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We present a measurement of the direct CP-violating charge asymmetry in D±
s → φπ± decays

where the φ meson decays to K+K−, using the full Run II data set with an integrated luminosity of
10.4 fb−1 of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron
Collider. The normalized difference ACP in the yield of D+

s and D−
s mesons in these decays is

measured by fitting the difference between their reconstructed invariant mass distributions. This
results in an asymmetry of ACP = [−0.38± 0.27] %, which is the most precise measurement of this
quantity to date. The result is consistent with the standard model prediction of zero CP asymmetry
in this decay.

PACS numbers: 13.25.Ft, 11.30.Er, 12.15.Hh, 14.40.Lb

Direct CP violation (CPV) in the Cabbibo-preferred
charm decay D±

s → φπ± should be non-existent in the
standard model (SM). In the SM, direct CPV will occur
if there are tree and loop (penguin) processes that can in-
terfere with different strong and weak phases. There will
be no CPV in D±

s → φπ± decays as all of the contribut-
ing processes have the same weak phase (VcsVud) [1].
Any CPV in this channel would indicate the existence
of physics beyond the SM. The most recent investiga-
tion of this decay by the CLEO Collaboration yields a
CP-violating charge asymmetry of ACP (D±

s → φπ±) =
[0.3± 1.1 (stat)± 0.8 (syst)] % [2] where the direct CPV
charge asymmetry in the decay D±

s → φπ± is defined as

ACP =
Γ (D+

s → φπ+)− Γ (D−
s → φπ−)

Γ
(
D+
s → φπ+

)
+ Γ

(
D−
s → φπ−

) . (1)

No CPV in this decay is assumed in measurements
of the time-integrated flavor-specific semileptonic charge
asymmetry in the decays of oscillating neutral B0

s

mesons using the decay (B̄0
s ) → B0

s → DsµX by
the D0 [3] and LHCb [4] Collaborations, and in the
search for direct CPV in D+ → φπ+ and D+

s →
K0
Sπ

+ decays by the LHCb Collaboration [5]. As-
suming no CPV in D±

s → φπ± decays, the LHCb
Collaboration finds that the production asymmetry
of D±

s → φπ± decays in proton-proton interactions
is Aprod = (σ(D+

s )− σ(D−
s )) / (σ(D+

s ) + σ(D−
s )) =

[−0.33± 0.22 (stat)± 0.10 (syst)] % [6] where σ(D±
s ) is

the inclusive prompt production cross-section. D0 is the
only experiment which can test this assumption with
sufficient sensitivity in the foreseeable future since the

Tevatron collides protons on anti-protons which is a CP -
invariant initial state, and that the systematic uncertain-
ties for this process are small at D0 due to the specific
features of the detector.

A measure of the CPV in mixing is obtained from
the average of the direct measurements of the semilep-
tonic charge asymmetry in decays of neutral B0

s mesons
using the decay (B̄0

s ) → B0
s → DsµX [3, 4] yielding

assl = [−0.50± 0.52] %. This asymmetry can also be ex-
tracted indirectly from measurements of charge asym-
metries of single muons and like-sign muons [7], the
semileptonic charge asymmetry of neutral B0

d mesons
(using the average at the Υ(4S) [8] and the D0 re-
sult [9]), and the ratio of the decay width difference and
the average decay width of B0

d, ∆Γd/Γd [8] resulting in
assl(indirect) = [−1.46± 0.78] %. While the observed dis-
agreement is not significantly different from zero, it could
indicate the presence of CPV in D±

s → φπ± decays.

In this Letter, the D0 Collaboration presents a mea-
surement of ACP using the full Tevatron Run II data
sample with an integrated luminosity of 10.4 fb−1. We
assume there is negligible net production asymmetry be-
tween D+

s and D−
s mesons in proton-antiproton colli-

sions. We also assume that any integrated production
asymmetry of b hadrons that decay to D±

s is negligible.

This measurement of ACP makes use of the methods
for extracting asymmetries used in the D0 analyses of the
time-integrated flavor-specific semileptonic charge asym-
metry in the decays of neutral B mesons [3, 9]. We mea-
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sure the raw asymmetry

ADs
=
ND+

s
−ND−

s

ND+
s

+ND−
s

, (2)

where ND+
s

(ND−
s

) is the number of reconstructed D+
s →

φπ+ (D−
s → φπ−) decays. The charge asymmetry in D±

s

decays is then given by (neglecting any terms second- or
higher-order in the asymmetry)

ACP = ADs −Adet −Aphys, (3)

where Adet is due to residual reconstruction asymmetries
in the detector, and Aphys is the charge asymmetry re-
sulting from the decay of b hadrons to D±

s mesons.
The D0 detector has a central tracking system con-

sisting of a silicon microstrip tracker and the central
fiber tracker, both located within a 2 T superconduct-
ing solenoidal magnet [10, 11]. A muon system, cover-
ing |η| < 2 [12], consists of a layer of tracking detec-
tors and scintillation trigger counters in front of 1.8 T
toroidal magnets, followed by two similar layers after the
toroids [13].

The polarities of the toroidal and solenoidal magnetic
fields are reversed on average every two weeks so that the
four solenoid-toroid polarity combinations are exposed to
approximately the same integrated luminosity. This al-
lows for a cancellation of first-order effects related to in-
strumental charge and momentum reconstruction asym-
metries. To ensure a more complete cancellation of the
uncertainties, the events are weighted according to the
number of φπ± decays collected in each configuration of
the magnets’ polarities (polarity-weighting). The weight-
ing is based on the number of events containing D±

s de-
cay products that pass the selection criteria and the like-
lihood selection (described below), and that are in the
φπ± invariant mass range used for the fit.

As there was no dedicated trigger for hadronic decays
of heavy flavor mesons, the data were collected with a
suite of single and dimuon triggers. The trigger and
offline streaming requirements bias the composition of
the data. The muon requirement will preferentially se-
lect events with semileptonic decays and may enhance
the contribution of events produced by the decay of b
hadrons. The effect of this bias is corrected using a Monte
Carlo (MC) simulation (described below).

TheD±
s → φπ±; φ→ K+K− decay is reconstructed as

follows. The two particles from the φ decay are assumed
to be kaons and are required to have pT > 0.7 GeV/c,
opposite charge and a reconstructed invariant mass of
M(K+K−) < 1.07 GeV/c2. The third particle, as-
sumed to be the charged pion, is required to have pT >
0.5 GeV/c. The three particles are combined to create a
common D±

s decay vertex using the algorithm described
in Ref. [14]. The cosine of the angle between the D±

s mo-
mentum and the vector from the pp̄ collisions vertex to
the D±

s decay vertex in the transverse plane is required to

be greater than 0.95. The trajectories of the D±
s candi-

date tracks are required to be consistent with originating
from a common vertex and to have an invariant mass of
1.7 < M(K+K−π±) < 2.3 GeV/c2. To reduce combi-
natorial background, the D±

s vertex is required to have
a displacement from the pp̄ collision vertex in the trans-
verse plane with a significance of at least four standard
deviations.

To improve the significance of the D±
s selection, we

use a likelihood ratio [15] to combine several variables
that discriminate between signal and the combinatoric
background: the helicity angle between the D±

s and
K∓ momenta in the center-of-mass frame of the φ me-
son; the isolation of the D±

s system, defined as I =
|~p(D±

s )| /[|~p(D±
s )|+Σ |~pi|], where ~p(D±

s ) is the vector sum
of the momenta of the three tracks that make up the D±

s

meson and Σ |~pi| is the sum of momenta of all charged
particles not associated with the D±

s meson in a cone of√
(∆φ)2 + (∆η)2 < 0.5 around the D±

s direction [12]; the
χ2 of the D±

s vertex fit; the invariant mass M(K+K−);
pT (K+K−); the cosine of the angle between the D±

s mo-
mentum and the vector from the pp̄ collision vertex to
the D±

s decay vertex, and the separation between the
K± and π± mesons with the same charge, defined as√

(φK − φπ)2 + (ηK − ηπ)2. The signal is modelled us-
ing a MC simulation of D±

s → φπ± decays and the back-
ground is modelled using the data (which is dominated
by background events) before applying the likelihood se-
lection. The requirement on the likelihood ratio variable
is chosen to minimize the statistical uncertainty on ACP
obtained using the signal extraction procedure described
below.

The M(K+K−π±) distribution is displayed in bins
of 6 MeV/c2 over a range of 1.7 < M(K+K−π±) <
2.3 GeV/c2, and the number of signal and background
events is extracted by a χ2 fit of a model to the
data(Fig. 1). The D±

s meson mass distribution is well
modelled by two Gaussian functions constrained to have
the same mean, but with different widths and normaliza-
tions. A second peak in the M(K+K−π±) distribution
corresponding to the Cabibbo-suppressed D± → φπ±

decay is also modelled by two Gaussian functions with
widths set to those of the D±

s meson model scaled by
the ratio of the fitted D± and D±

s masses. The com-
binatoric background is modelled by a 5th-order poly-
nomial function. Partially reconstructed decays such as
D±
s → φπ±π0 where the π0 is not reconstructed are mod-

eled with a threshold function that extends to the D±
s

mass after the π0 mass has been subtracted, given by
T (m) = arctan

[
p1(mc2 − p2)

]
+ p3, where pi are fit pa-

rameters. In the fit p1 is fixed to the value obtained
from simulation while the other parameters are allowed
to vary.

The raw asymmetry (Eq. 2) is extracted by fitting the
M(K+K−π±) distribution of the D±

s candidates using
a χ2 minimization. The fit is performed simultaneously,
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FIG. 1. The polarity-weighted φπ± invariant mass distribu-
tion. The lower mass peak is due to the decay D± → φπ±

while the second peak is due to the D±
s meson decay. Note

the zero-suppression on the vertical axis. The bottom panel
shows the fit residuals. The error bars represent the statistical
uncertainties.

using the same models, on the sum (Fig. 1) and the dif-
ference (Fig. 2) of the M(K+K−π+) distribution for the
D+
s candidates and the M(K+K−π−) distribution for

the D−
s candidates. The functions used to model the two

distributions are

Wsum =WDs
+WD +Wcomb +Wpart, (4)

Wdiff =ADs
WDs

+ADWD +AcombWcomb +ApartWpart,
(5)

where WDs
,WD, Wcomb, and Wpart describe the D±

s and
D± mass peaks, the combinatorial background, and the
partially reconstructed events, respectively. The asym-
metry of the D± mass peak is AD, Acomb is the asym-
metry of the combinatorial background, and Apart is the
asymmetry of the partially reconstructed events.

The result of the fit is shown in Figs. 1 and 2 with a
total χ2 = 171 for 179 degrees of freedom correspond-
ing to a p-value of 0.65. The number of signal events
in the sample is N(D±

s ) = 452,013 ± 1,866 and the fit-
ted asymmetry parameters are ADs

= (−0.43 ± 0.26)%,
AD = (−0.31 ± 0.67)%, Acomb = (0.46 ± 0.04)%, and
Apart = (0.4±2.1)%. The value of the background asym-
metry, Acomb, is consistent with approximately half the

combinatoric background being K+K−K± or K±π+π−

events with an average kaon reconstruction asymmetry
of 1%.
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FIG. 2. The fit to the differences between the numbers of
D+

s and D−
s mesons as function of the φπ± mass (for clarity

the data has been rebinned).

To test the sensitivity and accuracy of the fitting pro-
cedure, the sign of the charge of the pion is randomised in
the data set used in the analysis to introduce an asym-
metry signal. We simulate a range of raw signals with
asymmetries from ADs = −2.0% to +2.0% in steps of
0.2%, and AD from−2.0% to +2.0% in steps of 0.5% with
1000 pseudo-experiments performed for each step. Each
pseudo-experiment is performed with the same statistics
as the measurement. No significant systematic biases are
found, and the uncertainties are consistent with the ex-
pectation due to the sample size.

Systematic uncertainties of the fitting method are eval-
uated by varying the fitting procedure. The mass range
of the fit is shifted from 1.700 < M(K+K−π±) <
2.300 GeV/c2 to 1.724 < M(K+K−π±) < 2.270 GeV/c2

in steps of 6 MeV/c2 resulting in an uncertainty on the
asymmetry of 0.044%. The functions modelling the sig-
nal are modified to fit the D± and D±

s mass peaks by
single Gaussian functions, the background is fitted by
varying between a 4th and 7th order polynomial func-
tion, and the parameter p1 in the threshold function is
allowed to vary. This yields an uncertainty on the asym-
metry of 0.008%. The width of the mass bins is changed
between 1 and 12 MeV/c2 resulting in an uncertainty of
0.033%. The systematic uncertainty is assigned to be
half of the maximal variation in the asymmetry for each
of these sources added in quadrature. The total effect
of these systematic sources of uncertainty is a systematic
uncertainty of 0.056% on the raw asymmetry ADs

.
As a cross-check variations of the various asymmetry

models are also examined. The asymmetries introduced
by the functions used to model the threshold behaviour
and the combinatoric background are set to the same
value, Acomb = Apart. In a separate check the asym-
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metry of the threshold function is set to zero. Given
the statistical and systematic uncertainties, the observed
variations of 0.009% can be neglected.

The residual detector tracking charge asymmetry has
been studied in Refs. [3, 9, 16] using K0

S → π+π− and
K∗± → K0

Sπ
± decays. After polarity weighting, no sig-

nificant residual track reconstruction asymmetries have
been found, and no correction for tracking asymmetries
needs to be applied. The tracking asymmetry of charged
pions has been found to be less than 0.05% using MC sim-
ulations which is assigned as a systematic uncertainty.

Any asymmetry between the reconstruction of K+ and
K− mesons cancels as we require that the two kaons form
a φ meson. However, there is a small residual asymmetry
in the momentum of the kaons produced by the decay of
the φ meson due to φ-f0(980) interference [17]. The kaon
asymmetry is measured using the decayK∗0 → K+π− [9]
and is used to determine the residual asymmetry due to
this interference, AKK = [−0.042± 0.023 (syst)] %.

The charge asymmetry introduced by requiring the
data to satisfy muon triggers needs to be included
in the overall detector asymmetry. The effect of the
residual reconstruction asymmetry of the muon system
has been measured using J/ψ → µ+µ− decays as de-
scribed in Ref. [9]. This asymmetry is determined as
a function of pµT and |ηµ|, and the final correction
is obtained by a weighted average over the normal-
ized (pµT , |ηµ|) yields, as determined from fits to the
M(K+K−π±) distribution. The resulting correction is
Aµ = [−0.036± 0.010 (syst)] %.

The combined residual detector asymmetry correction
is

Adet = Aµ +AKK = [−0.078± 0.056 (syst)] %, (6)

which includes the 0.05% systematic uncertainty on the
residual asymmetry in track reconstruction. The remain-
ing corrections are the physics background asymmetries
contributing to Aphys, which are the only corrections ex-
tracted from MC simulation. The D±

s signal decays can
also be produced in the decay chain of b hadrons. We
assume that the decays of excited D±

s states proceed via
the strong and electromagnetic interactions and do not
introduce any CPV.

Most decays of B0
s mesons result in the production of a

D±
s meson. These can be grouped into three categories.

Semileptonic decays, B0
s → `+νD−

s X, have a non-zero
time-integrated flavor-specific semileptonic charge asym-
metry of assl = [−0.79± 0.43] % obtained by taking the
average of direct and indirect measurements [3, 4, 7–9].
The correction for this asymmetry is given by the prod-
uct of the fraction of D±

s events produced by semileptonic
B0
s decays, fB0

s
, and the fraction of B0

s events that have
mixed, F osc

B0
s

. Since assl is proportional to ND−
s
−ND+

s
, it

has the opposite sign to ADs
. The second category are

B0
s meson decays to a pair of D±

s mesons which have no

effect on the measured value of ACP since equal numbers
of D+

s and D−
s are produced. The remaining category are

hadronic decays producing one D±
s meson, B0

s → D±
s X.

Since 93% [8] of B0
s decays produce a D±

s meson, any
net asymmetry will be small. The contributions of this
process to the charge asymmetries in the production of
D±
s mesons are assumed to be small and are neglected.

The remaining b hadron decay processes that con-
tribute to ACP are: B0

d → D±
s X, B± → D±

s X, and
the small number of b baryon and Bc meson decays. It is
assumed that any CPV in these decays has a negligible
effect on the measurement.

To determine Aphys, a MC sample is created using the
pythia event generator [18] modified to use evtgen [19]
for the decay of hadrons containing b and c quarks. The
pythia inclusive jet production model is used. Events
recorded in random beam crossings are overlaid on the
simulated events to emulate the effect of additional colli-
sions in the same bunch crossing. These events are pro-
cessed by the full simulation chain, and by the same re-
construction and selection algorithms as used for data.
Events are selected that contain at least one D±

s → φπ±;
φ→ K+K− decay. Each event is classified based on the
decay chain that is matched to the reconstructed parti-
cles.

The effects of trigger selection and track reconstruction
are estimated by weighting by the pT of the reconstructed
D±
s to match the distribution of the data. The trigger

and offline streaming requirements are accounted for by
requiring a reconstructed muon in each of the MC events
and weighting the muons to match the pµT -ηµ distribu-
tions of muons in the data. The weights are obtained
by taking the ratio of the muon pµT -ηµ distributions in
the selected data sample and a sample obtained using
the zero-bias trigger condition. These weights are then
applied to the MC simulation.

A large fraction of the data were collected at high in-
stantaneous luminosities, and there is some probability
that the muon and the D±

s candidate originate from dif-
ferent proton-antiproton collisions. This probability is
determined by measuring the separation along the z axis
of the intersection of the D±

s trajectory and the track of
the highest pT muon in the event. The fraction of events
that come from separate pp̄ interactions is estimated to
be 6.4%. This effect is accounted for in the simulation.

From these studies, the sample is predicted to be
composed of 71% D±

s mesons produced directly, 10%
from the hadronic decays of B0

smesons (which includes

B0
s → D

±(∗)
s D

∓(∗)
s ), 6% each from the decay of B± and

B0
d mesons, and 1% from the decay of b baryons. The

fraction of events that originate from B0
s semi-leptonic

decays is found to be fB0
s

= 5.8% and the fraction that
have oscillated to be F osc

B0
s

= 50%. In addition to the

MC statistical uncertainty, the systematic uncertainty
on Aphys is determined by varying the following quan-
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tities by their uncertainties: the branching ratios and
production fractions of B and D mesons, the D and B-
meson lifetimes, and ∆Γs. The largest sources of un-
certainty are the fraction of events in which a c quark
forms a D±

s meson, f(c → D±
s ) = 0.080 ± 0.017 [20],

and the semileptonic branching fraction of B0
s mesons,

B(B0
s → `+νD−

s X) = (9.5 ± 2.7)%. The uncertainty on
the correction due to assl is 0.024%, yielding an asymme-
try resulting from the decay of b hadrons into D±

s mesons
of:

Aphys = [0.023± 0.024 (syst)] %. (7)

Several consistency checks are performed by dividing
the data into smaller samples using additional selections
based on data-taking periods, magnet polarities, D±

s

transverse momentum, and D±
s pseudo-rapidity. The re-

sulting variations of ACP are statistically consistent with
the results of Eq. 8 (see below).

The selection criteria applied in this analysis prefer-
entially select the P-wave decay, D±

s → φπ±, over the
continuum process D±

s → K+K−π± and other processes
that result in a K+K−π± final state. In particular
the helicity angle between the D±

s and K∓ momenta
in the center-of-mass frame of the φ meson and the in-
variant mass M(K+K−) used in the likelihood ratio se-
lect D±

s → φπ± decays. To study the possible effect of
other non-P-wave contributions, these variables are re-
moved from the likelihood ratio and replaced with the
requirement 1.01 < M(K+K−) < 1.03 GeV/c2. The
analysis is reoptimised and the asymmetry is found to
be [−0.63± 0.35 (stat)± 0.08 (syst)] % which is consis-
tent with the main analysis and with the SM expectation
of zero CPV.

The uncertainty due to the fitting procedure added
in quadrature with the uncertainties on Adet and Aphys

results in a total systematic uncertainty of 0.08%. The
direct CP-violating charge asymmetry in D±

s mesons is
found to be

ACP = [−0.38± 0.26 (stat)± 0.08 (syst)] %, (8)

corresponding to a total absolute uncertainty of 0.27%.
This is the most precise measurement of direct CPV in
the decay D±

s → φπ±, and the result is in agreement with
the SM expectation of zero CPV in this decay.
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