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Abstract

The field flatness of any radio frequency quadrupole (RFQ) is an important parameter that needs

to be carefully tuned because it can affect beam transmission efficiency. In 4-rod RFQs, the heights

of a set of tuning plates determine the quality of the field flatness. The goals of this paper are

(a) to show that by using a lumped circuit model of a 4-rod RFQ, the field flatness profile for any

tuning plate height distribution can be quickly calculated, (b) to derive a perturbative solution of

the model so that insights into the physics of the tuning process and its effects can be understood

and (c) to compare the predicted field profiles to measurements.
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I. INTRODUCTION

The field flatness (see section II A 1) of any radio frequency quadrupole (RFQ) is an

important parameter that needs to be well controlled because it can affect beam transmission

efficiency [1]. In the 4-rod RFQ shown in Fig. 1, tuning plates are used to change the voltage

in each tuning cell by raising or lowering them. The goal is to move each plate until the field

flatness is found that is within some prescribed tolerance, usually < 5%. However, moving

the tuning plates also changes the resonant frequency of the RFQ and so the entire process

can be quite tedious when this constraint is also included.

FIG. 1. This picture shows the Fermilab injector RFQ outside of its vacuum tank. The four rods

are held by stems and the tuning plates are located between stems. There are 13 tuning cells in

this RFQ with 11 full cells and a half cell at each end (for a total of two half cells). The beginning

and end cell tuning plates are not installed here. When installed, they go between the vacuum

tank wall and the first and last stem.

Historically, the tuning process is done by moving the tuning plates of the RFQ using

an iterative trial and error process that can be grossly inefficient [1]. Attempts have been

made to semi-automate this process by pre-calculating the tuning plate heights with CST

Microwave Studio R© (MWS). This simulation tool has been used successfully in the design

and tuning for various types of RF accelerators including drift-tube linacs as well as 4-vane
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RFQs. However, the agreement between simulation and measurement can be rather poor for

4-rod RFQs [2–5]. An explanation for that could be that the simulation accuracy of MWS is

quite different for transmission-line resonators compared to cavity resonators. For example,

Fig. 2 presents the results of the MWS field flatness simulation for a fully imported CAD

model of the FNAL RFQ. We show here, the results of five models with different meshes that

have been refined and varied to improve the simulation accuracy. All of these models have

several million mesh cells and all of them exhibit a slope in the simulated field distribution

from the low energy end to the high energy end that is not present in our measurement. The

deviation between the simulated and measured field flatness in these models can be up to

14%. Similar results have been presented by Kurennoy [5] for the same RFQ. To overcome

this problem for particle tracking simulations, a fictive tuning set up that is not the one used

in the RFQ is used to reproduce the measured field flatness in simulations. With this field

flatness, reasonable particle dynamic simulations can be performed, for example, discussed

in reference [5].

Coming back to tuning the RFQ, the lack of an accurate real-time model for the tuning

process results in the reversion back to the traditional iterative method.

It is with the above problems in mind that we want to see whether a lumped circuit

model of the 4-rod RFQ can be used instead. After we developed this model, we found

that the lumped circuit model has at least two advantages: the first is that the solution

to the problem essentially becomes an eigenvalue problem that is easily and quickly solved

both analytically and numerically. The second is that the fundamental physical relations of

the resonator system become more apparent when compared to the 3D-results of detailed

models used for MWS simulations.

The idea of modeling a 4-rod RFQ with a lumped circuit model is not new. For example

see references [6] and [7] or [8] for its application on a 4-vane RFQ. In this paper, we will

use a simplified model for 4-rod RFQs first published by Fang et al in 1992 [9] which we will

improve and expand upon.

II. THEORY

The motivation behind modeling the RFQ as a series of coupled LC circuits comes from

the observation that each tuning cell can be modeled as an LC equivalent circuit. From
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FIG. 2. Comparison of a measured field flatness with its MWS simulation. In this figure, a

measured field flatness of the FNAL RFQ (black “¥”) for a given tuning plate distribution (“–”)

is compared to the simulation of the fully imported model of this RFQ that has the same tuning

set up (Mod1 to Mod5). The simulation models differ in their meshing which has been refined in

several steps. All of the simulated field flatness results show a slope from the low energy to the

high energy end that is not present in the measurement. The simulated values can deviate up to

14% from the measured value.

Fig. 3, we can see that since there are gaps between the rods, they are capacitively coupled.

The stems and the base together allow a current to flow in a loop and thus this structure

can be thought of as an inductor. Together, the rods, stems and base form the basic LC

circuit for each tuning cell. In order to change the resonant frequency of a cell, a tuning

plate is inserted into that cell so that the current path is shortened which, in effect, lowers

the inductance of that cell.

Of course, each LC circuit does not live in isolation. In fact, according to Fang, they are
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FIG. 3. This is a cartoon of a 4-rod RFQ that has three tuning cells. Each tuning cell can be mod-

eled as an LC circuit with a current J flowing in each cell. Notice that the stems alternatively hold

two rods, i.e. the shaded stems hold the shaded rods, while the unshaded stems hold the unshaded

rods. The end view of the rod-stem set up shows the quadrupole voltage polarity structure that

arises when the currents flow in opposite directions in adjacent tuning cells. This is the necessary

quadrupole polarity structure that is required for transverse focusing.

coupled not only to their nearest neighbor but also to their next nearest neighbor. With this

in mind, we can create the lumped circuit model of the RFQ shown in Fig. 4. It is important

to take into account the direction of the winding of the inductor represented by “•” in the

model shown in Fig. 4. In this model, the tuning cells are numbered from 0, . . . , N with cell

0 and N being the half cells. Each tuning cell has capacitance Cn for n = 0, . . . , N and Ln

for n = 1, . . . , N −1, L0/2 for cell 0, and LN/2 for cell N . The coupling between the nearest

neighbor cells is 2κ1 and the next nearest neighbor cells is 2κ2. It will be seen later when we

compare our model to the MWS results, that it is sufficient to have κ1 and κ2 independent

of cell number.[10] Finally, a current Jn for n = 0, . . . , N flows in each loop.

Let us examine cell 0 first. We can write down Kirchhoff’s equation for it and it is

J0

iωC0

+ 1
2
iωL0J0 − iκ1ω

√
L0L1J1 − iκ2ω

√
L0L2J2 = 0

⇒ −J0

(
1− 1

2
ω2C0L0

)− κ1ω
2
√

L0L1C0J1 − κ2ω
2
√

L0L1C0J2 = 0 (1)

Similarly, we can write down Kirchhoff’s equation for the last cell, N , and it is

−κ2ω
2
√

LN−2LNCNJN−2 − κ1ω
2
√

LN−1LNCNJN−1 − JN

(
1− 1

2
ω2CNLN

)
= 0 (2)
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FIG. 4. The RFQ lumped circuit model. The highlighted n’th cell shows how it is coupled to

its first and second neighbor circuits. Each closed circuit represents a tuning cell. Notice the “•”
that is associated with each inductor. The location of the “•” and the direction of the current

determines the sign of the induced voltage that comes from coupling between cells. For an example,

see [11].

For any arbitrary cell, n, we have

− κ2ω
2
√

Ln−2LnCnJn−2 − κ1ω
2
√

Ln−1LnCnJn−1

− Jn

(
1− ω2LnCn

)

− κ1ω
2
√

LnLn+1CnJn+1 − κ2ω
2
√

LnLn+2CnJn+2 = 0 (3)

for n = 1, . . . , N − 1. If any subscript is less than zero or greater than N , the term is

identically zero. For example, L−1 = J−1 = 0.

A. Eigensystem equation

We can combine Eq. 1, 2 and 3 and turn them into an eigenvector and eigenvalue problem

(U1 − λ2I)J = 0 (4)

where λ2 = 1/ω2,

U1 =




m0,0C0 m0,1C0 m0,2C0 0 ... ... 0

m0,1C1 m1,1C1 m1,2C1 m1,3C1

...
...

m0,2C2 m1,2C2

... ... ... ...
...

0 m1,3C3

... ... ... mN−3,N−1CN−3 0

...
... ... ... ... mN−2,N−1CN−2 mN−2,NCN−2

...
... mN−3,N−1CN−1 mN−2,N−1CN−1 mN−1,N−1CN−1 mN−1,NCN−1

0 ... ... 0 mN−2,NCN mN−1,NCN mN,NCN




(5)

6



is a band matrix with

m0,0 = 1
2
L0, mN,N = 1

2
LN mn,n = Ln

mn−1,n = −κ1

√
Ln−1Ln mn−2,n = −κ2

√
Ln−2Ln



 for n = 1, . . . , N − 1 (6)

and

J =




J0

J1

J2

...

JN




, I =




1 0 . . . . . . 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 1




(7)

It is obvious that if the coupling constants κ1,2, capacitances C0,...,N and inductances L0,...,N

are specified, we can numerically solve Eq. 4 for the eigenmodes and eigenvectors of U1.

Note: it is easy to show that the eigenmodes of λ2 are the same as 1/λ2.

1. Definition of field flatness

We define the voltage Vn in tuning cell n to be

Vn =
Jn

ΩCn

n = 0, . . . , N (8)

where Ω is the resonant frequency of the RFQ. Notice that we have left out the i in Eq. 8

because the relative phase between current and voltage is irrelevant in this application.
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FIG. 5. This is an example of a field profile and error. The dashed line in the graph on the left is

〈|V |〉 which was defined in section IIA 1. In this example, the field error is 8%.

We define the relative field flatness of tuning cell n to be

εn =
|Vn| − 〈|V |〉

〈|V |〉 (9)
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where 〈|V |〉 is the mean of the absolute voltage in the tuning cells from n = 1, . . . , N − 1.

Notice that we have left out the end cells in the calculation of the mean because the voltages

in these cells tend to be very far from the mean because they are dominated by boundary

conditions. And by extension, we define the “normalized” voltage in tuning cell n to be

normalized Vn =
|Vn|√∑N−1
m=1 |Vm|2

(10)

The field flatness of the RFQ is defined to be the difference between the maximum and

minimum relative field flatness found in the list {εn| n = 1, . . . , N − 1}. The goal is to

“flatten” this field, i.e. to make the difference as small as possible. An example of a field

profile and field flatness error is shown in Fig. 5. This example has been calculated using

the parameters shown in Table I, for an ideal 4-rod RFQ that has no flaws resulting from

manufacture. The curvature that we see here, which we will discuss in section III B 2, is due

to κ2 6= 0. So, even in a perfectly manufactured 4-rod RFQ, we may still have to flatten the

fields because the field error can be > 5%.
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B. Special case

In principle, once we are armed with the eigenvalue equation of the previous section, we

can simply fill in the required parameters and numerically calculate the eigenmodes and

eigenvectors. However, this defeats one purpose of using the lumped circuit model that is

to give us insights into the physics of the tuning process.

The first step in our quest for understanding is to simplify the system. We will set the

resonant frequency of each cell to be the same. Thus, if we set Ln = L for n = 0, . . . , N , then

it is obvious from Fig. 4 that we must have Cn = C for n = 1, . . . , N−1, and C0 = CN = 2C.

Thus, the U1 matrix becomes

U1 = λ2
c




1 −2κ1 −2κ2 0 . . . . . . . . . . . . 0

−κ1 1 −κ1 −κ2
. . .

...

−κ2 −κ1 1 −κ1 −κ2
. . .

...

0 −κ2 −κ1 1 −κ1 −κ2
. . .

...
...

. . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . −κ1 −κ2 0

...
. . . . . . . . . 1 −κ1 −κ2

...
. . . . . . −κ1 1 −κ1

0 . . . . . . . . . . . . 0 −2κ2 −2κ1 1




≡ λ2
cU0(κ1, κ2) (11)

where λ2
c = 1/ω2

c = LC. Clearly, U1 is a band matrix and it is not pentadiagonal or

symmetric because of the first and last rows.

Next, we set κ2 = 0 to see and find analytic solutions for the eigenvalues and eigenvectors

of U0(κ1, 0). Once we find them, we can apply perturbation theory to arrive at a solution

for the case when κ2 ¿ κ1.

1. Ansatz for finding the eigenvalues and eigenvectors of U0(κ1, 0)

The clue to finding the eigenvalues and eigenvectors of U0(κ1, 0) is in its numerical solu-

tions. An example is shown in Fig. 6. From this figure, it is obvious that we can propose
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an ansatz for the eigenvectors of U0(κ1, 0) to have the form

Jk = Ak




cos 0×kπ
N

cos 1×kπ
N

cos 2×kπ
N

...

cos (N−1)×kπ
N

cos N×kπ
N




for k = 0, . . . , N (12)

where Ak = 1/‖Jk‖ and ‖.‖ is the norm of a vector. It is easy to show that

1

‖Jk‖ =





1√
N/2+1

if k 6= 0 or k 6= N

1√
N+1

if k = 0 or k = N
(13)

Note: it is interesting that Jk is independent of κ1.

Let us create a matrix from the column vectors Jk

J =
(
J0 J1 . . . JN

)
(14)

and after a bit of algebra, we can show that that Jk are the eigenvectors of U1(κ1, 0) because

J−1U0(κ1, 0)J =




Λ0 0 . . . . . . 0

0 Λ1
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 ΛN




= Λ (15)

where Λ is a diagonal matrix whose entries {Λk| k = 0, . . . , N} are the eigenvalues of

U0(κ1, 0) and

Λk = 1− 2κ1 cos
kπ

N
for k = 0, . . . , N (16)

Therefore, for k = N which is the π-mode, we can select out the Nth column of J and

its associated eigenvalue to get

JN =
1√

N + 1




+1

−1

+1
...

(−1)N




ΩN =
ωc√
ΛN

=
ωc√

1 + 2κ1

(17)

where ΩN is the resonant frequency of the k = N mode.
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FIG. 6. The normalized eigenvectors of U0(κ1, 0) plotted in blue and the ansatz plotted as red

“•” for a few modes. It is clear that the ansatz matches the numerically calculated eigenvectors

exactly.

2. π mode

The reason why the π mode is the required mode for 4-rod RFQs is seen by looking at

how the rods are mounted on the stems. It is apparent from Fig. 3 that two rods are held

on the same stems that alternate with the stems that hold the other two rods. Therefore,

for the rods to have a quadrupole voltage polarity structure, the nearest neighbor tuning

cells must have opposite signs in voltage. Hence, the π mode is necessary because it is clear

from Eq. 17 that this requirement is satisfied when the currents flow in opposite directions

in adjacent cells. MWS simulations shown in appendix C confirm that the currents do flow

in opposite directions between adjacent tuning cells for the operating mode which is the π

mode.
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3. Application of perturbation theory for finding the eigenvalues and eigenvectors of U0(κ1, κ2)

We will show how the eigenvalues and eigenvectors are affected by the introduction of the

next nearest neighbor coupling κ2. The first step is to partition U0(κ1, κ2) into two parts

U0(κ1, κ2) = U0(κ1, 0) +




0 0 −2κ2 0 . . . . . . . . . . . . 0

0 0 0 −κ2
. . .

...

−κ2 0 0 0 −κ2
. . .

...

0 −κ2 0 0 0 −κ2
. . .

...
...

. . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0 −κ2 0

...
. . . . . . . . . 0 0 −κ2

...
. . . −κ2 0 0 0

0 . . . . . . . . . . . . 0 −2κ2 0 0




≡ U0(κ1, 0) + δU0(κ2) (18)

for κ2 ¿ κ1. Again, we notice that the first and last rows of δU0(κ2) break its symmetry.

Since the equation that we are going to solve perturbatively is reminiscent of those stud-

ied in quantum mechanics (QM), we can, in fact, use the formal perturbation machinery

developed in QM to solve our problem. And so in that spirit, we will use the “bra” “ket”

notation used in QM to write Jk as an eigenket with eigenvalue Λk

Jk = |Λk〉 (19)

However, unlike QM where only Hermitian operators are considered, U0(κ1, 0) is not sym-

metric and hence {|Λk〉| k = 0, . . . , N} is not an orthonormal set. Fortunately, all is not

lost, as long as we define the eigenbras {〈Λk|| k = 0, . . . , N} properly we can salvage the

perturbative technique. The artifice is shown in the appendix A where we find that

〈Λk| = (J−1)k (20)

where (J−1)k is the (k + 1)’th row of the matrix J−1. (Note: the exact form of both J

and J−1 are shown in appendix B.) And thus, we can have the orthonormality condition

satisfied, i.e.

〈Λk|Λ`〉 = δk` (21)

12



where δk` is the Kronecker δ. Thus

〈Λk|U0(κ1, 0)|Λk〉 = Λk (22)

Let us assume that the eigenvector of U0(κ1, κ2) is |Λ′k〉 and it can be divided into two

parts

|Λ′k〉 = |Λk〉+ |δΛk〉 (23)

so that

U0(κ1, κ2)|Λ′k〉 =

[
U0(κ1, 0) + δU0(κ2)

][
|Λk〉+ |δΛk〉

]

=

[
Λk + δΛk

][
|Λk〉+ |δΛk〉

]

⇒ U0(κ1, 0)|δΛk〉+ δU0(κ2)|Λk〉 = Λk|δΛk〉+ δΛk|Λk〉





(24)

because in first order perturbation theory, we can neglect the terms δU0(κ1)|δΛk〉 and

δΛk|δΛk〉. We will assume that {|Λk〉| k = 0, . . . , N} forms a complete set so that we

can write

|δΛk〉 =
N∑

`=0

ck`|Λ`〉 (25)

where ck` are constants to be determined.

When we substitute Eq. 25 into Eq. 24, we have

N∑

`=0

ck`Λ`|Λ`〉+ δU0(κ2)|Λk〉 = Λk

N∑

`=0

ck`|Λ`〉+ δΛk|Λk〉 (26)

Now, we can apply the orthonormality condition 〈Λm|Λ`〉 = δm` from Eq. 21, to Eq. 26 to

get

ckmΛm + 〈Λm|δU0(κ2)|Λk〉 = ckmΛk + δΛkδmk (27)

Therefore, the shift in the eigenvalue is found when m = k,

δΛk = 〈Λk|δU0(κ2)|Λk〉 (28)

and the change in eigenvectors is found when m 6= k

ckm =
〈Λm|δU0(κ2)|Λk〉

Λk − Λm

(29)

Thus using Eq. 25, we have

|δΛk〉 =
N∑

`6=k

〈Λ`|δU0(κ2)|Λk〉
Λk − Λ`

|Λ`〉 (30)

where we are allowed to choose ckk = 0 because 〈Λ′k|Λ′k〉 = 〈Λk|Λk〉 = 1 to first order,

13



4. Eigenfrequency of π-mode for κ2 ¿ κ1

The correction to the eigenvalue Λk comes from Eq. 28 and is

δΛk = 〈Λk|δU0(κ2)|Λk〉
= (J−1)kδU0(κ2)Jk (31)

For π-mode, we have k = N and when we multiply out Eq. 31, we find that

δΛN = −2κ2(N − 1)

N
(32)

We recall that the eigenfrequency Ωk is related to Λk + δΛk by

Ωk =
ωc√

Λk + δΛk

(33)

and so, for π-mode, we have k = N and thus

ΛN = 1 + 2κ1 (34)

Therefore, the corrected eigenfrequency that takes into account both κ1 and κ2 is

ΩN =
ωc√

(1 + 2κ1)− 2κ2(N − 1)/N
(35)

5. Eigenvector correction of π-mode eigenvector for κ2 ¿ κ1

The correction to the eigenvector |Λk〉 comes from Eq. 30 and is

|δΛk〉 =
N∑

`6=k

〈Λ`|δU0(κ2)|Λk〉
Λk − Λ`

|Λ`〉

=
N∑

`6=k

(J−1)`δU0(κ2)Jk

Λk − Λ`

J` (36)

We notice that

(J−1)`δU0(κ2)JN ∝ κ2 (37)

because Jk is independent of both κ1 and κ2, and from Eq. 16, we have

ΛN − Λ` =





2κ1

(
1 + cos `π

N

)
if ` 6= 0

4κ1 if ` = 0
(38)
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Therefore,
(J−1)`δU0(κ2)JN

ΛN − Λ`

∝ κ2

κ1

⇒ |δΛN〉 ∝ κ2

κ1

≡ µ (39)

Hence, we have demonstrated that as long as µ remains constant, the correction |δΛN〉
remains constant, and this is the reason why the curvature that will be shown later in Fig. 9

remains the same when κ1 is changed while keeping µ constant.

C. The effect of changing the height of any tuning plate

The effect on the eigenfrequencies and eigenvectors for arbitrary tuning plate positions

will be studied in this section. Let us denote the height of the tuning plate in cell n to be

hn and when all the tuning plates are at their lowest position, i.e. hn = 0, the inductance

Ln = L for n = 0, . . . , N , and the capacitance for cells n = 1, . . . , N − 1 is Cn = C and

C0 = CN = 2C. Now, unlike in previous sections, we must allow for arbitrary heights hn

(see Fig. 7). This means that the inductance in cell n becomes

Ln → L + δLn (40)

where δLn is the change in inductance in cell n from L.

FIG. 7. This is a view of the Fermilab RFQ that shows the tuning plates at arbitrary heights hn.
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From Eq. 5, we have two types of terms to consider. The first type comes from the

diagonal of U1 which is

LnCn = (L + δLn)C ⇒ LnCn = LC

(
1 +

δLn

L

)
(41)

We can write the above in terms of the base cell frequency ω2
c = 1/LC and the new base

frequency ω′n

ω′n =
ωc(

1 + δLn

L

)1/2
≈ ωc

(
1− 1

2

δLn

L

)
for δLn ¿ L

⇒ δLn

L
= −2(ω′n − ωc)

ωc

≡ −δn (42)

The advantage of using frequency changes rather than inductance changes when populating

the entries of U1 is that the form of U1 remains unchanged when the Cn’s are perturbed.

Therefore, LnCn in terms of the base cell frequency ωc and its shift δn is

LnCn =
1

ω2
c

(
1− δn

)
(43)

The second type comes from the off-diagonal of U1 which is

√
LnLmC =

√
(L + δLn)(L + δLm)C

≈ LC

√(
1 +

δLn

L

)(
1 +

δLm

L

)

=
1

ω2
c

[
1− 1

2
(δn + δm)

]

≡ 1

ω2
c

(
1− 1

2
∆nm

)
(44)

where we have neglected the (δLn)(δLm)/L2 term.

When we substitute Eq. 43 and 44 into Eq. 5, we have

U1 = λ2
c

[
U0(κ1, 0) + δU0(κ2) + δW0(κ1, κ2)

]
(45)
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where

δW0 =




−δ0 κ1∆0,1 κ2∆0,2 0 ... ... ... ... 0

κ1
2

∆0,1 −δ1
κ1
2

∆1,2
κ2
2

∆1,3

...
...

κ2
2

∆0,2
κ1
2

∆1,2 −δ2
κ1
2

∆2,3
κ2
2

∆2,4

...
...

0
... ... ... ... ... ...

...
...

... ... ... ... ... ... ...
...

...
... ... ... ... ... κ2

2
∆N−3,N−1 0

...
... ... ... −δN−2

κ1
2

∆N−2,N−1
κ2
2

∆N−2,N

...
... ... ... −δN−1

κ1
2

∆N−1,N

0 ... ... ... ... 0 κ2∆N,N−2 κ1∆N,N−1 −δN




(46)

Now, we can apply exactly the same methods discussed in section II B using perturbation

theory to calculate the effect of changes in Ln. The correction to the eigenvalues Λk comes

from Eq. 28 and is

δΛk = (J−1)k

[
δU0(κ2) + δW0(κ1, κ2)

]
Jk (47)

and the correction to the eigenvectors comes from Eq. 30

|δΛk〉 =
N∑

`6=k

(J−1)`

[
δU0(κ2) + δW0(κ1, κ2)

]
Jk

Λk − Λ`

J` (48)

We will compare these perturbative solutions to the numerical solution of the same eigen-

system in section IV.

If we continue further, and after quite a bit of expansion and simplification of Eq. 48, we

find that when only the n’th plate is moved, the correction when expanded to first order in

δn is
N∑

`6=k

(J−1)`δW0(κ1, κ2)Jk

Λk − Λ`

J` = δn

N∑

`6=k

w`(κ1, κ2, n)J` (49)

where w` are functions independent of δn. The above relationship turns out to be important

for understanding and explaining the idiosyncrasies of the superposition method that has

been historically used to predict the field profile. For example, it can be shown using Eq. 49

that the H function mentioned in references [3] and [12] is, in fact, δn.

Furthermore, by linearizing the problem, we have made methods such as Gauss-Newton

available to us for the optimization of either Ln or Cn (in the form of δn) to fit to simulated

or measured eigenvectors.
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III. USING THE MODEL

In order to use our model, we must calculate Ln, Cn, κ1, κ2 and δLn/L using the results

from MWS and then refine these values by using the results from measurements. The

Fermilab RFQ will serve as the structure for this exercise [13]. Before we begin, we need

to discuss the duality of Ln and Cn. Duality helps by allowing us to keep either Ln or Cn

constant and then varying the remaining variable for fitting purposes.

A. Duality of Ln and Cn

We notice that the natural frequency of each isolated tuning cell is ω′n = 1/
√

LnCn for

n = 1, . . . , N − 1, ω′0 = 1/
√

L0C0/2 and ω′N = 1/
√

LNCN/2, i.e.

ω′n
2 ∝ 1

LnCn

for k = 0, . . . , N (50)

We can think of Ln and Cn as mathematical duals because any variation of the tuning cell

from the ideal can either be assigned as an error to either Ln or Cn.

B. Fits to MWS data

In the first pass, we will assume that Cn = C for n = 1, . . . , N − 1, C0 = CN = 2C to

allow us to calculate κ1, κ2 and δLn/L by fitting the model to the MWS results. In the

second pass, where we have to match our model to the measured field flatness, we will vary

the capacitance of each cell to get a good fit. Note: the MWS model of the RFQ used in this

section does not contain any modulations and so the field flatness profile will be symmetric

about cell 6 when all the tuning plates are at the same height.

1. Value of C

We have to set some value to C in order to get the ball rolling. There are several ways

to calculate the capacitance of the system with simplified electrodes in the form of circular

rods. The solution to these models are typically derived with the theory of cables or image

charges, like the examples given in [14]. Instead of using these simplified models, we have

simulated the capacitance of the electrodes using CST EM Studio R© (EMS). EMS exports a
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TABLE I. Lumped Circuit Model Parameters

Parameter Value Units Description

N + 1 13 number of tuning cells

C 8.3 pF Cn = C for n = 1, . . . , N − 1, C0 = CN = 2C

L 0.108 µH Ln = L for n = 0, . . . , N

κ1 0.0936 first neighbor coupling

κ2 0.0031 second neighbor coupling

a −1.00× 10−6 mm−2 coefficient of h2 in δL(h)/L

b −0.38× 10−4 mm−1 coefficient of h in δL(h)/L

capacitance matrix of the system which includes the separated lumped capacitance between

each defined potential as shown in Fig. 8.

According to the quad star model, also shown in Fig. 8, we can describe the quadrupole

as a capacitance CA, consisting of the four parallel capacitors cij between the electrodes,

CA = c12 + c23 + c34 + c41 (51)

and are in series with two capacitors CB and CC

CB = c11 + c33

CC = c22 + c44 (52)

CB and CC represent the capacitance between two pairs of electrodes (V 1, V 3), (V 2, V 4)

and the boundary.

These capacitors CA, CB and CC form a π-network as one can find for example in [14]

and with V 1 = V 3 = −V 2 = −V 4 it leads to a capacitance of the electrodes CT described

by

CT = CA +
CBCC

CB + CC

(53)

When we substitute the values, given in the capacitance matrix of EMS, into Eq. 51, 52 and

53, we find that CT = 124.6 pF and thus the lumped circuit capacitance C = CT /15 = 8.3 pF

because the total capacitance of the RFQ lumped circuit model is CT = 11C+2×2C = 15C.
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FIG. 8. For the purpose of calculating C with EMS, we have set one pair of electrodes to 72 kV

(red) and another pair to −72 kV (blue). From here, we can extract the lumped capacitance matrix

to calculate CT using the star quad model.

2. Extracting κ1 and κ2

We can extract κ1 and κ2 = µκ1 by using the MWS results for the case when all the

tuning plates are at zero. In addition, we will also keep the resonant frequency fixed at

154.733 MHz found by MWS in this configuration. The goal is to perform a least square fit

to minimize the difference between the π-mode eigenvector J12 and the MWS eigenvector

by varying κ1 and µ with the given constraint.
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FIG. 9. (a) The red curve is the result of fitting the model to the MWS field flatness profile (blue

“•”) while keeping the resonant frequency fixed. (b) κ1 is increased by 10× while µ has the same

value that is used to create (a). The curve from (a) is still good but the resonant frequency has

shifted. The dashed line represents the case when µ = 0 and shows that there is no curvature in

this case.
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The results of the fit are κ1 = 0.0936 and µ = 0.03351 and are shown in Fig. 9(a). We

also illustrate in Fig. 9(b) that when κ1 → (10 × κ1 = 0.936) but with µ kept constant,

the fit remains good, but the resonant frequency has changed to 163.793 MHz. This result

supports the point that was made earlier in section II B 5 and Eq. 39 that to first order, κ1

determines the resonant frequency while µ determines the curvature of the field.

As a consequence of the choice of C and the fit, L = 0.108 µH when the above values are

substituted into Eq. 35. Table I summarizes all the results of the fits to the MWS data.

3. Constructing δL as a function of h

The resonant frequency change of the RFQ when all its tuning plates are raised to the

same height, shown in Fig. 10, indicates to us that δL must be at least a quadratic function

of the tuning plate height h. Therefore, let us define two free parameters a and b in the

following equation

δL(h) = L(ah2 + bh) (54)

that will be found by fitting to the MWS data described below. Reminder: we have assumed

that δL(h) is the same for all tuning cells.
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FIG. 10. The resonant frequency when all the tuning plates are raised to the same height calculated

by MWS. When all the tuning plates are at 0 mm, the resonant frequency is 154.7 MHz and

158.4 MHz at 50 mm. The red curve is a quadratic fit to the data.

We choose to find a and b by applying a least squares fit that minimizes the difference
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between the model relative voltage, |V3(h3)/V3(0)|, and the same ratio found by MWS. We

define V3(h3) to be the voltage in cell 3 when the tuning plate is at h3 while all the other

tuning plates are at zero height. The fit gives

a = −1.00× 10−6 mm−2 b = −0.38× 10−4 mm−1 (55)

and Fig. 11(a) shows the result of the least squares fit plotted with the MWS data. The

range of δL(h)/L is much smaller than expected and it has the consequence that the resonant

frequency is not predicted correctly as a function of tuning plate height. This easily shown

when we use Eq. 42 and the values of the resonant frequencies from Fig. 10

δL

L
= −2(fres(50)− fres(0))

fres(0)
= −2(158.4− 154.7)

154.7
= −0.048 (56)

where fres(h) is the resonant frequency calculated by MWS when all the plates are at h mm.

However, when we substitute the a and b values in Eq. 55 into Eq. 54, we get δL
L

= −0.0044

which is 10× smaller than what we expect. This is a weakness of the model that will need

to be addressed in the future.
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FIG. 11. (a) The red curve is the result of fitting the model to the MWS data (blue “•”) when

tuning plate 3 is moved. (b) is the corresponding δL/L found from the fit. See text.

IV. COMPARISON OF THE MODEL TO THE MWS RESULTS

As a comparison, we can apply our model with the parameters found in the previous

sections and summarized in Table I to other MWS results. Fig. 12 shows a selection of

MWS data that are plotted against the predicted curves of our model by numerically solving

the eigensystem given by Eq. 5 and by perturbation theory described in section II B 3. We
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can see that the predicted curves of both numerical solution and the perturbation solution

can match the MWS data quite well. However, clearly, both methods do not always match

the MWS data exactly. Sometimes, one method seems to be better than the other. The

discrepancies are highlighted in the caption of that figure. We can certainly make the curves

fit better to the MWS data by varying the capacitance of each cell but this effort is better

expended on fitting the curves to measured data. This will be the topic of the next section.
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FIG. 12. All the curves have been calculated using the parameters shown in Table I and the “•”,

“¥”, etc. come from MWS. All the continuous curves come from numerically solving Eq. 4 and the

dashed curves come from perturbation theory solutions described in section II B 3. (a) The relative

field flatness when tuning plate 3 is at 30 mm while the rest are at 0 mm. (b) The relative voltage

in tuning cells 1 and 6 when their tuning plates are moved (c) The relative field flatness of all the

cells when the tuning plate in cell 3 is set to 31 mm and 55 mm. The predicted curves are good for

tuning cells 4 to 11. Interestingly, the perturbative solution matches the MWS data better than

the numerical eigensytems solution. (d) The relative voltage response of tuning cells 1, 4, 7 and

11 when tuning plate 3 is moved. The predicted curves using the numerical eigensystems method

match the MWS data very well except for cell 1, while the perturbative solution does not do as

well.

23



V. FITTING THE MODEL TO MEASURED RESULTS
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FIG. 13. The relative change ∆Cn/C for n = 1, . . . , 11 that are needed to minimize the difference

between the predicted relative voltage and the measurements when tuning plates 3 and 9 are

individually set to 20 mm. The results of the fit are shown in Fig. 14. Note: we did not use the

effect of tuning plates 0 and 12 in the fits.

The list of capacitance corrections that are needed for the model to fit to the measured

relative voltage [15] is ∆C = {∆Cn| n = 0, . . . , 12}. We will only consider the cases where

tuning plates 3 and 9 have been set to 20 mm because we want to determine whether our

fit to a subset of the data set is sufficient to predict the voltage behavior when applied to

the remaining data set. Fig. 13 shows the ∆C required for fitting to this subset. Note: we

have left out the voltage effects of tuning plates 0 and 12 because we did not measure their

effects.

The results presented in Fig 14 illustrate that the relative changes to the capacitance are

asymmetric about tuning cell 6 and are very small when compared to C. We believe that

both the asymmetry and ∆Cn ¿ C indicate the influence of the growing modulation [2] and

to second order, the manufacturing and mounting errors of the rods.

The model predictions using ∆C are shown in Fig. 14. When we compare the predicted

results to the measurements, we see that the model and measurements match extremely well.

These results set us up for comparing the model with these parameters to the measurements

for arbitrarily set tuning plate heights. This will be discussed in the next section.
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FIG. 14. We fit ∆C to the measured relative field profile for the cases when the tuning plates in

cells 3 and 9 were set to 20 mm. We then used the ∆C that we found (see Fig. 13) and applied it

to the model. The results are plotted here for the other cells when each plate was raised to 20 mm.

We can see that the predicted relative voltage and the measured relative voltage match extremely

well.
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VI. COMPARISON OF THE MODEL PREDICTED FIELD FLATNESS TO MEA-

SUREMENT

In this section, we will compare our model prediction to measurements by the simple

and direct way of numerically solving the eigensystem equation derived in section IIA after

filling in U1 with the values from Table I, δLn/L and ∆C found in the previous sections. We

will not delve into detail about how to accomplish the extraction of the eigenvectors of U1

because many canned packages are able to do this easily. The model predictions compared

to three measurements with arbitrary tuning plate heights are shown in Fig. 15.

In order to test the hypothesis that results of the model can predict the measurements,

we will use the reduced χ2 goodness of fit test.[16] The definition of the reduced χ2 is

χ2/ν =
1

ν

11∑
n=1

(Ṽmeasured(n)− Ṽpredicted(n))2

σ2
n

(57)

where Ṽmeasured(n) and Ṽpredicted(n) are the measured relative voltage and the predicted rel-

ative voltage in cell n respectively, σ2
n is the variance of the measurement in cell n and ν is

the number of degrees of freedom.

In all the example setups, ν = number of tuning plates = 11 because we are not fitting or

deriving any statistical quantities from the measurements. When we choose the significance

value α = 0.05, the critical value χ2/νcrit = 1.78. We will use χ2/νcrit to determine whether

the models acceptably describe the measurements. And for calculating χ2/ν, we will assume

that the measurements have a standard error of 1%.

For setup 1, where most of the tuning plate heights are close to 20 mm, χ2/ν = 0.24 of

our model is < χ2/νcrit, and so we do not reject our models at the 5% significance level. We

can see by eye that the model predictions do indeed match the measurements very well.

For setup 2, we have raised most of the tuning plates to about 50 mm. Again, the model

χ2/ν = 0.88 < χ2/νcrit and so we do not reject this model at the 5% significance level.

For setup 3, we see that the model does not match the measurements very well at the

5% significance level because χ2/ν = 11.9 > χ2/νcrit. However, the shape of the prediction

correlates with the measurements. This indicates that ∆C needs further refinement.

Therefore, from these three setups, we can see that our model is usable for predicting

the shape of the field profile. And for two of our three setups, the model predictions match

the measurements. In fact, in practice, we can imagine after each setup and measurement,
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the value of the capacitance used for each cell can be refined to make the predicted profile

match the measured profile. Then, with the new set of capacitances, we can use it to predict

the next profile for a new set of tuning plate heights. These iterations that consist of the

sequence of prediction and correction form the basis of a tuning algorithm.
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FIG. 15. The comparison between our model predictions and measurements for three different

tuning plates setups are shown here. The “–” in these graphs show the tuning plate heights. And

because χ2/ν < χ2/νcrit = 1.78 for setups 1 and 2, the model matches the measurements. But

χ2/ν À 1 in setup 3 and the model prediction is unacceptable although the shape of the profile

does mimic the measurement.

VII. CONCLUSION

We have shown how the application of perturbation theory to the lumped circuit model

can be used to understand the physics of field flatness tuning. And because the numerical

solution of eigensystems is very fast, the model also provides the opportunity for real-time

calculation of the field flatness profile. When we couple the real-time calculation with an

iterative process of prediction and correction, the model can be quickly refined to give
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accurate results. This procedure makes it possible for the RFQ expert to not only use

the model to tune the field flatness to some tolerance but also to shape it. This would

be desirable because there are CST Particle Studio R© simulations as well as PARMTEQ

calculations that reveal the capture and transmission efficiency of the RFQ is impacted by

the shape of the field profile [12, 17].

Of course, there are also improvements that need to be made to the model. For example,

the present model does not predict the resonant frequency correctly. Currently, we are

developing a LabView program that implements this model and will be used to tune newly

built 4-rod RFQs.

Appendix A: Constructing the Eigenbra 〈Jk|

Let us write down the eigenvectors Jk of U0(κ1, 0) as eigenkets, i.e.

Jk = |Λk〉 (A1)

Unfortunately, {|Λk〉| k = 0, . . . , N} do not form an orthonormal set because U0(κ1, 0) is

not symmetric. However, we can always construct a set of eigenbras {〈Λk|| k = 0, . . . , N}
that are orthogonal to {|Λk〉| k = 0, . . . , N} if its eigenvalues are distinct. In this paper, it

is, indeed, the case from Eq. 16.

We start with the similarity transformation that diagonalizes U0(κ1, 0) from Eq. 15

J−1U0(κ1, 0)J = Λ

⇒ U0(κ1, 0)J = JΛ and J−1U0(κ1, 0) = ΛJ−1 (A2)

Therefore, from the last line of Eq. A2, we can see that the (k + 1)’th column of J is the

right eigenvector of U0(κ1, 0) associated with eigenvalue Λk and the (k + 1)’th row vector of

J−1 is the left eigenvector of U0(κ1, 0) associated with the same eigenvalue Λk.

Hence, if we define (J−1)k to be the (k + 1)’th row of J−1, we can write

(J−1)k = 〈Λk| (A3)

and it is clear from J−1J = I so that

〈Λk|Λ`〉 = (J−1)kJ` = δk` (A4)
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where δk` is the Kronecker δ.

Thus, we have found a set of eigenbras {〈Λk|| k = 0, . . . , N} that are orthonormal to the

eigenkets {|Λk〉| k = 0, . . . , N}.

Appendix B: J and J−1 in matrix form

J =




A0 A1 A2 . . . Ak . . . AN

A0 A1 cos π
N

A2 cos 2π
N

. . . Ak cos kπ
N

. . . −AN

A0 A1 cos 2×π
N

A2 cos 2×2π
N

. . . Ak cos 2×kπ
N

. . . AN

...
...

...
...

...

A0 A1 cos (N−2)π
N

A2 cos (N−2)2π
N

. . . Ak cos (N−2)kπ
N

. . . (−1)N−2AN

A0 A1 cos (N−1)π
N

A2 cos (N−1)2π
N

. . . Ak cos (N−1)kπ
N

. . . (−1)N−1AN

A0 −A1 A2 . . . (−1)kAk . . . (−1)NAN




(B1)

J−1 =




1
2NA0

1
NA0

1
NA0

. . . 1
NA0

1
2NA0

1
NA1

2
NA1

cos 1×π
N

2
NA1

cos 2×π
N

. . . 2
NA1

cos (N−1)π
N

− 1
NA1

1
NA2

2
NA2

cos 1×2π
N

2
NA2

cos 2×2π
N

. . . 2
NA2

cos (N−1)×2π
N

1
NA2

...
...

...
...

...

1
NAk

2
NAk

cos 1×kπ
N

2
NAk

cos 2×kπ
N

. . . 2
NAk

cos (N−1)kπ
N

(−1)k

NAk

...
...

...
...

...

1
2NAN

− 1
NAN

1
NAN

. . . (−1)N−1

NAN

(−1)N

2NAN




(B2)

Appendix C: Modes calculated by CST

From our calculations discussed in section II, we know that for (N +1) tuning cells, there

are (N + 1) possible modes. One way to number these modes is to look at the E-field phase

shift per tuning cell

ϕ = qπ/N (C1)

where q = 0, 1, . . . , N , as it can also be found in [18] for example. Here, we can interpret q

as the quantum number that tells us the number of cells where the E-field is zero, i.e. the

number of nodes. We can identify the mode id’s used in our paper, which are based on the
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current distribution and therefore are magnetic modes, i.e. H-modes. We will denote them

as modeH here. The relationship between q and modeE and modeH is given below:

modeE =
qπ

N
, modeH =

(N − q)π

N
(C2)

We illustrate the phase shift ϕ using the FNAL RFQ as an example. We find that

the lowest mode found by MWS is 152.9 MHz and the next higher mode is 192.1 MHz,

which are both quadrupole modes. For these two modes, the normal E-field components

on the electrodes calculated by MWS are shown in Fig. 16(a) for modeE = 0 and (c) with

modeE = 1π/12. The corresponding currents on the stems are shown in Fig. 16(b) and (d).

As a comparison, we can see that for modeE = 0, the current distributions flow in opposite

directions between adjacent tuning cells corresponding to modeH = π which is exactly like

what we had described in Fig. 6. This fundamental mode of the 4-rod-RFQ is used as the

operating mode and is called the π − 0 mode.

FIG. 16. The FNAL RFQ normal E-field component on the electrodes of the first two modes are

shown in (a) and (c) and their corresponding currents on the stems are shown in (b) and (d). Both

modes are quadrupole modes. The first mode has a constant E-field (q = 0) while the second mode

shows one change in the field polarity (q = 1) along the structure. The quadrupole mode of the

E-field is modeE = 0 in the fundamental state with the corresponding H-field having modeH = π.

The highest quadrupole mode for the 4-rod RFQ is modeE = π with modeH = 0 combination.
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FIG. 17. The dispersion relation of the FNAL RFQ up to 400 MHz calculated by MWS. The first

two modes are quadrupole modes and the first dipole like mode can be found at about 125 MHz

above the operating mode.

The dispersion diagram up to 400 MHz of the FNAL RFQ without any tuning is given in

Fig. 17. It includes all modes simulated by MWS. Due to the connection of the electrodes

to the stems, the higher order modes are far away from the fundamental mode, q = 0,

where the RFQ operates. The spectrum is grouped into transverse quadrupole modes (black

“¥”) and the dipole and mixed modes (red “•”). Sometimes, the dipole and higher order

transverse modes in the simulation results are hard to distinguish. In the 4-rod RFQ, the

fundamental mode of the E-field is always the quadrupole mode with a constant E-field

(q = 0) along the structure. The next mode is also a quadrupole mode, but the potential

on the electrodes changes sign once along the structure, a q = 1 state. This mode is already

40 MHz higher than the operating mode without any tuning. The first mode that shows a

dipole like potential distribution with a constant field along the structure is about 125 MHz

higher compared to the operating mode. Note: the weakness of our model mentioned in
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section III B 3 also manifests itself in predicting higher order eigenfrequencies that are too

small.
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