

√
s =33 TeV

integrated luminosity L = 10 fb−1 L = 20 fb−1 L = 300 fb−1 L = 300 fb−1

Inclusive tt̄ production 6 × 104 4 × 106 2 × 108 1.4 × 109

Boosted production 23 6 × 104 5.2 × 106 7.1 × 107

Highly boosted 0 500 1.1 × 105 3.9 × 106

The HEP top tagger obtains tagging efficiencies of

up to 37% for lower pT top quarks (pT > 200 GeV/c),

with an acceptable mistag rate. It has been used by the

ATLAS tt resonance search in the fully hadronic chan-

nel [97], where no resolved analysis has been performed.

At high jet pT , the efficiencies for the HEP Top Tagger

and JHU Top Tagger selections are comparable.

Boosted top quarks were also studied using both

R = 1.0 anti-kt jets and jets identified by the HEPTop-

Tagger [96] algorithm as candidate “top-jets.” Kine-

matic and substructure distributions were compared

between data and MC simulation and were found to be

in agreement. Furthermore, the efficiency with which

top quarks were identified as such was found to be sig-

nificantly increased in both cases, and the HEPTop-

Tagger was shown to reduce the backgrounds to such

searches dramatically, even with a relatively relaxed

transverse momentum selection.

Overall, the results from ATLAS suggests that, among

the jet grooming configurations tested, the trimming

algorithm exhibited an improved mass resolution and

smaller dependence of jet kinematics and substructure

observables on pile-up (such as N -subjettiness [74,75]

and the kt splitting scales [98]) compared to the pruning

configurations examined. For boosted top quark stud-

ies, the anti-kt algorithm with a radius parameter of

R = 1.0 and trimming parameters fcut = 0.05 and

Rsub = 0.3 was found to be optimal, where a minimum

pT requirement of 350 GeV is typical. It is important to

note that only the kt-pruning forR = 1.0 jets was tested

and that since the performance does depend somewhat

on this parameter, further studies are necessary to op-

timize for other jet size. Lastly, Cambridge-Aachen jets

with R = 1.2 using the mass-drop filtering parameter

µfrac = 0.67 were found to perform well for boosted two-

pronged analyses such as H → bb or searches involving

boosted W → qq decays.

A final algorithm that is currently being investi-

gated is the N -subjettiness algorithm [74] presented in

Section 3.

Several new techniques and ideas are emerging, that

aim to improve boosted top identification and recon-

struction.

One such technique is that of shower deconstruction

[99]. This method aims to identify boosted hadronic top

quarks by computing the probability for a top quark

decay to produce the observed jet, including its distri-

bution of constituents. The probability for the same jet

to have originated from a background process is also

computed. These probabilities are computed by sum-

ming over all possible shower formations resulting in

the observed final state, accounting for different gluon

splittings and radiations, among other processes. This

is done both for the signal shower processes and back-

ground shower processes. A likelihood ratio is formed

from the signal and background probabilities and used

to discriminate boosted top quarks from generic QCD

jets. The process of evaluating all shower histories can

be computationally intensive, so certain requirements

are made on the number of constituents used in the

method to make the problem tractable. The results pre-

sented in Ref. [100] show an improvement on the top

taggers described previously. Specifically, the shower

deconstruction method reduces the top mistag rate by

a factor of 3.6 compared to the JHU top tagger, while

maintaining the same signal acceptance. This method

is also applicable to the lower pT regime, and there
improves upon the top mistag rate from the HEP top

tagger by a factor of 2.6, again keeping identical signal

efficiency.

Another algorithm under development is the tem-

plate overlap method [115]. The template overlap method

is designed for use in boosted top identification as well

as boosted Higgs identification. The method is similar

to that of shower deconstruction, in that it attempts to

quantify how well a given jet matches a certain expec-

tation such as a boosted top quark or boosted Higgs

decay. However, this method uses only final state con-

figurations, whereas the shower deconstruction method

takes into account the showering histories. A catalog of

templates is formed by analyzing signal events. Once

this is in place, individual jets can be analyzed by eval-

uating an overlap function which evaluates how well the

current jet matches the templates from the signal pro-

cess of interest. For example, a template for hadronic

boosted top quark decays would consist of three energy
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Fig. 8 Overview of evolution of the sensitivity of tt̄ resonance searches in the first years of LHC operation. The sensitivity is
presented in terms of the lower limit on the mass of a narrow Z′ boson. The production rate for this new state is given by a
benchmark model that is common to all experiments (a leptophobic topcolor Z′ boson).

Table 2 Exclusion limits at 95% confidence level for a narrow Z′ boson, as obtained in tt resonance searches at the Tevatron
and the first years of operation of the LHC.

CDF and D0 References [101] [102] [103] [104] [105]
Final state & l+jets l+jets fully had. l+jets l+jets
Reconstruction resolved resolved resolved resolved resolved√
s [TeV] 1.96 1.96 1.96 1.96 1.96∫
L [ fb−1 ] 1 fb−1 1 fb−1 4 fb−1 4 fb−1 10 fb−1

Z′ mass [TeV] < 0.7 < 0.720 < 0.805 < 0.835 < 0.915
ATLAS Reference [106] [107] [97] [108] [109]
Final state & l+jets l+jets fully had. l+jets l+jets
Reconstruction resolved boosted boosted combined combined√
s [TeV] 7 7 7 7 8∫
L [ fb−1 ] 2.04 fb−1 2.04 fb−1 4.07 fb−1 4.07 fb−1 14 fb−1

Z′ mass [TeV] 0.5 − 0.88 0.6 − 1.15 0.7−1, 1.28−1.32 < 1.74 < 1.8
gKK mass [TeV] 0.5 − 1.13 0.6 − 1.5 0.7 − 1.62 < 2.07 < 2.0
CMS Reference [110] [111] [112] [113] [114]
Final state & fully hadronic l+jets di-lepton fully hadronic l+jets
Reconstruction boosted combined boosted combined√
s [TeV] 7 7 7 8 8∫
L [ fb−1 ] 5.0 fb−1 4.4−5.0 fb−1 5.0 fb−1 19.6 fb−1 19.6 fb−1

Z′ mass [TeV] 1.3 − 1.5 <1.49 <1.3 < 1.7 < 2.1
gKK mass [TeV] 1.4 − 1.5 <1.82 <1.8 < 1.8 < 2.5
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deposits within the jet. In studies with high-pT jets,

the rejection factor of QCD jets compared to jets from

boosted top quark decays is of the order 102. One ad-

ditional feature of this template overlap method is the

automatic inclusion of additional parton radiation into

the template catalog, such as for Higgs decays to bot-

tom quark pairs, where there is commonly an additional

gluon radiated, resulting in 3 energy deposits instead of

the 2 from the b quarks.

Finally, the Q-jets [116] scheme could be used for

top-tagging. This is a method to remove dependence

of analysis results on the choice of clustering algorithm

used to reconstruct jets. For example, one could use

either the Cambridge-Aachen algorithm or the kT al-

gorithm to cluster jets, and may obtain significantly dif-

ferent results in the jet masses. The Q-jets algorithm at-

tempts to use all possible “trees” to cluster constituents,

rather than using the single tree provided by the spe-

cific clustering algorithm used. In this way, each jet now

has a distribution of possible masses instead of a single

jet. This provides additional information which can en-

hance signal discrimination. For example, the variance

of the jet mass between individual clustering trees can

be examined, rather than relying on just a single value.

The statistical stability is also enhanced when using the

Q-jets algorithm.

5.3 Searches with boosted top quarks

The first area where new tools developed specifically for

the selection and reconstruction of boosted top quarks

have shown their value is in searches for massive new

states decaying to top quark pairs. The first application

of techniques specifically aimed at boosted top decays

was the CMS tt resonance search in the all-hadronic

channel [110]. The evolution of the mass reach 17 of tt

resonance searches in the more sensitive “lepton+jets”

channel is shown in Fig. 8. By the start of the LHC

program the Tevatron experiments had excluded a Z ′

boson mass lower than 700 GeV [101,102]. In the course

of 2011 and 2012 the limit was extended to 800 GeV by a

D0 search on nearly 5 fb−1 [104] and to approximately

900 GeV by a CDF analysis of the complete Tevatron

data set [105]. An ATLAS search on 2.4 fb−1 of 7 TeV

LHC data [106] collected in 2011 reached a similar pre-

cision. All these analyses followed the conventional, re-

solved approach that is based on the assumption that

17 The sensitivity to massive particles is expressed in terms
of the observed 95 CL lower limit on the mass of a leptophobic
topcolor Z′ boson. The motivation of this particular model
may not have survived recent advances in particle physics,
but to monitor the sensitivity of searches it is still the best
benchmark on the market.

the six fermions from the decay of the top quark pair

(t → W+b → l+νlb and the charge conjugate process)

can be resolved individually.

In some cases ATLAS and CMS analyses specifically

designed for boosted top quarks [107,111] scrutinized

the same data set that had been used by the resolved

approach. A direct comparison of these results demon-

strates that the novel approach has considerably better

sensitivity for massive states [107]. The final analyses

on 2011 data [108,111] combine resolved and boosted

methods to attain good sensitivity over the complete

mass spectrum. The excluded mass range is pushed up

to 1.74 TeV.

Searches in the “lepton+jets” channel are comple-

mented by analyses of the fully hadronic (tt̄ → 6 jets)

and di-lepton (tt̄→ bb̄l+νll
′−ν̄′l) decay chains. Only one

fully hadronic tt resonance search was performed at the

Tevatron [103]. At the LHC, with a daunting multi-

jet background, these searches are even more challeng-

ing. The advent of new algorithms has, however, greatly

boosted their potential. The mass reach of the CMS [110]

and ATLAS search [97] are compared to that of the

“lepton+jets” searches in Table 2.

The prospects for progress are good. Preliminary

results on the 2012 data set [109,113,114] have signifi-

cantly extended previous limits.

5.4 Jet substructure performance and searches

The results in the previous Section demonstrate the

proof-of-principle: the addition of jet substructure to

the experimentalists’ tool-box boosts the sensitivity of

searches for new physics at the LHC. It is clear, how-

ever, that these tools are still in their infancy. In all

searches discussed in the previous Section large system-

atic uncertainties are assigned to the large-R jets. It is

natural to suspect that further progress could be made

with better (and, especially, better understood) tools.

To quantify the impact of the jet-related systemat-

ics on the sensitivity we have evaluated expected limits

on the narrow Z ′ boson with all sources of system-

atic uncertainty, except one (so-called N − 1 limits) in

several iterations of the ATLAS searches in the lep-

ton+jets final state. The uncertainties associated with

the large-R jet that captures the hadronic top decay

are always the dominant source of uncertainty. Their

impact is considerably larger than that of systematics

associated with the narrow jets, even at relatively low

resonance mass. The limits over a large mass range (1-

2 TeV) would improve by approximately 5-10% if only

the uncertainty on the scale and resolution of mass and

energy of anti-kt jets with R = 1 is removed.
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If we apply an ad hoc scale factor of two to this

uncertainty (representing a failure to bring these un-

certainties under control) we find that the sensitivity is

further degraded. A significant reduction of large-R jet

uncertainties, on the other hand, brings the N − 1 lim-

its with no jet-related systematics and the limits with

reduced large-R jet systematics to within 2%.

CMS has not published the N − 1 results for their

searches, but qualitatively the same picture emerges. In

the fully hadronic searches the jet-related uncertainties

have the largest impact on the limits.

We conclude that further progress undertanding jet

substructure still has substantial potential to increase

our sensitivity to massive new states decaying to top

quarks.

5.5 Further applications

The selection for boosted top quarks, in the lepton+jets

and fully hadronic channels, have proven their value in

tt resonance searches, but are more generally applica-

ble.

The obvious direction to extend the range of appli-

cations is to other searches with boosted top quarks.

The W ′ → tb that are currently performed in the chan-

nel where the top quark decays to a charged lepton, neu-

trino and b-jet. We expect, however, that, ultimately

the highest mass reach should be obtained in the hadronic

decay (with a factor two large branching ratio if τ -

leptons are not considered).

We expect differential cross-section measurements

for tt to benefit from these techniques at large trans-

verse momentum and invariant mass of the tt pair.
Apart from the better selection efficiency in algorithms

designed for this kinematic regime, the better truth-to-

reconstructed mapping of pT and mtt is expected to

be an important advantage. We are looking forward to

such measurements from the ATLAS and CMS exper-

iments. Also analyses that rely strongly on the recon-

struction of the top quark direction, such as the charge

asymmetry measurement, should benefit.

Finally, several authors [117] have commented on

the potential of events with mildly boosted top quarks

for the observation of tt̄H and a measurement of the

production rate.

5.6 Summary

Over the last five years, many ideas have been pro-

posed to cope with the challenge of boosted top quark

reconstruction. Since then, these ideas have been im-

plemented by the experiments and put to the test, pri-

marily in searches for massive new states decaying to tt

pairs. The overview we presented in Fig. 8 and Table 2 is

a testimony to the increase of sensitivity for such states

fuelled by the performance of the LHC. Such progress

would not have been possible if novel techniques for

the study of boosted top quarks had not been devel-

oped. We expect the selection developed for the lep-

ton+jets and fully hadronic to find further applications

in searches and measurements.

6 Summary & Conclusions

This report of the BOOST2012 workshop provides an-

swers to a number of important questions concerning

the use of jet substructure for the study of boosted ob-

ject production at the LHC.

We evaluated the current limitations in the descrip-

tion of jet substructure, both at the analytical level

and in Monte Carlo generators. Impressive progress is

being made for the former and we expect a meaning-

ful comparison to LHC data to be a reality soon. Two

approaches - perturbative QCD and Soft Collinear Ef-

fective Theory - to a first-principle resummation of the

jet invariant mass are producing mature results. Mea-

surements of the jet mass in Z+jet events are proposed,

both inclusively and exclusively in the number of jets.

We hope that in the not-too-distant future these calcu-

lations can enhance our understanding of the internal

structure in jets.

Monte Carlo predictions remain crucial to searches

and measurements employing jet substructure. We have

compared the predictions of several mainstream gener-

ators for a number of substructure observables a and

for several signal and background topologies. While jet

mass is still poorly described by several generators, sev-

eral ways of introducing the inherent uncertainties be-

come evident. Jet grooming reduces the spread among

Monte Carlo models, as do several alternative jet sub-

structure observables.

We also studied potential experimental limitations

that could check further progress, in particular the im-

pact of the large number of simultaneous proton-proton

interactions. We find that, even if the substructure of

large-radius jets is quite sensitive to pile-up, a combi-

nation of a state-of-the-art correction technique and jet

grooming can effectively restore the jet mass scale and

strongly mitigate the impact on the jet mass resolution.

Finally, we reviewed top-tagging techniques deployed

in the LHC experiments and assessed their impact on

the sensitivity to new physics. A series of tt resonance

searches performed by ATLAS and CMS provide clear

proof of the power of techniques specifically designed
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for boosted top quarks. Through an evaluation of the

impact of all sources of systematic uncertainties, we

show that further progress can still be made with an

enhanced understanding of jet substructure. We expect

to see these techniques applied in further searches in-

volving boosted top quarks and in measurements of the

boosted top production rate.
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