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Abstract

We revisit the hadronic production of the four-lepton final state, e−e+µ−µ+, through the fusion of initial
state gluons. This process is mediated by loops of quarks and we provide first full analytic results for
helicity amplitudes that account for both the effects of the quark mass in the loop and off-shell vector
bosons. The analytic results have been implemented in the Monte Carlo program MCFM and are both
fast, and numerically stable in the region of low Z transverse momentum. We use our results to study
the interference between Higgs-mediated and continuum production of four-lepton final states, which is
necessary in order to obtain accurate theoretical predictions outside the Higgs resonance region. We have
confirmed and extended a recent analysis of Caola and Melnikov that proposes to use a measurement of
the off-shell region to constrain the total width of the Higgs boson. Using a simple cut-and-count method,
existing LHC data should bound the width at the level of 25–45 times the Standard Model expectation. We
investigate the power of using a matrix element method to construct a kinematic discriminant to sharpen
the constraint. In our analysis the bound on the Higgs width is improved by a factor of about 1.6 using a
simple cut on the MEM discriminant, compared to an invariant mass cut m4l > 300 GeV.
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1. INTRODUCTION

The discovery of a boson consistent with the Standard Model Higgs [1, 2] has set a large part
of the agenda for the LHC physics program over the next couple of decades. The data collected in
Run 1 has provided first information about the new particle. The mass of the new boson has been
measured to be near 126 GeV [3, 4] and the 0+ spin-parity state is strongly favoured [4, 5]. Finally,
the total rates of production and decay of the boson are broadly compatible with the predictions
of the Standard Model [6, 7].

Turning the observed cross sections into statements regarding the coupling of the Higgs boson
to Standard Model particles is a non-trivial, but desirable goal. A typical measurement of a Higgs
process at the LHC focuses on events which lie in the Higgs resonance region, where the cross
section depends on the initial and final state Higgs couplings, gi, gf , and on the total width as
follows,

σi→H→f ∼
g2i g

2
f

ΓH
. (1)

Therefore in order to measure the Higgs couplings gi,f one must either first measure the width, or
measure the couplings under the assumption of a known total width. Clearly, the cross section in the
narrow width approximation is invariant under the rescaling gx → ξgx ΓH → ξ4ΓH . Information
on the couplings alone can only be obtained by either constraining the width directly, or by using
ratios of cross sections to eliminate the dependence on the total width. Direct measurement
of the Higgs width in a hadronic environment is curtailed for widths smaller than the detector
resolution (typically around 1 GeV). Lepton colliders offer more promising prospects, although an
e+e− machine will only be able constrain the total width by measuring the invisible branching
fraction (in ZH production). Muon colliders offer the possibility to measure the width directly, by
performing a threshold scan around the Higgs mass.

In an interesting recent paper, Caola and Melnikov [8] proposed to constrain the total width
using the number of ZZ events away from the Higgs resonance region. This method exploits the fact
that at least 15% of the Higgs cross section with the Higgs boson decaying to four charged leptons
comes from the off-peak region corresponding to a four-lepton invariant mass above 130 GeV [9].
In the phase space region away from the Higgs resonance Eq. (1) is no longer valid, since the
Higgs propagator is dominated by the (s−m2

H) term for large s and the cross section is essentially
independent of the width. Therefore if one performs the same rescaling gx → ξgx, ΓH → ξ4ΓH

the compensation which occurs in the resonance region no longer exists. The off-shell cross section
thus depends on ξ and therefore by measuring the total number of off-shell Higgs events one can
place a limit on the total width. The method proposed in ref. [8] using Run I data suggests current
constraints on the total width corresponding to ΓH

<∼ (20−38)ΓSM
H , with a potential limit of around

ΓH
<∼ (5−10)ΓSM

H obtainable with larger LHC data sets and sufficient control of experimental and
theoretical systematic uncertainties.

In the approach of Caola and Melnikov it is imperative to obtain a precise prediction for the
off-peak cross section. For large ŝ the effective field theory in which the top quark is integrated
out is no longer valid. In addition, a significant contribution in this region comes from the effect
of interference between amplitudes representing the Higgs-related diagrams and those representing
the continuum background. Example Feynman diagrams that enter the calculation of these two
amplitudes are shown in Fig. 1(a) and (b). In the Standard Model the impact of this interference
is significant, with the result that the effect of including the Higgs boson diagrams is to reduce
rather than increase the number of off-shell events expected. Indeed, in the SM the total number
of off-shell Higgs-mediated events is negative, as the Higgs unitarizes the continuum gg → ZZ
cross section. A similar interference effect exists in the H → γγ channel [10–12] and another recent
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FIG. 1: Representative diagrams for the partonic processes considered in this paper.

proposal [13] exploits this to similarly constrain the total width. This latter method requires a
precise measurement of the shift in the mass (when compared to the results in other channels such
as ZZ) caused by the interference, to constrain the couplings of Higgs to photons and gluons. This
can then be used to constrain the total width given the form of the total cross section formula. An
alternative to these strategies is to combine experimental results across all Higgs boson production
and decay channels and apply extra constraints on individual Higgs boson couplings based on
theoretical arguments [14]. The method of ref. [14] currently provides rather stringent limits on
the Higgs boson width, ΓH

<∼ (3− 4)ΓSM
H , albeit with the caveat of mild theoretical assumptions.

In this paper we shall consider the hadronic production of four charged-leptons in the final
state. As we have already discussed, this proceeds both by the standard electroweak production1,

p+ p → Z/γ∗ + Z/γ∗

|
|

|→ µ− + µ+

|→ e− + e+

(2)

and by the mediation of a Higgs boson produced in the s-channel,

p+ p → H → ZZ
|
|

|→ µ− + µ+

|→ e− + e+ .

(3)

The underlying parton processes for the hadronic reactions in Eqs. (2) and (3) are shown in Table I,
(a)–(c), with representative Feynman diagrams depicted in Fig. 1. We shall refer to the amplitude

1 The extension to the case of identical leptons (4e or 4µ) is easy to implement. However the effects of this interference
are known to be small [15].
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(a) : g(−p1) + g(−p2) → H → e−(p3) + e+(p4) + µ−(p5) + µ+(p6) O(g2se
4)

(b) : g(−p1) + g(−p2) → e−(p3) + e+(p4) + µ−(p5) + µ+(p6) O(g2se
4)

(c) : q(−p1) + q̄(−p2) → e−(p3) + e+(p4) + µ−(p5) + µ+(p6) O(e4)
(d) : q(−p1) + g(−p2) → H → e−(p3) + e+(p4) + µ−(p5) + µ+(p6) + q(p7) O(g3se

4)
(e) : q(−p1) + g(−p2) → e−(p3) + e+(p4) + µ−(p5) + µ+(p6) + q(p7) O(gse

4)

TABLE I: Partonic processes which contribute to the four charged-lepton final state. The second column
shows the order of the strong coupling, gs, and the electromagnetic coupling, e, in which the partonic process
first contributes. For the purposes of this counting we do not distinguish between the weak coupling gW ,
the electromagnetic coupling e, and the Yukawa coupling gWmt/2/MW . In the cases where the initial and
final states are the same, interference needs to be taken into account.

for the Higgs production process (a) in Table I as MH and to the continuum amplitude (b) as MC .
The dominant continuum contribution is represented by the quark-initiated continuum reaction (c).

One of the aims of this paper is to compute the complete set of 1-loop amplitudes for process (b),
gg → ZZ, using the spinor-helicity formalism, to provide analytic formulae for helicity amplitudes
including massive quarks in the loop. The amplitudes can then be included together with the
Higgs-mediated diagrams in order to provide a prediction for the number of off-shell Higgs events
including all interference effects. The analytic results that are presented here will have a significant
advantage in calculation speed over more numerical methods. In addition, it is known that the
amplitudes MC , when expressed in terms of scalar integrals, can develop numerical instabilities
when the transverse momentum of the produced vector bosons tends to zero. These are apparent
singularities that cancel when relations between the scalar integrals in the singular region are
taken into account. In calculations based on the Passarino-Veltman formalism [16] such apparent
singularities appear as inverse powers of the determinant, ∆4 of the Gram matrix, Gij = pi · pj. In
particular, in our case we have

∆4(p1, p2, p34) =
1

2
p1 · p2[4p1 · p34 p2 · p34 − 2p1 · p2 p34 · p34]

=
1

2
p1 · p2 〈p1|(p3 + p4)|p2] 〈p2|(p3 + p4)|p1]

= (p1 · p2)2 p2T (4)

where pT is the transverse momentum of the vector boson with momentum p34 and p1 and p2
are the momenta of the incoming partons. These delicate numerical points are particularly trying
in this case because cuts on the transverse momenta of the final state leptons, do not exclude
the region where the pT of the vector boson is equal to zero. Moreover, simply excising these
regions can compromise the accuracy of the theoretical prediction. For example, imposing a pT
cut, pT > 7 GeV, on the transverse momentum of the vector boson produced by collisions at√
s = 7 TeV, would exclude 8% of the gg-initiated cross section. Since in a spinor helicity treatment

the apparent singularities appear as 〈p1|(p3 + p4)|p2], which are proportional to the square root of
the Gram determinant, the severity of the numerical problems is reduced2. Moreover the existence
of a compact analytic answer allows us to rearrange the calculation to mitigate potential numerical
problems at small pT .

Returning to Table I, we will now discuss the role of processes (d) and (e). These contributions
naturally arise as part of the NLO corrections to reactions (a) and (c) respectively. For our
purposes it is not this aspect that is most relevant. Instead, from the order of the couplings

2 The definition of the spinor products 〈i j〉, [i j] and 〈i|(j + k)|l] is standard; the definition is given in Eqs. (13,14).
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FIG. 2: A representation of the O(g4se
8) interferences between Higgs and continuum production of four

leptons considered in this paper. The interference contributions are obtained by cutting this diagram across
a single dashed line.

presented in Table I, it is clear that a consistent treatment of Higgs-related 4-lepton production
at order g4se

8, i.e. consideration of |MH + MC |2, should also include the interference between
processes (d) and (e). A useful way of visualizing the relevant interference contributions is shown
in Fig. 2 where the different contributions are represented by various cuts of a single master
topology. In addition to the two interference contributions highlighted here, in principle a further
cut may be performed that leads to contributions from the interference of tree-level qq̄ → ZZ and
2-loop qq̄ → H → ZZ amplitudes. However, this vanishes for massless fermions since by helicity
conservation the H → q+q− amplitude vanishes. As a result there can only be contributions
through bottom quarks, i.e. q = b. We do not consider such a contribution in this paper since it
is heavily suppressed by the initial state b-quark parton distribution functions (PDFs)3. However,
in order to quantify the expected number of off-shell events expected in the four-lepton channel,
we assess the impact of the qg and qg-initiated interferences originating from amplitudes (d) and
(e). These terms contain a final state parton, which may or may not be resolved as a jet, but the
contribution is finite.

Given the importance of a measurement of the Higgs boson width, it is natural to consider
methods that could improve the limits that were suggested in Ref. [8]. One possible strategy is to
use event-by-event discriminants to separate signal and background events on a probabilistic basis.
This type of matrix element method (MEM) has already been successfully applied in the on-shell
region [2, 17, 18]. In this paper we will investigate the potential of a recent MEM formulation [19]
to identify off-shell Higgs events and therefore provide more stringent constraints on the total width
of the Higgs boson.

This paper proceeds as follows. In section 2 we collect the needed Higgs amplitudes for the
interference studies. In section 3 we discuss the calculation of the continuum amplitudes, including
an outline of the result for the calculation of the gg → 4ℓ continuum amplitude including loops of
massive fermions. Full details of the result for this one-loop calculation are given in Appendices B
and C. In section 4 we present a phenomenological study of the 4-lepton final state, including the
effect of all interferences considered here, and consider the impact on Higgs width studies. We
investigate the potential improvements on these constraints using the matrix element method in
section 5. Finally in section 6 we draw our conclusions.

3 For the same reason we also neglect potential cuts of the Higgs triangle loop
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2. GLUE-GLUE INITIATED AND QUARK-GLUON INITIATED HIGGS AMPLITUDES

In this section we describe the amplitudes appearing in Table I which contain a Higgs boson,
namely amplitudes (a) and (d). Although the production of a Higgs boson through gluon fusion
via a heavy fermion loop and its subsequent decay to four charged leptons is well known [20],
for completeness and to introduce our notation, we reproduce the results in this section. The
amplitudes for continuum processes that do not involve a Higgs boson propagator will be presented
in Section 3.

2.1. Process (a) : gg → H → e−e+µ−µ+

We begin by re-deriving the well-known gg initiated amplitudes. We first extract color, couplings
and phases, yielding the following definition of our reduced amplitude,

A(1h1

g , 2h2

g , 3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ ) =
i

16π2

δC1,C2

2
8e4g2s A(1

h1

g , 2h2

g , 3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ ). (5)

Since the Higgs boson is a propagating s-channel scalar we can further divide this amplitude into
component pieces,

A(1h1

g , 2h2

g , 3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ ) = Agg→H(1h1

g , 2h2

g )× PH(s12)

s12
×AH→4l(3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ ) (6)

where Agg→H(1h1

g , 2h2

g ) represents the Higgs production through gluon fusion, and

AH→4l(3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ ) represents the decay of the Higgs into four-leptons. The amplitudes are
sewn together using the propagator function PH(s),

PX(s) =
s

s−M2
X + iMXΓX

. (7)

As is well-known, for a spin zero Higgs boson there are only two non-zero helicity amplitudes,
namely those in which the two gluons have the same helicity. In these instances the amplitude has
the following form,

Agg→H(1+g , 2
+
g ) =

[1 2]

〈1 2〉
[ m2

2MW sin θW

(

2− s12 C0(p1, p2,m,m,m)(1 − 4m2

s12
)
)]

Agg→H(1−g , 2
−
g ) =

〈1 2〉
[1 2]

[ m2

2MW sin θW

(

2− s12 C0(p1, p2,m,m,m)(1 − 4m2

s12
)
)]

. (8)

The function C0 is the scalar triangle integral. The exact definition is given in Appendix A and m
represents the mass of the fermion in the loop. Sizeable contributions result only from the cases
m = mt or m = mb. The reduced amplitudes for decay of the Higgs boson into four leptons are
defined as follows

AH→4l(3−e , 4
+
ē , 5

−
µ , 6

+
µ̄ ) =

MW

sin θW cos2 θW

PZ(s34)

s34

PZ(s56)

s56
〈3 5〉[4 6] l2e

AH→4l(3+e , 4
−
ē , 5

−
µ , 6

+
µ̄ ) =

MW

sin θW cos2 θW

PZ(s34)

s34

PZ(s56)

s56
〈4 5〉[3 6] re le

AH→4l(3−e , 4
+
ē , 5

+
µ , 6

−
µ̄ ) =

MW

sin θW cos2 θW

PZ(s34)

s34

PZ(s56)

s56
〈3 6〉[4 5] lere

AH→4l(3+e , 4
−
ē , 5

+
µ , 6

−
µ̄ ) =

MW

sin θW cos2 θW

PZ(s34)

s34

PZ(s56)

s56
〈4 6〉[3 5] r2e (9)
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where the couplings of the Z boson to the charged lepton line are,

le =
(−1 + 2 sin2 θW )

sin(2θW )
(10)

re =
2 sin2 θW
sin(2θW )

(11)

and θW is the Weinberg angle. With our conventions we recover the full amplitudes for Higgs decay
by multiplying the expression in Eq. (9) by −2ie3. In writing these equations we have introduced
the notation,

sij = (pi + pj)
2 , sijk = (pi + pj + pk)

2 . (12)

We express the amplitudes in terms of spinor products defined as,

〈i j〉 = ū−(pi)u+(pj), [i j] = ū+(pi)u−(pj), 〈i j〉[j i] = 2pi · pj, (13)

and we further define the spinor sandwiches for massless momenta j and k,

〈i|(j + k)|l] = 〈i j〉[j l] + 〈i k〉[k l]
[i|(j + k)|l〉 = [i j]〈j l〉+ [i k]〈k l〉 (14)

2.2. Process (d) : qg → H → e−e+µ−µ+ + q amplitudes

For the studies of the qg-initiated interference we define the reduced amplitude for the crossed
process 0 → qq̄eēµµ̄g as follows,

A(1h1

q , 2h2

q̄ , 3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ , 7h7

g ) =
i

16π2

1√
2

(

tC7

)

i1i2
8e4g3s A(1

h1

q , 2h2

q̄ , 3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ , 7h7

g ). (15)

where with our conventions the reduced Higgs production amplitude is defined as,

A(1h1

q , 2h2

q̄ , 7h7

g ,H) =
i

16π2

1√
2

(

tC7

)

i1i2
4g3seA

qq̄gH(1h1

q , 2h2

q̄ , 7h7

g ,H) (16)

with Tr tC1tC2 = 1
2δ

C1,C2 . Since the amplitude factors onto the s-channel propagator in exactly
the same manner as in the previous sub-section,

A(1h1

q , 2h2

q̄ , 3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ , 7h7

g ) = Aqq̄gH(1h1

q , 2h2

q̄ , 7h7

g ,H)× PH(s127)

s127
×AH→4l(3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ )

(17)
the amplitudes for the decay of the Higgs AH→4l can be re-cycled from Eq. (9). We therefore
only require the amplitudes for production of a Higgs and qqg via a heavy fermion loop. The two
amplitudes are,

Aqq̄gH(1−q , 2
+
q̄ , 7

+
g ,H) =

〈2 1〉[2 7]2
sin θWMW

[

C0(p12, p7,m,m,m)
m2

s12

(1

2
− 2m2

(s127 − s12)

)

+
m2

(s127 − s12)2
(

B0(p12,m,m)−B0(p127,m,m)
)

− m2

s12(s127 − s12)

]

(18)

Aqq̄gH(1−q , 2
+
q̄ , 7

−
g ,H) =

〈1 7〉2[2 1]
sin θWMW

[

C0(p12, p7,m,m,m)
m2

s12

(1

2
− 2m2

(s127 − s12)

)

+
m2

(s127 − s12)2
(

B0(p12,m,m)−B0(p127,m,m)
)

− m2

s12(s127 − s12)

]

(19)

The scalar integrals B0 and C0 are defined in Appendix A, and as before m is the mass of the
fermion circulating in the loop.
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3. CALCULATION OF THE NON-HIGGS BOSON MEDIATED AMPLITUDES

In this section we describe the amplitudes required for the calculation of the non-Higgs boson
mediated, or continuum, amplitudes. These correspond to the reactions (b), (c) and (e) in Table I.

3.1. Process (c) : qq̄ → e−e+µ−µ+

The NLO corrections to the process,

q + q̄ → ZZ , (20)

were first calculated in refs. [21, 22], while the inclusion of spin correlations in the decays and
phenomenology for the Tevatron and LHC was presented in refs. [23–26]. This channel is the
most important contribution to the four lepton production process. In estimating the size of this
background we will use the implementation of this process in MCFM. This implementation includes
the contributions of both virtual photons and Z-bosons in producing the final state leptons. In
addition, single resonant diagrams that contribute to the same final state are also included through
next-to-leading order.

3.2. Process (b) : Calculation of the gluon induced continuum amplitude gg → e−e+µ−µ+

This calculation corresponds to the gg initiated box diagrams, which produce pairs of Z’s from
a fermion loop. These calculations have a rich history. The first calculation of ZZ production via
gluon fusion (with on-shell Z’s) was completed over 25 years ago [27, 28]. These results were later
extended to include off-shell Z’s [29]. More recently, a public code gg2VV was developed [30, 31]
which includes the full mass dependence in the fermion loop, and leptonic decays of the Z/γ∗. This
code has been used to study the interference with the Higgs signal in ref. [9]. Fully analytic helicity
amplitudes with massless fermion loops for gg → V V were presented in ref. [26], using the earlier
results for V + 2j from ref. [32]4.

Here we will describe our analytic calculation of the helicity amplitudes for the process,

0 → g(k1) + g(k2) + e−(k3) + e+(k4) + µ−(k5) + µ+(k6) (21)

with a massive fermion propagating in the loop. The contributing diagrams are shown in Fig. 3,
where the produced electroweak bosons that each decay to a charged lepton pair can either be a
virtual photon or a Z-boson. This amplitude receives contributions proportional to V 2

f and A2
f

(the mixed terms vanish) where Vf , Af are the vector and axial couplings of the fermions to the
Z-bosons or virtual photons.

In the first instance we shall consider the leptons to be produced by an off-shell photon. However
we shall decompose the vector coupling of the photon into left- and right-handed pieces that will
be calculated separately. This is necessary for the generalization to the Z-boson case in which the
left- and right-handed couplings differ. There are four sub-amplitudes to consider, which we denote
by LL, LR, RL and RR. The first label refers to the coupling of the boson with momentum p34 to

4 These results were later extended to include the effect of the top quark mass for gg → WW [33]. The interference
with Higgs-mediated diagrams was included.
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FIG. 3: Diagrams for gg → γ∗γ∗

the massive fermion line, and the second to the boson with momentum p56 to the massive fermion
line. The couplings are

p34 : γργL/R

p56 : γσγL/R (22)

where

γR/L =
1

2
(1± γ5) (23)

Since the mixed vector-axial contributions vanish there are only two independent amplitudes cor-
responding to left-left and left-right couplings (ALL and ALR) with ARR = ALL and ARL = ALR.
Note that, if desired, the vector-vector and axial-axial contributions can be reconstructed via,

AV V = 2 (ALL +ALR) , AAA = 2 (ALL −ALR) . (24)

We now describe how to construct the full amplitude containing both Z-bosons and virtual
photons, given the four QED amplitudes ALL, ARL, ALR, ARR. We shall make a default choice for
the helicity labels of the final state leptons. The other cases can be easily obtained by interchanging
(3 ↔ 4) and/or (5 ↔ 6). Our default will be to write expressions for the case

3−, 4+, 5−, 6+ (25)

In addition we will define reduced amplitudes by removing our default overall factor,

Ajk(1
h1

g , 2h2

g , 3−e , 4
+
ē , 5

−
µ , 6

+
µ̄ ) =

i

16π2

δC1C2

2
8g2se

4 Ajk (26)

9



with j, k = L,R. The full reduced amplitude for our default lepton helicity given by Eq. (25) is
given by,

A(1h1

g , 2h2

g , 3−e , 4
+
ē , 5

−
µ , 6

+
µ̄ ) =

ALL(1
h1

g , 2h2

g , 3−e , 4
+
ē , 5

−
µ , 6

+
µ̄ )
(

PL,L,−,−(s34, s56) + PR,R,−,−(s34, s56)
)

+ ALR(1
h1

g , 2h2

g , 3−e , 4
+
ē , 5

−
µ , 6

+
µ̄ )
(

PL,R,−,−(s34, s56) + PR,L,−,−(s34, s56)
)

(27)

The coupling factors are, for a quark of type i running in the loop,

PL,L,−,−(s34, s56) = (Qiqe + LilePZ(s34))(Qiqe + LilePZ(s56))

PL,R,−,−(s34, s56) = (Qiqe + LilePZ(s34))(Qiqe +RilePZ(s56))

PR,L,−,−(s34, s56) = (Qiqe +RilePZ(s34))(Qiqe + LilePZ(s56))

PR,R,−,−(s34, s56) = (Qiqe +RilePZ(s34))(Qiqe +RilePZ(s56)) (28)

where

Li =
(τi − 2Qi sin

2 θW )

sin(2θW )
(29)

Ri =
−2Qi sin

2 θW
sin(2θW )

(30)

and Qi and τi = ±1 are the charge of the ith quark (in units of the positron charge) and the weak
isospin of the ith quark and le and re are given by Eq. (10). The propagator function is defined in
Eq. (7).

The calculational strategy for the LR and LL pieces will be different. The LR pieces vanish for
the case of massless quarks and consequently the tensor box integrals which occur are at most of
rank two. Because of this low rank it is easy to obtain a compact analytic result using Passarino-
Veltman reduction. Indeed the result given in the Appendix for the LR piece differs little from
the result of Glover and van der Bij [27], apart from the extension to off-shell bosons. This is
mandatory for a description of the region below the Z-pair threshold, relevant for the Higgs boson.
In addition we construct the helicity amplitudes in terms of spinor products. The full result for
the LR helicity amplitudes is given in Appendix B.

The LL pieces contain tensor integrals of rank 4 and are treated with a different strategy. For
the LL pieces we use the decomposition,

ALL(1
h1

g , 2h2

g , 3−e , 4
+
ē , 5

−
µ , 6

+
µ̄ ) =

3
∑

j=2

d d=6
j (1h1 , 2h2) Dd=6

0 (j) +
3
∑

j=1

dj(1
h1 , 2h2) D0(j) (31)

+
6
∑

j=1

cj(1
h1 , 2h2) C0(j) +

6
∑

j=1

bj(1
h1 , 2h2) B0(j) +R(1h1 , 2h2)

The amplitude is expanded in terms of a basis of box (D0), triangle (C0) and bubble (B0) scalar
integrals, with the sum running over the relevant kinematic configurations labelled by j. The
precise definition of the scalar integrals is given in Appendix B. The basis also includes a purely
rational term R. The box and triangle coefficients are determined using D-dimensional unitarity
techniques [34–36]. In general these coefficients are expansions in m2. The bubble coefficients are
independent of the mass and can be constructed from the massless results of ref [32]. There is an
intimate relationship between the m4 pieces in the box coefficients, the m2 pieces in the triangle
coefficients and the rational terms. We exploit these relationships wherever possible to lighten
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the computational burden. The full analytic results for the coefficients in Eq. (31) are given in
Appendix C.

One of the features of our expansion is the introduction of the six-dimensional box in the basis
set of integrals in Eq. (31). We have found that the formulation in this fashion increases the degree
of numerical stability in the low pZT region. The six-dimensional box can be expressed in terms of
normal four-dimensional box- and triangle scalar integrals. This expansion introduces one power
of the inverse Gram determinant. Note however that the apparent singularity for vanishing Gram
determinant is cancelled by relationships between the scalar integrals in this limit. We find that
grouping the terms by expressing the four-dimensional integrals into the combination dictated by
the six-dimensional box leads to greater numerical stability.

3.3. Process (d) : qg → e−e+µ−µ+ + q

As before we will consider the virtual photon process first and include the additional electroweak
couplings later,

A(1h1

q , 2h2

q̄ , 3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ , 7h7

g ) = 4ie4gs
√
2
(

tC7

)

i1i2
ADR/SR(1h1

q , 2h2

q̄ , 3h3

e , 4h4

ē , 5h5

µ , 6h6

µ̄ , 7h7

g ) (32)

There are six Feynman diagrams for this process which can potentially contain two resonant prop-
agators.

ADR(1−q , 2
+
q̄ , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ , 7

+
g ) =

1

〈1 7〉〈7 2〉s34s56

×
{[

〈5 1〉〈3|(1 + 5)|6]〈1|(2 + 7)|4]
s156

+
〈2 7〉〈5 1〉2 [2 4][5 6]〈3|(2 + 4)|7]

s234s156

]

+

[

3 ↔ 5, 4 ↔ 6

]}

(33)

ADR(1−q , 2
+
q̄ , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ , 7

−
g ) =

1

[1 7][7 2]s34s56

×
{[

[2 6]〈3|(1 + 7)|2]〈5|(2 + 6)|4]
s256

+
〈3 1〉〈5 6〉[2 6]2 [7 1]〈7|(3 + 1)|4]

s134s256

]

+

[

3 ↔ 5, 4 ↔ 6

]}

(34)

There are four Feynman diagrams for the singly resonant process which can potentially contain
only one resonant propagator. We say ‘potentially’ because the resonant propagators will be added
at a later stage.

ASR(1−q , 2
+
q̄ , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ , 7

+
g ) =

1

〈1 7〉〈7 2〉s3456

[

〈3 1〉[6 4]
s56s456

(

〈5|(4 + 6)|2]〈2 1〉 + 〈5|(4 + 6)|7]〈7 1〉
)

+
〈3 5〉〈1|(3 + 5)|6]〈1|(2 + 7)|4]

s56s356

]

+

[

3 ↔ 5, 4 ↔ 6

]

(35)

ASR(1−q , 2
+
q̄ , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ , 7

−
g ) =

1

[1 7][7 2]s3456

[

〈3 5〉[2 4]
s56s356

(

[2 1]〈1|(3 + 5)|6] + [2 7]〈7|(3 + 5)|6]
)

+
[6 4]〈3|(1 + 7)|2]〈5|(4 + 6)|2]

s56s456

]

+

[

3 ↔ 5, 4 ↔ 6

]

(36)

The other needed helicity amplitudes can be obtained from these basic amplitudes.
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mH 126 GeV ΓH 0.004307 GeV
mZ 91.1876 GeV ΓZ 2.4952 GeV
mt 173.2 GeV mb 4.75 GeV
e2 0.0949563 g2W 0.4264904

sin2 θW 0.2226459 GF 0.116639× 10−4

TABLE II: Masses, widths and Electroweak parameters used to produce the results in this paper.

4. PHENOMENOLOGY

The full calculation of the production of e−e+µ−µ+ has been implemented in the parton level
integrator MCFM. We present the relative importance of the dominant processes at

√
s = 8 and

13 TeV in Figs. 4 and 5. These plots have been prepared using the parameters shown in Table II
and applying the CMS cuts [37] which are detailed as follows.:

pT,µ > 5 GeV , |ηµ| < 2.4 ,

pT,e > 7 GeV , |ηe| < 2.5 ,

mll > 4 GeV , m4ℓ > 100 GeV . (37)

In addition, the transverse momentum of the hardest (next-to-hardest) lepton should be larger
than 20 (10) GeV, the invariant mass of the pair of same-flavour leptons closest to the Z-mass
should be in the interval 40 < mll < 120 GeV and the invariant mass of the other pair should
be in the interval 12 < mll < 120 GeV. For the purposes of these plots the QCD renormalization
and factorization scales have been set equal to mH/2. Figs. 4 and 5 contain a mixture of orders
in perturbation theory. The qq̄ process is included at lowest order in perturbation theory O(e8),
whereas the other processes are included at O(e8g4s), i.e. they are next-to-next-to leading with
respect to the qq̄ process, but enhanced by large gluon fluxes at the LHC. The peaks at the
Higgs boson mass and at the Z-boson mass (from the singly resonant diagrams) are visible. At
high invariant mass m4ℓ one can clearly see the destructive interference canceling the leading high
energy behaviour of the gg → ZZ → eeµµ process [27]. Fig. 5 also demonstrates that the relative
fraction of gg- and qq̄-initiated processes changes at higher energy with the gg process becoming
more important at

√
s = 13 TeV. The method of ref. [8] relies on gg-initiated events and is thus

expected to improve with increasing energy.
To discuss the structure of our results we introduce the following notation to distinguish the

different squared amplitudes that are included in the gluon-gluon initiated contributions:

σH : |MH |2 , σC : |MC |2 , σH+C : |MH +MC |2 ,
σI : |MH +MC |2 − |MC |2 − |MH |2 , σH+I : |MH +MC |2 − |MC |2 , (38)

where MH is the Higgs production amplitude and MC is the amplitude for the continuum back-
ground. Thus, for instance, σI reflects the pure interference contribution while σH+I denotes the
effect of including the Higgs-mediated diagrams. As stressed in refs. [8, 9] the interference is pri-
marily of importance in the off-peak region. The overall size of the interference can be assessed
from Fig. 6 which shows the cross sections σH and σH+I . It is apparent that the description of the
off-peak region without accounting for the interference is unreliable.

In Table III we compare our results with similar results presented by Caola and Melnikov. Our
results display the same general pattern as those reported in ref. [8], but differ in detail on the size
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FIG. 4: Overall picture at 8 TeV, (colour online). In this and the following figure the CMS cuts described
in the text have been imposed, but the constraint m4ℓ > 100 GeV has been removed to extend the range of
the plot.

m4ℓ < 130 GeV m4ℓ > 130 GeV m4ℓ > 300 GeV

Energy σH
peak σH

off σI
off σqg,int

off
σH
off σI

off σqg,int
off

7 TeV 0.203 0.044 -0.086 0.0091 0.034 -0.050 0.0023
8 TeV 0.255 0.061 -0.118 0.011 0.049 -0.071 0.0029

TABLE III: Fiducial cross sections for pp → H → ZZ → e−e+µ−µ+ in fb. All cross-sections are computed
with leading order MSTW 2008 parton distribution functions [38] and renormalization and factorization
scales set equal to mH/2.

of the gg interference contribution, despite using what we believe to be identical input parameters.
The results of ref. [8] were obtained using the code gg2VV [9].

We believe that the cause of the discrepancy is a cut of pZT > 7 GeV imposed in the double
precision version of gg2VV for the continuum process, but not on the Higgs signal process. The
interference contribution is obtained by forming the combination (c.f. Eq. (38)),

σI = |MH +MC |2 − |MC |2 − |MH |2 . (39)

The pT cut is performed on the first two terms on the right hand side of Eq. (39) but not on the
third. The cut on the amplitudes that involve the continuum background in the gg2VV code is
presumably performed for reasons of numerical stability.

We shall now discuss the treatment of the region of low pT of the Z-boson in our code, and
illustrate the importance of low pT . In Fig. 7 we first demonstrate the impact of the spurious 1/pT
singularities that appear in the amplitudes. The figures show the calculation of the gg → ZZ cross
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FIG. 5: Overall picture at 13 TeV, (colour online).

FIG. 6: Higgs related contributions in the high m4ℓ region, (colour online).
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FIG. 7: The gg → ZZ differential cross section, (colour online) at 7 TeV (left) and 13 TeV (right), including
only massive top and bottom quarks. The calculation is performed in two different ways, as described in
the text.

section in the region 0.1 < pT (Z) < 2 GeV, including only the effect of the massive top and bot-
tom quark loops. The calculation is performed using the CMS cuts that were previously described.
The calculation is performed in two different ways. The “original” calculation includes only the
4-dimensional scalar integrals in the basis, with explicit factors of 1/p4T and 1/p3T in the amplitudes
for opposite helicity incoming gluons. The “improved” calculation, presented in Appendices B,C,
extends the basis to also include 6-dimensional box integrals, and simplifies the remaining coef-
ficients so that only 1/p2T factors remain. The original calculation becomes numerically unstable
for pT < 0.4 GeV, whereas the improved calculation provides a reliable prediction down to the
pT = 0.1 GeV threshold. The significance of the low-pT region is demonstrated in Fig. 8. The
figure shows the contribution to the total Higgs and continuum cross sections from the phase space
below a given pT cut. For the gg → ZZ continuum process, the effect of enforcing a cut at 7 GeV
is a reduction in the cross section of about 8%. In contrast, a cut at the level of 0.1 GeV has a
negligible (< 0.01%) effect.

In Fig. 6 we also show the effect of Higgs-mediated diagrams in the qg(q̄g) initiated interference
and in Table III quantify the size of this contribution to the cross section in two mass ranges.
Compared to the Higgs peak cross section this contribution is small. Further, as the figure illus-
trates, this interference is significant primarily in the region around 2mZ and above 300 GeV it
can be safely neglected. A full assessment of the import of these terms will have to await a com-
plete NNLO calculation of the pp → e−e+µ−µ+ process since we expect an intimate relationship
between the Higgs-mediated contribution we have considered and other box diagrams contributing
to the full qq̄gZZ amplitude. Alternatively, if we identify a jet, we could compare the data with a
complete NLO calculation of pp → e−e+µ−µ+ + jet, of which the interference that we present is
also a part5. At present we merely note that these terms do not overwhelm the contributions from
the gg-initiated terms. In view of the fact that our results for this interference term are small and
only a partial calculation, we will not include them in the following discussion.

5 A NLO calculation of pp → ZZ + jet (without vector boson decays) has been presented in ref. [39].
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FIG. 8: The percentage of the total cross section originating from the region where the Z bosons are
produced with transverse momentum below a given pcutT at 13 TeV. These curves are essentially the same
at

√
s = 7 or 8 TeV.

PDF set Scale σH
peak σH

off (m4ℓ > 130 GeV) σI
off (m4ℓ > 130 GeV)

(

σH
off + σI

off

)

/ σH
peak

MSTW mH/2 0.256 0.061 -0.118 -0.223
m4ℓ/2 0.255 0.035 -0.073 -0.149

CTEQ mH/2 0.242 0.052 -0.103 -0.252
m4ℓ/2 0.243 0.029 -0.065 -0.148

PDF set Scale σH
peak σH

off (m4ℓ > 300 GeV) σI
off (m4ℓ > 300 GeV)

(

σH
off + σI

off

)

/ σH
peak

MSTW mH/2 0.256 0.049 -0.071 -0.086
m4ℓ/2 0.255 0.026 -0.036 -0.039

CTEQ mH/2 0.242 0.041 -0.059 -0.074
m4ℓ/2 0.243 0.021 -0.031 -0.041

TABLE IV: Fiducial cross sections for pp → H → ZZ → e−e+µ−µ+ in fb at 8 TeV, with various choices of
PDF sets and scale. Results are shown for the off-peak region defined by m4ℓ > 130 GeV (top) and for the
far off-peak region, m4ℓ > 300 GeV (bottom).

We now investigate the dependence of the on-shell, off-shell and interference contributions on
the choice of parton distribution function and scale. For the sake of illustration we undertake
this analysis for

√
s = 8 TeV. Results at other centre of mass energies are similar. For the PDF

set we consider CTEQ6L1 [40] in addition to our standard choice of MSTW08LO [38]. We also
investigate the use of a dynamic scale that is more natural for events that lie far beyond the Higgs
boson on-shell peak, namely m4ℓ/2. Our results are summarized in Table IV. The cross section
changes considerably when switching from the fixed to the dynamic choice of scale, since the
off-peak contribution is considerably suppressed by the running of the strong coupling. However
the ratio of off-peak to on-peak cross sections is relatively stable under PDF variation. Our best
predictions for the effect of the interference, obtained using the running scale m4ℓ/2, are presented
in Table V.
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m4ℓ > 130 GeV m4ℓ > 300 GeV
Energy PDF σH

peak σH
off σI

off σH
off σI

off

7 TeV MSTW 0.203 0.025 -0.053 0.017 -0.025
CTEQ 0.192 0.021 -0.047 0.015 -0.021

8 TeV MSTW 0.255 0.034 -0.073 0.025 -0.036
CTEQ 0.243 0.031 -0.065 0.022 -0.031

13 TeV MSTW 0.554 0.108 -0.215 0.085 -0.122
CTEQ 0.530 0.100 -0.199 0.077 -0.111

TABLE V: Best prediction cross sections for pp → H → ZZ → e−e+µ−µ+ in fb, obtained using the running
scale m4ℓ/2 and two sets of parton distributions.

We now turn to the issue of constraining the Higgs width by measuring the fraction of off-shell
ZZ events, as proposed in Ref. [8]. The scenario we consider is one in which the peak Higgs cross
section is constrained to its Standard Model value while the width is changed. Such a scenario is
realized by a universal rescaling of the coupling of the Higgs boson, gx → ξgSMx and ΓH = ξ4ΓSM

H .
Taking the results for

√
s = 8 TeV using the MSTW PDF set from Table V the number of off-shell

events originating from Higgs contributions is,

σH+I
off (m4ℓ > 130 GeV) = 0.034

(

ΓH

ΓSM
H

)

− 0.073

√

ΓH

ΓSM
H

(40)

σH+I
off (m4ℓ > 300 GeV) = 0.025

(

ΓH

ΓSM
H

)

− 0.036

√

ΓH

ΓSM
H

(41)

In these equations the linear scaling with the Higgs width originates from the genuine off-shell con-
tribution while the interference contribution scales with the square root. The coefficients entering
the equivalent relations at 7 and 13 TeV can be read directly from Table V. With these results
in hand it is straightforward to repeat the analysis of Ref. [8] in order to obtain the number of
off-shell Higgs-related 4-lepton events (N4ℓ

off ) expected in the CMS analysis presented in Ref. [37].
The number of such events expected in the combined 7 and 8 TeV data sample is obtained by sum-
ming the appropriately-weighted cross sections and normalizing to the peak cross section reported
in Ref. [37]. We find,

N4ℓ
off (m4ℓ > 130 GeV) = 2.78

(

ΓH

ΓSM
H

)

− 5.95

√

ΓH

ΓSM
H

(42)

N4ℓ
off (m4ℓ > 300 GeV) = 2.02

(

ΓH

ΓSM
H

)

− 2.91

√

ΓH

ΓSM
H

(43)

Comparing the first of these equations to the equivalent one found in Ref. [8] we see that the
coefficients are both smaller, due to the difference between our choice of dynamic scale and the
approximate suppression factor employed in Ref. [8]. The interference term differs further due to
the use of the gg2VV code in Ref. [8] that employs a pZT cut, as discussed previously. The limit
on the Higgs width is then determined by comparing the background-subtracted number of events
observed with the number of Higgs-related events expected. This is illustrated graphically in Fig. 9.
We obtain the limits,

ΓH < 43.2ΓSM
H at 95% c.l., (m4ℓ > 130 GeV analysis)

ΓH < 25.2ΓSM
H at 95% c.l., (m4ℓ > 300 GeV analysis) (44)
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FIG. 9: Limits on the width of the Higgs boson from a reanalysis of CMS data [37] using the method given
in Ref. [8]. The results of the analysis are shown for a wide off-shell region (left) and for the high-mass
region (right).

These limits are slightly weaker than those reported in Ref. [8] due to the different choice of scale,
as discussed above. Since the current limits are far from the Standard Model value, the analysis is
not affected by the small difference in the interference term which is insignificant for large values
of the rescaling parameter.

5. CONSTRAINING THE HIGGS WIDTH USING THE MATRIX ELEMENT METHOD

The results presented in the previous section highlight the difficulty of measuring the off-shell
Higgs-mediated contributions to four-lepton production at the LHC. It is therefore natural to
investigate the possibility of using advanced techniques to extend the experimental analyses beyond
a cut and count approach. One such technique is the use of kinematic discriminants, which assign
each event a weight associated with a given hypothesis. The variant of this method that we adopt
is the matrix element method (MEM), in which a fixed-order matrix element is used to assign a
probabilistic weight to individual events. In this way all of the theoretical information encoded in
the matrix element is utilized in the analysis. The MEM has been used successfully in the on-shell
region [2, 17, 18] and it is therefore natural to investigate the possibility of using such a kinematic
discriminant in the off-shell region. In this section we will use the matrix element method algorithms
presented in ref. [19] to compute kinematic discriminants in the off-shell region. Although Ref. [19]
presented an extension of the MEM to NLO accuracy, since the gg initiated matrix elements are
currently only available at LO, our analysis will focus on the LO implementation of this algorithm.
We will briefly discuss the potential impact of the MEM@NLO at the end of this section.

The aim of the MEM is to associate a probabilistic weight to each input event (from Monte
Carlo or data), with a weight computed under a given theoretical hypothesis. In the case at hand
we must map an input data event to a partonic configuration in which the 4-lepton system has no
transverse momentum. In order to implement this map an input data event, which may contain
significant recoil, we perform a transverse boost. To ensure that the weight is unique, we integrate
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over all longitudinally equivalent boosts. Each weight is thus obtained from a fixed order matrix
element, and an integration over the longitudinal degrees of freedom associated with the production
through two colliding partons. Explicitly, at LO the weights are defined as follows,

PLO(φ) =
1

σLO

∑

i,j

∫

dx1dx2 δ(x1x2s−Q2)fi(x1)fj(x2)σ̂ij(x1, x2, φ) (45)

In this equation σ̂ij is the LO parton cross section, evaluated at the phase space point φ, defined
for incoming partons of flavour i and j, which are occur in the proton with probability fi,j given
by the parton distribution functions. Q2 represents the overall center of mass energy of the event
that is kept invariant under the longitudinal integration. In this equation we have assumed that
the leptons are well-measured in order to reduce the computational load. Lifting this assumption is
straightforward and we believe that the results presented here serve as a well-motivated and useful
starting point for future studies.

5.1. The Kinematic Discriminant

For each event we compute three weights, corresponding to different hypotheses:

Pqq : qq initiated background.

Pgg : gg initiated pieces, including Higgs signal, box diagrams and interference.

PH : gg initiated Higgs signal squared.

The kinematic discriminant DS is then computed from these according to,

DS = log

(

PH

Pgg + Pqq

)

(46)

Note that, since Pgg contains both the effect of the Higgs diagram squared and the interference
term between the signal and background it is possible that PH > Pgg so that DS > 0. We have
chosen PH in the numerator (compared to Pgg) since Pgg will favor events which either have a large
continuum or Higgs probability. To constrain the Higgs width we primarily seek off-shell Higgs
events, and our discriminant is thus constructed to reflect this.

The samples of events that we use for our study are generated as follows. For the background qq
events we use POWHEG [15] to produce NLO events matched to the PYTHIA [41] parton shower.
We will use the term qq background to refer to all non gg-initiated backgrounds, even though this
sample contains some fraction of gq initiated events that enter at NLO. Events from the Higgs
signal, gg background and interference terms are generated using the results of this paper, using
the same PYTHIA interface to produce showered events. We then perform a basic simulation of
detector effects by performing Gaussian smearing of the pT of each of the leptons, with a width
of 0.5 GeV. After this we require exactly four leptons that pass cuts based on the CMS selection
criteria presented in the previous section. For efficiency of generation we have raised the minimum
invariant mass of the off-shell lepton pair to 20 GeV and, for simplicity, have fixed |ηℓ| < 2.4 for
all leptons.

We begin by validating the discriminant on our gg initiated samples. Samples are generated
using the prescription and cuts described above, for two different values of the total Higgs width:
ΓH → ξ4ΓH with ξ4 = 1, 10. In order to understand the behaviour of the discriminant on the
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FIG. 10: The MEM discriminant, defined in Eq. 46), for gg initiated samples corresponding to two values
of the rescaling parameter ξ: ξ4 = 1 (left) and ξ4 = 10 (right). The blue curve corresponds to the event
sample containing only continuum production and is the same in each figure. The red curve contains only
Higgs events and the magenta curve contains the full physical prediction, including the interference.

different events that may be present we generate three samples for each ξ, corresponding to |MH|2,
|MH+C |2 and |MC |2. Our results are summarized in Fig. 10, which clearly indicates that the
discriminant is working as expected. The continuum-only sample peaks at DS ≈ −2 while the
event samples containing the Higgs boson produce a significant feature in the region DS > 0 . In
addition, the number of events present in this DS > 0 region depends strongly on the rescaling
factor ξ. The difference between the number of events found there between ξ4 = 1 and ξ4 = 10
scales roughly as ΓH/ΓSM , i.e. an order of magnitude. This should be compared to the overall
scaling of the total gg cross section, which for the same values of ξ increases by around 24%.
The impact of the interference is also clear from the figure. The destructive interference reduces
the overall cross section and particularly suppresses the number of events in the region in which
the Higgs signal is largest. These results clearly demonstrate the importance of modeling the
interference in this measurement. Indeed, in the Standard Model the peak associated with the
off-shell production of Higgs bosons is completely washed out by the interference, as expected from
the results of the previous section.

Having validated our discriminant on control gg samples, we now compare our gg events to the
qq sample. Our results are shown in Fig. 11. Due to the much larger cross section, σNLO

qq ≈ 10σgg,
the qq initiated events now dominate the discriminant. However, it is also clear from Fig. 11 that
these events have the same shape as the continuum gg background. As a result the region DS > 0
remains sensitive to the value of ξ and for ξ4 = 10 the number of expected gg events in the tail is
comparable to the number of qq events.

5.2. Measuring the Higgs width using the MEM

In order to determine the expected limit on ΓH we must first form a prediction for the total
number of expected events in our data sample. In our setup the total number of expected events
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FIG. 11: Discriminants for the MEM (in which the discriminant is defined through Eq. 46) for various
samples of events. The qq (blue) curve corresponds to the POWHEG + PYTHIA sample. The remaining
curves represent four choices of the Higgs rescaling parameter ξ, corresponding to ξ4 = 1, 5, 10 and 40.

consists of those arising from the qq, gg continuum and Higgs-mediated contributions,

〈Nexp(ξ)〉 = 〈Nqq〉+ 〈NC
gg〉+ 〈NH+I(ξ)〉 (47)

We wish to normalize the samples according to the number of expected qq events, i.e. we define,

〈Nexp(ξ)〉 = 〈Nqq〉
(

1 +
σC
gg

σqq
+

σH+I
gg (ξ)

σqq

)

. (48)

In Eq. (48) the best prediction for σqq is obtained from a NLO calculation and we generate it
using POWHEG. For σC

gg the current state of the art is the LO calculation presented in this paper.

However the part of σH+I
gg that represents Higgs diagrams squared (i.e. σH

gg) is known to NNLO
and the higher order corrections are large. For this reason we rescale the results of this paper for
σH+I
gg by a NLO K-factor of 1.76. This is derived in the effective theory, under the CMS cuts with

m4ℓ > 100 GeV. This approach treats the higher-order corrections to the Higgs-squared diagram
and the Higgs-continuum interference equally. However, as we have seen in the previous section,
for the current LHC sensitivity the limits on the width do not depend strongly on the effect of the
interference.

In our analysis we will use a fixed qq expectation 〈Nqq〉 = 400. As a systematic uncer-
tainty on our method we will consider the variation of σC

gg and σH
gg over the scale choices µ =

{m4ℓ/4,m4ℓ/2,m4ℓ}. The number of Higgs-mediated events in the off-shell region, m4l > 130 GeV,
can then be parametrized by,

〈NH
exp〉 =







2.96
2.25
1.71







(

ΓH

ΓSM
H

)

−







6.27
4.80
3.64







√

ΓH

ΓSM
H

. (49)
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where each row in Eq. (49) corresponds to a different choice of scale. For the statistical uncer-
tainty we choose Nstat = 1.5

√

Nexp so that it scales correctly with the number of events and also
approximately reproduces the corresponding uncertainty in the CMS analysis [37]. Without using
the MEM we find, at 95% confidence level,

ΓH <
(

41.5 −7.4
+10.2

)

ΓSM
H (m4ℓ > 130 GeV) , ΓH <

(

24.5 −4.9
+6.7

)

ΓSM
H (m4ℓ > 300 GeV) (50)

The systematic uncertainties in this constraint correspond to the variation of the scale about the
central value of m4ℓ/2 as described above. Despite the small differences in the analysis compared
to the last section, the final constraints are rather similar, c.f. Eq. (44).

We can now compare the effect of performing a MEM analysis with a cut on the discriminant
variable, DS > Dcut

S . In order to obtain our expected number of events, given a cut on DS , we
use the Monte Carlo samples discussed previously (see Fig 11). For each sample we calculate
the fraction of events that pass the cut on the discriminant. We then use the normalization
prescription of Eq. 48 to combine the samples, weighted by the appropriate cut efficiency. Our
results are summarized in Fig. 12. It is clear that application of a cut on the discriminant variable
strengthens the constraint on the Higgs width. Given our expected number of events, the largest
values of Dcut

S actually result in weaker constraints on the Higgs width since there are too few
events to effectively discriminate between hypotheses. The strongest expected constraint on the
Higgs width is around Dcut

S = 1 for which we find,

ΓH <
(

15.7 −2.9
+3.9

)

ΓSM
H at 95% c.l. . (51)

This is around a factor of 2.6 better than the cut-and-count method with m4ℓ > 130 GeV, and
about 1.6 times better than the result for m4ℓ > 300 GeV cut, c.f. Eq. (50). Note that it may be
possible to improve these limits in a full experimental analysis, for instance by using a template
fit to fully exploit the shape of the full DS distribution rather than simply cutting on it.

5.3. Future Theoretical Improvements

The results of the previous subsection illustrate the potential of the MEM to constrain the Higgs
width. Given its important role in determining Higgs couplings, it is natural to consider potential
improvements which may lead to stronger constraints in the future. Obviously the limits derived
previously will improve with the collection of larger data sets, eventually becoming dominated by
systematic errors.

The most obvious potential improvement is the calculation of the complete gg initiated con-
tributions (continuum and Higgs-mediated) at NLO. This would improve both the cut and count
method, and also allow for the use of the MEM@NLO [19]. Given the long lifetime of the LHC,
this calculation is a realistic possibility. Indeed the NLO corrections to the Higgs signal are already
known [42–44].

A second improvement, that is simpler to implement, could come from binning the events
according to the number of associated jets and using the MEM@LO in each bin separately. Indeed
we know that for the gg → ZZ+jet process the interference between Higgs and continuum diagrams
in the off-peak region is around −160% of the off-peak Higgs cross section and that about 9% of
the gg-initiated cross section is due to Higgs diagrams [45]. This is to be contrasted with our
results reported in Fig. 4, where the interference is approximately −200% and only about 5% of
the gg-initiated cross section is due to Higgs diagrams. We leave a detailed investigation of this
possibility to future work.
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FIG. 12: 95% Confidence Limits on ΓH obtained using the Matrix Element Method. The central line
corresponds to the limit obtained using the standard scale choices µ = m4ℓ/2, the upper and lower limits of
the shaded band indicates the limits obtained using variations around the central scale by a factor of two.

6. CONCLUSIONS

In this paper we have revisited the cross sections for the hadronic production of four charged
leptons, e−e+µ−µ+, focussing in particular on the gluon-gluon initiated process that involve closed
fermion loops. We include the full amplitude, i.e. both the diagrams containing an s-channel Higgs
boson and those proceeding through a closed loop of (massive and massless) fermions radiating
vector bosons (Z/γ∗). Our result for the full amplitude includes the interference between the two
types of processes. We have obtained analytic formulae for the gg-initiated helicity amplitudes,
retaining the mass of the fermion that circulates in the closed loop. Even though numerical results
using these amplitudes have been presented before, we believe this is the first paper to publish
analytic results for helicity amplitudes including off-shell vector bosons in the final state. The
inclusion of off-shell vector bosons is clearly necessary to describe the region where the mass of
the four leptons is below twice the Z-boson mass, relevant for Higgs boson studies. Our analytic
approach has advantages over a more numerical approach, both in terms of calculational speed and
in terms of numerical stability. Numerical stability can be an issue in the region where the vector
boson transverse momentum pT is small. We have demonstrated that our code is stable down
to pT = 0.1 GeV where we perform a cut that removes a negligible fraction of the cross section
(0.01%).

The experimental study of the Higgs boson in the four lepton channel has focussed on the reso-
nant region where the mass of the four leptons is close to the mass of the Higgs boson. Somewhat
surprisingly, the narrow width approximation for the Higgs boson fails because of the proximity of
the Z-pair threshold and the production of longitudinal Z-bosons. Indeed 15% of the cross section
deriving from diagrams with a Higgs boson in the s-channel lies hundreds of Higgs widths above
its mass, m4l > 130 GeV. It is essential to include interference in the gg-channel to accurately
describe this region. The interference in the qg-channel is found to be smaller. Its contribution can
be further reduced by binning the data in the number of associated jets, or by considering only
the m4l > 300 GeV region. A definitive analysis of its importance will require a complete higher
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order calculation.
Following a suggestion of Caola and Melnikov we have used the off-resonant production through

the Higgs channel to bound the total width of the Higgs boson. We confirm and extend the results
of Caola and Melnikov, giving more precise results for the effect of the interference and investigating
alternative choices for the renormalization and factorization scale. We find that the choice of scale
can substantially affect the ratio of off-shell to on-shell Higgs production, although the effect of
different parton distributions on this quantity is less important. More precise predictions for this
ratio will require a campaign to include strong and electroweak higher order effects into the cross
section for the four lepton final state.

A cut and count style analysis of current data gives limits ΓH < 43.2 (25.2) ΓSM
H using off-

resonance events with m4l > 130 (300) GeV. We investigated the use of a matrix element method
to construct an event-by-event kinematic discriminant as a means of improving the constraint
on the Higgs width. Using Monte Carlo pseudo-data we found that such a MEM analysis could
suppress the qq and gg continuum backgrounds whilst still remaining sensitive to the width of the
Higgs boson. In our analysis the bound on the Higgs width was improved by a factor of about 1.6
using a simple cut on the MEM discriminant, compared to an invariant mass cut m4l > 300 GeV.
Our results motivate a more complete experimental analysis including real data and a full detector
simulation.
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Appendix A: Definition of scalar integrals

The scalar integrals themselves are defined as follows,

B0(p1;m1,m2) =
µ4−d

iπ
d
2 cΓ

∫

ddl
1

d(l,m1) d(l + p1,m2)

C0(p1, p2;m1,m2,m3) =
1

iπ2

×
∫

d4l
1

d(l,m1) d(l + p1,m2) d(l + p1 + p2,m3)
(A1)

D0(p1, p2, p3;m1,m2,m3,m4) =
1

iπ2

×
∫

d4l
1

d(l,m1) d(l + p1,m2) d(l + p1 + p2,m3) d(l + p1 + p2 + p3,m4)
(A2)

Dd=6
0 (p1, p2, p3;m1,m2,m3,m4) =

−1

iπ3

×
∫

d6l
1

d(l,m1) d(l + p1,m2) d(l + p1 + p2,m3) d(l + p1 + p2 + p3,m4)
(A3)

where the denominator function is

d(l,m) = (l2 −m2 + iε) . (A4)

24



For the purposes of this paper we take the masses in the propagators to be real. Near four
dimensions we use d = 4 − 2ǫ (and for clarity the small imaginary part which fixes the analytic
continuations is specified by +i ε). µ is a scale introduced so that the integrals preserve their
natural dimensions, despite excursions away from d = 4. We have removed the overall constant
which occurs in d-dimensional integrals

cΓ ≡ Γ2(1− ǫ)Γ(1 + ǫ)

Γ(1− 2ǫ)
=

1

Γ(1− ǫ)
+O(ǫ3) = 1− ǫγ + ǫ2

[γ2

2
− π2

12

]

+O(ǫ3) . (A5)

The final numerical evaluation of the amplitudes uses the ff [46, 47] and QCDLoop [48] libraries
provide values for these scalar integrals.

The expression for the six-dimensional box with two adjacent external massless lines is, (p21 =
p22 = 0),

Dd=6
0 (p1, p2, p34;m,m,m,m) =

s234
2Y

[(

s12 − s34 − s56 + 2
s34s56
s234

)

C0(p12, p34;m,m,m)

−
(

s12s234 +
4m2Y

s234

)

D0(p1, p2, p34;m,m,m,m) + s12C0(p1, p2;m,m,m)

+ (s23 + s24)C0(p2, p34;m,m,m) + (s15 + s16)C0(p1, p56;m,m,m)
]

, (A6)

with Y = s134s234 − s34s56. The six-dimensional box is both infra-red and ultraviolet finite, even
in the limit m → 0. We also note that, despite the overall factor of 1/Y , it approaches a finite
limit as Y (or pT ) goes to zero.

Appendix B: Analytic results for the LR amplitude

There are two independent helicity configurations, (1+, 2+) and (1−, 2+). To obtain the remain-
ing helicities we define the operation,

flip : (3 ↔ 4), (5 ↔ 6), 〈 〉 ↔ [ ] . (B1)

The remaining two helicities are then obtained by,

ALR(1
−
g , 2

−
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ ) = flip

{

ALR(1
+
g , 2

+
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ )
}

(B2)

ALR(1
+
g , 2

−
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ ) = flip

{

ALR(1
−
g , 2

+
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ )
}

. (B3)

The LR amplitude is simple because it vanishes in the m → 0 limit. Thus the tensor rank of
the integrals that appear is at most two. We will first consider the LR amplitude for the gluonic
production of two virtual photons,

g(−p1) + g(−p2) → γ∗(p34) + γ∗(p56) . (B4)

The virtual photons will subsequently decay to charged lepton pairs with momenta p3, p4 and p5, p6,
so that p34 = p3 + p4, p56 = p5 + p6. These decays will be added later in this section.

For definiteness we consider the LR amplitude for the case where the couplings of the virtual
photons with momenta p34 and p56 are

p34 : −ieγρ
1

2
(1− γ5)

p56 : −ieγσ
1

2
(1 + γ5) . (B5)
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We remove a series of overall factors to define a reduced amplitude Pµνρσ
LR for this process,

Pµνρσ =
ig2se

2

16π2

δC1C2

2
4Pµνρσ

LR . (B6)

The indices µ and ν refer to the two gluons with momenta p1 and p2 respectively, (see Fig. 3). C1

and C2 similarly denote the color labels of the gluons. Including the factor of -1 for a fermion loop
we find that the form of the reduced amplitude, consistent with QCD gauge invariance, is [27],

Pµνρσ
LR = A1 g

ρσ
(

gµν − pν1p
µ
2

p1 · p2

)

+ A2 g
ρσ
(

gµν +
2

p2T
pµ34p

ν
34 +

p234
p2T p1 · p2

pν1p
µ
2 − 2p1 · p34

p2T p1 · p2
pµ2p

ν
34 −

2p2 · p34
p2Tp1 · p2

pν1p
µ
34

)

+ A3

(

gµσgνρ +
gµνpσ1p

ρ
2

p1 · p2
− gνρpσ1p

µ
2

p1 · p2
− gµσpν1p

ρ
2

p1 · p2

)

+ A4

(

gµρgνσ +
gµνpρ1p

σ
2

p1 · p2
− gνσpρ1p

µ
2

p1 · p2
− gµρpν1p

σ
2

p1 · p2

)

+ A5
1

p1 · p2

(

gµσpρ1p
σ
34 − gµρpσ1p

ν
34 + gνσpρ2p

µ
34 − gνρpσ2p

µ
34

+
p2 · p34
p1 · p2

gµρpν1p
σ
1 − p2 · p34

p1 · p2
gµσpν1p

ρ
1 +

p1 · p34
p1 · p2

gνρpµ2p
σ
2 − p1 · p34

p1 · p2
gνσpµ2p

ρ
2

)

+ A6
1

p1 · p2

(

gµσpρ1p
ν
34 − gµρpσ1p

ν
34 + gµρpν1p

σ
1

p2 · p34
p1 · p2

− gµσpν1p
ρ
1

p2 · p34
p1 · p2

)

. (B7)

The six form factors Ai are given by, (Y = s12p
2
T = 4 p34.p1 p34.p2 − s12s34)

A1 =
m2

2s12

[

2(s13 + s14)C0(3) + 2(s23 + s24)C0(4) + 2(s15 + s16)C0(5) + 2(s25 + s26)C0(6)

− 2Y D0(1) + s12(s12 − 4m2)(D0(1) +D0(2) +D0(3))
]

A2 = 2m2
[

Dd=6
0 (3) +Dd=6

0 (2) + C0(2) +m2
(

D0(3) +D0(2)−D0(1)
)]

A3 =
1

2
m2s12

[

D0(3) −D0(2) −D0(1)
]

A4 =
1

2
m2s12

[

D0(2) −D0(3) −D0(1)
]

(B8)

A5 =
m2s

2s234s134

[

2s134D
d=6
0 (3) + 2s234D

d=6
0 (2)− s234s134D0(1)

+ 4m2
(

s134D0(3) + s234D0(2)
)

+ 2(s234 + s134)C0(2)
]

A6 = −m2s12
Y

[

(s13 + s14)C0(3)− (s23 + s24)C0(4) + (s15 + s16)C0(5) − (s25 + s26)C0(6)
]

≡ 0 .

In writing these equations we have introduced the notation,

sij = (pi + pj)
2 , sijk = (pi + pj + pk)

2 . (B9)

We also note the following relations,

s13 + s14 ≡ 2p1 · p34 ≡ 〈1|(3 + 4)|1] ,
s23 + s24 ≡ 2p2 · p34 ≡ 〈2|(3 + 4)|2] ,
s15 + s16 ≡ 2p1 · p56 ≡ 〈1|(5 + 6)|1] ,
s25 + s26 ≡ 2p2 · p56 ≡ 〈2|(5 + 6)|2] . (B10)
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Dd=6
0 (1) Dd=6

0 (p1, p34, p2;m,m,m,m) C0(1) C0(p1, p2;m,m,m) B0(1) B0(p12;m,m)
Dd=6

0 (2) Dd=6
0 (p2, p1, p34;m,m,m,m) C0(2) C0(p12, p34;m,m,m) B0(2) B0(p34;m,m)

Dd=6
0 (3) Dd=6

0 (p2, p1, p34;m,m,m,m) C0(3) C0(p1, p34;m,m,m) B0(3) B0(p56;m,m)
D0(1) D0(p1, p34, p2;m,m,m,m) C0(4) C0(p2, p34;m,m,m) B0(4) B0(p134;m,m)
D0(2) D0(p2, p1, p34;m,m,m,m) C0(5) C0(p1, p56;m,m,m) B0(5) B0(p234;m,m)
D0(3) D0(p2, p1, p34;m,m,m,m) C0(6) C0(p2, p56;m,m,m)

TABLE VI: Definitions of the scalar integrals that appear in the calculation of the amplitude for continuum
production of gg → ZZ through a loop containing a massive particle.

We further introduce the following functions that naturally occur in the coefficients of triangle
integrals,

δij,kl,mn = sij − skl − smn ,

∆3 = s212 + s234 + s256 − 2s12s34 − 2s34s56 − 2s56s12 . (B11)

The notation for the scalar integrals, D0(j), C0(j) is given in Table VI and the explicit expres-
sions for the six-dimensional boxes are, (p21 = p22 = 0), (c.f. Eq. (A6)),

Dd=6
0 (2) =

s134
2Y

[

(s13 + s14)C0(3) + (s25 + s26)C0(6) + s12C0(1)

+
(

s12 − s34 − s56 + 2
s34s56
s134

)

C0(2)−
(

s12s134 +
4m2Y

s134

)

D0(2)
]

(B12)

Dd=6
0 (3) =

s234
2Y

[

(s23 + s24)C0(4) + (s15 + s16)C0(5) + s12C0(1)

+
(

s12 − s34 − s56 + 2
s34s56
s234

)

C0(2)−
(

s12s234 +
4m2Y

s234

)

D0(3)
]

. (B13)

Note that the combination of integrals given in A6 is identically equal to zero,

(s13 + s14)C0(3) − (s23 + s24)C0(4) + (s15 + s16)C0(5)− (s25 + s26)C0(6) = 0 , (B14)

so that A6 can be dropped from further discussion. These formula, up to an overall factor, are in
agreement with the result given in ref. [29]. In addition, in the limit p234 = p256 = M2

Z , they are in
agreement with the formula of ref. [27]. This concludes our discussion of the tensor Pµνρσ

LR .
Contracting with the polarization vectors of the gluons, ǫ±, we find helicity amplitudes for the

(1−, 2+) and (1+, 2+) polarizations are,

ǫ−µ (p1)ǫ
+
ν (p2)P

µνρσ
LR =

1

2

1

s212

[

− 2gρσ
〈1|(3 + 4)|2]
〈2|(3 + 4)|1]s

2
12A2 − 〈1|γρ|2]〈1|γσ |2]s12(A3 +A4)

− 〈1 2〉[2|γργσ|2]〈1|(3 + 4)|2]A5 + 〈1|γργσ|1〉[1 2]〈1|(3 + 4)|2]A5

]

(B15)

ǫ+µ (p1)ǫ
+
ν (p2)P

µνρσ
LR =

1

2

1

〈1 2〉2s12

[

2gρσs212A1 + 〈1 2〉[2|γργσ|1]s12A3 + 〈2 1〉[1|γργσ|2]s12A4

+ 〈1 2〉[2|γργσ|2]〈2|(3 + 4)|1]A5 + 〈2 1〉[1|γργσ|1]〈1|(3 + 4)|2]A5

]

(B16)

The final result for the LR amplitude is obtained by saturating the indices ρ and σ with our
standard left-handed currents for the decay into leptons,

e2

s34s56
〈3|γρ|4]〈5|γσ |6] . (B17)
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Thus the amplitude for the standard polarization of the final state leptons can be written with an
overall factor extracted,

A(1h1

g , 2h2

g , 3−e , 4
+
ē , 5

−
µ , 6

+
µ̄ ) =

ig2se
4

4π2
δC1C2A(1h1

g , 2h2

g , 3−e , 4
+
ē , 5

−
µ , 6

+
µ̄ ) (B18)

where the reduced amplitudes are given in terms of the form factors Ai defined in Eq. (B8) by,

A(1−g , 2
+
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ ) =

1

s12s34s56

[

〈3 5〉[4 6]〈1|(3 + 4)|2]
〈2|(3 + 4)|1]s12 A2 − 〈1 3〉〈1 5〉[2 4][2 6] (A3 +A4)

+
( 〈3 5〉[2 4][6 2]

[1 2]
+

〈1 3〉〈1 5〉[4 6]
〈1 2〉

)

〈1|(3 + 4)|2]A5

]

, (B19)

A(1+g , 2
+
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ ) =

1

s12s34s56

〈3 5〉
〈1 2〉

[

[1 6][4 2]s12 (A3 +A1)− [2 6][4 1]s12 (A4 +A1)

+
(

[2 4][2 6]〈2|(3 + 4)|1] − [1 4][1 6]〈1|(3 + 4)|2]
)

A5

]

. (B20)

Appendix C: Analytic results for the LL amplitude

There are two independent helicity configurations, (1+, 2+) and (1−, 2+), with the remaining
helicities obtained using the flip operation defined in Eq. (B1), as before,

ALL(1
−
g , 2

−
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ ) = flip

{

ALL(1
+
g , 2

+
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ )
}

(C1)

ALL(1
+
g , 2

−
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ ) = flip

{

ALL(1
−
g , 2

+
g , 3

−
e , 4

+
ē , 5

−
µ , 6

+
µ̄ )
}

. (C2)

The amplitude is described by the expansion in scalar integrals in Eq. (31). In this appendix we
provide explicit expressions for the coefficients that appear there. The box and triangle coefficients
have the general form,

di(1
h1 , 2h2) = d

(0)
i (1h1 , 2h2) +m2d

(2)
i (1h1 , 2h2) +m4d

(4)
i (1h1 , 2h2) , (C3)

ci(1
h1 , 2h2) = c

(0)
i (1h1 , 2h2) +m2c

(2)
i (1h1 , 2h2) , (C4)

while the 6-dimensional box and bubble coefficients, denoted by d d=6
i and b

(0)
i , are independent of

the mass. The latter fact allows the bubble coefficients to be extracted from ref. [32]. Furthermore
the bubble coefficients are constrained by the absence of ultraviolet divergences,

∑

j=1,5

b
(0)
j = 0 . (C5)

In the limit m → 0 diagrams develop infra-red poles which must vanish. Since the amplitude
that we are calculating is finite in the m → 0 limit, all of the poles in ǫ must cancel. This
cancellation of infra-red poles leads to relations between m = 0 parts of the triangle and box
coefficients.

2 d
(0)
1

(s134s234 − s34s56)
+

c
(0)
3

(s13 + s14)
+

c
(0)
4

(s23 + s24)
− c

(0)
1

s12
= 0 , (C6)

c
(0)
3

(s13 + s14)
+

c
(0)
4

(s23 + s24)
− c

(0)
5

(s15 + s16)
− c

(0)
6

(s25 + s26)
= 0 , (C7)

d
(0)
2

s12s134
− d

(0)
3

s12s234
+

c
(0)
3

(s13 + s14)
− c

(0)
5

(s15 + s16)
= 0 . (C8)

Because of the use of the 6-dimensional box in the (1−, 2+) amplitude these relations are trivial in
that case. Nevertheless they provide useful constraints for the (1+, 2+) coefficients.
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1. (1+, 2+) d = 6 boxes

For this helicity combination these coefficients are equal to zero.

2. (1+, 2+) boxes

a. Box 1: D0(p1, p34, p2;m,m,m,m)

d
(0)
1 (1+, 2+) =

1

2

(2〈1 3〉〈2 3〉〈1 5〉〈2 5〉 + 〈3 5〉2〈1 2〉2)(s134s234 − s34s56)

〈1 2〉4〈3 4〉〈5 6〉 (C9)

d
(2)
1 (1+, 2+) =

{

− 1

2

[

〈1 2〉〈1 3〉〈2 5〉〈3 4〉[4 2][4 3][6 1] + 〈1 2〉〈1 3〉〈1 5〉〈2 3〉[2 1][4 3][6 1]

− 〈1 2〉2〈3 4〉〈3 5〉[4 2][4 3][6 1] − 〈1 2〉〈1 5〉〈2 3〉〈5|(3 + 4)|2][4 1][6 5]
− 4〈1 5〉2〈2 3〉2[2 1][4 3][6 5] − 〈1 2〉〈1 3〉〈2 5〉〈3 5〉[2 1][4 3][6 5]

+ 〈1 2〉2〈3 5〉2[2 1][4 3][6 5]
] 1

〈1 2〉3s34s56

}

+
{

1 ↔ 2
}

(C10)

d
(4)
1 (1+, 2+) =

2

s34s56〈1 2〉2 〈1|(3 + 4)|2]〈2|(3 + 4)|1]
×
(

[4 2]〈2|(3 + 4)|1]〈1 5〉 − [4 1]〈1|(3 + 4)|2]〈2 5〉
)

×
(

[6 1]〈1|(3 + 4)|2]〈2 3〉 − [6 2]〈2|(3 + 4)|1]〈1 3〉
)

(C11)

b. Box 2: D0(p2, p1, p34;m,m,m,m)

d
(0)
2 (1+, 2+) = 0 (C12)

d
(2)
2 (1+, 2+) =

{

[2 1][4 3]
(

〈1 5〉〈1|(3 + 4)|6]〈3|(5 + 6)|2]2 − 〈1 3〉〈5 6〉〈1|(3 + 4)(5 + 6)|3〉[6 2]2
)

2 s34s56〈1 2〉〈1|(3 + 4)|2]2

}

+

{

(1 ↔ 2), (3 ↔ 5), (4 ↔ 6)

}

(C13)

d
(4)
2 (1+, 2+) = d

(4)
1 (1+, 2+) (C14)

c. Box 3: D0(p1, p2, p34;m,m,m,m)

The results for d3 can be found from the results for d2 by applying the operation flip2 defined
by,

flip2 : (3 ↔ 5), (4 ↔ 6), (h3 ↔ h5), (h4 ↔ h6) . (C15)

Note that under this operation the helicities of the lepton lines are switched.
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3. (1+, 2+) triangles

a. Triangle 1: C0(p1, p2;m,m,m)

c
(0)
1 (1+, 2+) = 0 (C16)

c
(2)
1 (1+, 2+) =

1

s34s56

[2 1]

〈1 2〉

×
{[〈1 3〉〈1 5〉[2 4][2 6](s134 + s234)

〈1|(3 + 4)|2]2 +
(〈1 3〉〈5 6〉[2 6] + 〈1 5〉〈3 4〉[2 4])[4 6]

〈1|(3 + 4)|2]
]

+
[

(1 ↔ 2), (3 ↔ 5), (4 ↔ 6)
]}

(C17)

b. Triangle 2: C0(p12, p34;m,m,m)

c
(0)
2 (1+, 2+) = 0 . (C18)

The mass dependent piece c
(2)
2 (1+, 2+) is non-zero. It is obtained by exploiting the relation between

mass dependent terms in the box and triangle coefficients, and the rational term [35]. The relation
is,

R(1h1 , 2h2)− 1

2

6
∑

j=1

c
(2)
j (1h1 , 2h2) +

1

6

3
∑

j=1

d
(4)
j (1h1 , 2h2) = 0 . (C19)

c. Triangle 3: C0(p1, p34;m,m,m)

c
(0)
3 (1+, 2+) = −1

2

(〈1 5〉2〈2 3〉2 + 〈1 3〉2〈2 5〉2)(s13 + s14)

〈1 2〉4〈3 4〉〈5 6〉 (C20)

c
(2)
3 (1+, 2+) =

1

(s34s56)

[〈1 3〉〈2 5〉〈1|(3 + 4)|6][4 1]
〈1 2〉3 − 〈1 3〉2〈2 5〉〈1|(3 + 4)|6][2 1][4 3]

〈1 2〉3〈1|(3 + 4)|2]

+
〈1 3〉〈2|(1 + 3)|4]〈5|(3 + 4)|1][6 1]

〈1 2〉2〈2|(3 + 4)|1] − 〈1 3〉2〈1 5〉[2 1][4 3][6 1]
〈1 2〉2〈1|(3 + 4)|2]

+
2〈1 3〉〈1 5〉〈3 4〉[4 1][4 3][6 1]

〈1 2〉2〈1|(3 + 4)|1] +
2〈1 3〉〈5|(3 + 4)|1][4 1][6 2]

〈1 2〉〈1|(3 + 4)|1]

− 〈1 3〉〈3 5〉〈1|(3 + 4)|1][4 3][6 2]
〈1 2〉2〈1|(3 + 4)|2] − 〈1 3〉2〈1 5〉〈1|(3 + 4)|1]〈2|(5 + 6)|2][4 3][6 2]

〈1 2〉3〈1|(3 + 4)|2]2

+
〈1 3〉〈1 5〉〈2 3〉[2 1][4 3][6 2]

〈1 2〉2〈1|(3 + 4)|2] +
〈1 3〉〈1 5〉〈1|(3 + 4)|1]〈2|(3 + 4)|2][6 4]

〈1 2〉3〈1|(3 + 4)|2]

+
〈2 3〉〈5|(3 + 4)|1]2[4 1][6 5]

〈1 2〉〈2|(3 + 4)|1]2
]

(C21)
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d. Triangles 4,5 and 6 : C0(p2, p34;m,m,m), C0(p1, p56;m,m,m) and C0(p2, p56;m,m,m)

These triangle coefficients can all be obtained from c3 by various symmetry operations. To that
end we define,

flip1 : (1 ↔ 2), (h1 ↔ h2) . (C22)

and

flip3 : (1 ↔ 2), (3 ↔ 5), (4 ↔ 6), (h1 ↔ h2), (h3 ↔ h5), (h4 ↔ h6) , (C23)

and note that flip3 is equivalent to applying both flip1 and flip2 (defined in Eq. C15). Explicitly,

c4(1
+, 2+) = flip1

{

c3(1
+, 2+)

}

, (C24)

c5(1
+, 2+) = flip2

{

c3(1
+, 2+)

}

, (C25)

c6(1
+, 2+) = flip3

{

c3(1
+, 2+)

}

, (C26)

4. (1+, 2+) bubbles

Note that the bubble coefficients do not have terms of order m2 in the coefficients.

a. Bubble 1 : B0(p12;m,m)

b
(0)
1 (1+, 2+) = 0 . (C27)

b. Bubble 2 : B0(p34;m,m)

b
(0)
2 (1+, 2+) =

〈3 4〉
〈1 2〉2〈5 6〉

[ 〈1 5〉2[1 4]2
(s13 + s14)2

+
〈2 5〉2[2 4]2
(s23 + s24)2

]

+ 2
〈1 5〉〈2 5〉
〈1 2〉3〈5 6〉

[ 〈3 1〉[4 1]
(s13 + s14)

+
〈2 3〉[4 2]
(s23 + s24)

]

(C28)

c. Bubble 3 : B0(p56;m,m)

b
(0)
3 (1+, 2+) = flip2

{

b
(0)
2 (1+, 2+)

}

(C29)
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d. Bubble 4 : B0(p134;m,m)

b
(0)
4 (1+, 2+) = −

[

〈1 2〉
[ 〈1 5〉2〈3 4〉2[1 4]2

(s13 + s14)2
+

〈2 3〉2〈5 6〉2[2 6]2
(s25 + s26)2

]

+ 2〈1 3〉〈2 5〉
[ 〈1 5〉〈3 4〉[1 4]

(s13 + s14)
− 〈2 3〉〈5 6〉[2 6]

(s25 + s26)

]

+
(

〈1 3〉〈2 5〉 + 〈2 3〉〈1 5〉
)

〈3 5〉
]

× 1

(〈1 2〉3〈3 4〉〈5 6〉) (C30)

e. Bubble 5 : B0(p234;m,m)

b
(0)
5 (1+, 2+) = flip1

{

b
(0)
4 (1+, 2+)

}

(C31)

5. (1+, 2+) rational terms

R(1+, 2+) =

[

( 〈1 5〉2[1 4]2
(s13 + s14)

+
〈2 5〉2[2 4]2
(s23 + s24)

)

1

〈5 6〉[3 4] +
( 〈3 1〉2[1 6]2
(s15 + s16)

+
〈3 2〉2[2 6]2
(s25 + s26)

)

1

[5 6]〈3 4〉

+
[4 6]2

[3 4][5 6]
− 〈3 5〉2

〈3 4〉〈5 6〉

]

1

〈1 2〉2 (C32)

6. (1−, 2+) d = 6 boxes

a. Box 2: Dd=6
0 (p2, p1, p34;m,m,m,m)

dd=6
2 (1−, 2+) =

−1

[3 4]〈5 6〉s134
〈1|(3 + 4)|2]
〈2|(3 + 4)|1]3

[

〈2|(1 + 3)|4]2〈5|(3 + 4)|1]2 + s2134〈2 5〉2[1 4]2
]

(C33)

b. Box 3: Dd=6
0 (p1, p2, p34;m,m,m,m)

dd=6
3 (1+, 2−) = flip2

{

dd=6
2 (1−, 2+)

}

(C34)

Note that the standard helicity choice, (1−, 2+), can be recovered by applying the flip operation
defined in Eq. (B1).
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7. (1−, 2+) boxes

a. Box 1: D0(p1, p34, p2;m,m,m,m)

d
(0)
1 (1−, 2+) = 0 (C35)

d
(2)
1 (1−, 2+) =

{1

2

[

− 〈5 6〉〈1|(3 + 4)|2]〈3|(2 + 4)|1][4 1][6 2]2
〈2|(3 + 4)|1][2 1]2

+
〈1 5〉2〈2 3〉〈1|(3 + 4)|2]〈2|(1 + 3)|4][6 5]

〈1 2〉2〈2|(3 + 4)|1]
] 1

s34s56

}

+
{

3 ↔ 5, 4 ↔ 6,
}

(C36)

d
(4)
1 (1−, 2+) =

〈1|(3 + 4)|2]〈2 1〉
[1|(3 + 4)|2〉[2 1] d

(4)
1 (1+, 2+)

=
2

s34s56〈1 2〉[1 2] 〈2|(3 + 4)|1]2

×
(

[4 2]〈2|(3 + 4)|1]〈1 5〉 − [4 1]〈1|(3 + 4)|2]〈2 5〉
)

×
(

[6 1]〈1|(3 + 4)|2]〈2 3〉 − [6 2]〈2|(3 + 4)|1]〈1 3〉
)

(C37)

b. Box 2: D0(p2, p1, p34;m,m,m,m)

d
(2)
2 (1−, 2+) =

1

s34s56

{

〈2 5〉[1 4]
〈2|(3 + 4)|1]2

[

− 1

2
s2134

(

〈1 3〉[2 6] + 〈1 5〉〈2 3〉 [1 6][2 4]〈2 5〉[1 4]
)

− 1

2
s134

(

〈1 5〉〈3 4〉[2 4][5 6] − 〈3 5〉[5 6]〈1|(3 + 4)|2]

+ 2〈3 4〉[4 6]〈1|(3 + 4)|2] + 〈1|(3 + 4)|6]〈3|(1 + 4)|2]
)

+
1

2
〈3 4〉[2 6]〈2|(5 + 6)|4]〈1|(3 + 4)|2] − 2〈3 4〉[5 6]〈1|(3 + 4)|2]〈5|(1 + 3)|4]

]

+
1

〈2|(3 + 4)|1]
[

− 1

2
s134〈1 3〉[2 6]〈5|(1 + 3)|4] − 2

s134
〈3 4〉[5 6]〈1|(3 + 4)|2]〈5|(1 + 3)|4]2

− 1

2
〈1 3〉〈1 5〉[2 4][5 6]〈5|(3 + 4)|1]− 1

2
〈1 5〉〈3 4〉[2 4][2 6]〈2|(5 + 6)|4]

+
1

2
〈1|(3 + 4)|2]〈5|(1 + 3)|4](〈2 3〉[2 6] + 〈3 5〉[5 6] − 2〈3 4〉[4 6])

]

}

d
(4)
2 (1−, 2+) = d

(4)
1 (1−, 2+) (C38)

c. Box 3: D0(p1, p2, p34;m,m,m,m)

d3(1
+, 2−) = flip2

{

d2(1
−, 2+)

}

(C39)

Note that the standard helicity choice can be recovered by applying the flip operation defined in
Eq. (B1).
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8. (1−, 2+) triangles

a. Triangle 1: C0(p1, p2;m,m,m)

c
(0)
1 (1−, 2+) = 0 (C40)

c
(2)
1 (1−, 2+) =

1

s34s56

[

− 2
〈1|(3 + 4)|2]
〈2|(3 + 4)|1]3 (s134 + s234)〈2 3〉〈2 5〉[1 4][1 6]

+
1

〈2|(3 + 4)|1]2
(

(s134 + s234)
(

〈1 3〉〈2 5〉[1 4][2 6] + 〈1 5〉〈2 3〉[1 6][2 4]
)

+ 〈2 3〉[1 6]〈5|(1 + 6)|4]〈1|(3 + 4)|2] − 〈2 5〉[1 4]〈3|(1 + 4)|6]〈1|(3 + 4)|2]
)

− 〈3 5〉[4 6]〈1|(3 + 4)|2]
〈2|(3 + 4)|1]

]

(C41)

b. Triangle 2: C0(p12, p34;m,m,m)

c
(0)
2 (1−, 2+) = 6

1

∆2
3

s12
〈1|(3 + 4)|2]
〈2|(3 + 4)|1] 〈3|(1 + 2)|4]〈5|(1 + 2)|6]δ12,34,56

+ 2
1

∆3〈2|(3 + 4)|1]
[

〈2 3〉〈2 5〉[1 4][1 6]〈1|(3 + 4)|2]2
〈2|(3 + 4)|1] + 〈1 3〉〈1 5〉[2 4][2 6]〈2|(3 + 4)|1]

+ (s134 − s234)
〈1|(3 + 4)|2]
〈2|(3 + 4)|1]2 (〈2 5〉

2〈3 4〉[1 4]2 [5 6]− 〈2 3〉2〈5 6〉[1 6]2 [3 4])

+ (s134 − s234)
〈1|(3 + 4)|2]
〈2|(3 + 4)|1]

(

〈2 3〉[1 6]〈5|(1 + 3)|4] + 〈2 5〉[1 4]〈3|(1 + 5)|6]
)

− 3〈1|(3 + 4)|2]
(

〈1 3〉〈2 5〉[1 4][2 6] + 〈1 5〉〈2 3〉[1 6][2 4]
)

]

− 〈1 3〉[2 6]〈5|(1 + 3)|4]
s134〈2|(3 + 4)|1] +

〈1 5〉[2 4]〈3|(1 + 5)|6]
s234〈2|(3 + 4)|1] (C42)

The kinematic quantities ∆3 and δ12,34,56 are defined in Eq. (B11). The coefficient c
(2)
2 (1−, 2+)

is again obtained by exploiting the relation between mass-dependent coefficients of boxes and
triangles and the total rational contribution, c.f. Eq. (C19).
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c. Triangle 3: C0(p1, p34;m,m,m)

c
(0)
3 (1−, 2+) = 0 (C43)

c
(2)
3 (1−, 2+) =

1

s12s34s56

{

− 2
〈1|(3 + 4)|2]
〈2|(3 + 4)|1]3 s134[1 4]

2[1 6]〈2 5〉〈4 3〉〈2 1〉

+
[1 4]

〈2|(3 + 4)|1]2
[

〈2|(5 + 6)|2]〈1 3〉〈5|(3 + 4)|1]〈1|(3 + 4)|6]

+ 〈2|(5 + 6)|2]〈1 3〉s34 [1 6]〈1 5〉 + 〈1|(3 + 4)|2]2 [1 4][1 6]〈2 5〉〈3 4〉
[1 2]

+ [1 4][2 6]〈1 2〉2〈3 4〉〈5|(3 + 4)|1]〈1|(3 + 4)|2]
〈1|(3 + 4)|1]

+ 2s134〈3 4〉[1 4][1 6]〈1 5〉〈1 2〉
〈1|(3 + 4)|2]
〈1|(3 + 4)|1]

]

+
[1 4]

〈2|(3 + 4)|1]
[

(s234 + s34)[2 6]〈1 3〉〈1 5〉

+ [1 6]〈1 3〉〈1 5〉〈1|(3 + 4)|2] − [1 4][1 6]〈1 5〉〈3 4〉〈1|(3 + 4)|2]2
[1 2]〈1|(3 + 4)|1]

− 2
〈3 4〉[3 4][1 2]〈1 3〉〈1 5〉2 [6 5]

〈1|(3 + 4)|1]
]

+
[1 2][3 4]〈1 3〉2〈1 5〉2[6 5]

〈1 2〉〈1|(3 + 4)|1]

}

(C44)

d. Triangles 4,5 and 6 : C0(p2, p34;m,m,m), C0(p1, p56;m,m,m) and C0(p2, p56;m,m,m)

These coefficients may be obtained using symmetries as follows,

c4(1
+, 2−) = flip1

{

c3(1
−, 2+)

}

, (C45)

c5(1
−, 2+) = flip2

{

c3(1
−, 2+)

}

, (C46)

c6(1
+, 2−) = flip3

{

c3(1
−, 2+)

}

, (C47)

Note that the standard helicity choice for c4 and c6 can be recovered by applying the flip operation
defined in Eq. (B1).

9. (1−, 2+) bubbles

a. Bubble 1 : B0(p12;m,m)

The coefficients for this bubble are obtained by exploiting the cancellation of ultraviolet poles
expressed in Eq. (C5),

b
(0)
1 (1−, 2+) = −b

(0)
2 (1−, 2+)− b

(0)
3 (1−, 2+)− b

(0)
4 (1−, 2+)− b

(0)
5 (1−, 2+) . (C48)
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b. Bubble 2 : B0(p34;m,m)

b
(0)
2 (1−, 2+) = − 〈4 3〉〈1 5〉2 [1 4]2s34

(s13 + s14)2〈6 5〉〈2|(3 + 4)|1]2 − [4 3][2 6]2〈2 3〉2s34
(s23 + s24)2[6 5]〈2|(3 + 4)|1]2

− 2
〈3 2〉[1 4]s34

s56〈2|(3 + 4)|1]3(s13 + s14)(s23 + s24)

[

〈5 6〉[2 6]〈1|(3 + 4)|6]〈2|(3 + 4)|1]

+ s34 (〈2 5〉[1 6]〈1|(3 + 4)|2] − 〈1 5〉[2 6]〈2|(3 + 4)|1]) − 〈1 5〉[5 6]〈5|(3 + 4)|2]〈2|(3 + 4)|1]
]

+ 6
1

∆2
3

〈3|(1 + 2)|4]〈5|(1 + 2)|6]δ56,12,34
〈1|(3 + 4)|2]
〈2|(3 + 4)|1]

+
1

∆3

[

2
(s134 − s234)〈1|(3 + 4)|2]

s56〈2|(3 + 4)|1]
(s234[1 4][1 6]〈2 3〉〈2 5〉

〈2|(3 + 4)|1]2 +
s234[1 4]〈1 5〉〈3|(2 + 5)|6]
〈1|(3 + 4)|2]〈2|(3 + 4)|1]

+
[4 6]〈2 5〉〈3|(2 + 4)|1]

〈2|(3 + 4)|1] − s134〈2 3〉〈2 5〉[1 4][1 6]
〈2|(3 + 4)|1]2 − s134〈2 3〉[2 6]〈5|(1 + 6)|4]

〈1|(3 + 4)|2]〈2|(3 + 4)|1]

− 〈3 5〉[1 6]〈2|(1 + 3)|4]
〈2|(3 + 4)|1]

)

− 8
〈1 5〉〈2 5〉[1 4]2〈3 4〉〈1|(3 + 4)|2]

〈5 6〉〈2|(3 + 4)|1]2 − 8
〈2 3〉2[3 4][2 6][1 6]〈1|(3 + 4)|2]

[5 6]〈2|(3 + 4)|1]2

+ 2
〈3 4〉〈1 5〉[4 1][4 6](s234 − s134)

〈2|(3 + 4)|1]2 + 2
〈3 2〉〈3 5〉[3 4][2 6](s234 − s134)

〈2|(3 + 4)|1]2

+ 2
〈3 5〉[4 6]s34δ34,12,56

〈2|(3 + 4)|1]2 − 〈3 5〉2[3 4]δ34,12,56s234
〈6 5〉〈2|(3 + 4)|1]2

− 〈3 4〉[4 6]2δ34,12,56s134
[6 5]〈2|(3 + 4)|1]2 +

〈3 5〉2[3 4]〈1|(3 + 4)|2]
〈6 5〉〈2|(3 + 4)|1]

+
〈3 4〉[4 6]2〈1|(3 + 4)|2]

[6 5]〈2|(3 + 4)|1] − 2
〈3 5〉[4 6][6 5]〈1|(3 + 4)|2]

[6 5]〈2|(3 + 4)|1]
]

(C49)

The kinematic quantities ∆3 and δij,kl,mn are defined in Eq. (B11).

c. Bubble 3 : B0(p56;m,m)

b
(0)
3 (1−, 2+) = flip2

{

b
(0)
2 (1−, 2+)

}

. (C50)
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d. Bubble 4 : B0(p134;m,m)

b
(0)
4 (1−, 2+) = 2

〈1|(3 + 4)|2]
〈2|(3 + 4)|1]3

〈2 5〉2[1 4][4|(5 + 6)(3 + 4)|1]
〈1 2〉〈5 6〉[1 2][3 4]

+
1

〈2|(3 + 4)|1]2

[

s34〈1 5〉2〈3 4〉[1 4]2
〈5 6〉〈1|(3 + 4)|1]2 +

s56〈2 5〉2[2 4]2[5 6]
[3 4]〈2|(5 + 6)|2]2 − 2

s34〈1 5〉2〈2 3〉[1 4]
〈1 2〉〈5 6〉〈1|(3 + 4)|1]

− 2
s56〈2 5〉[1 6][2 4]2

[1 2][3 4]〈2|(5 + 6)|2] + 2
〈1 5〉〈2 5〉[1 4][2|(3 + 4)(5 + 6)|4]

〈1 2〉[1 2][3 4]〈5 6〉 − 〈5|(2 + 3)|4]2
〈5 6〉[3 4]

]

(C51)

e. Bubble 5 : B0(p234;m,m)

b
(0)
5 (1+, 2−) = flip1

{

b
(0)
4 (1−, 2+)

}

(C52)

Note that the standard helicity choice can be recovered by applying the flip operation defined in
Eq. (B1).

10. (1−, 2+) rational terms

R(1−, 2+) =

[

〈2 3〉2[2 6]2[3 4]
[5 6](s23 + s24)

+
〈1 5〉2[1 4]2〈3 4〉
〈5 6〉(s13 + s14)

+
〈2 5〉2[2 4]2[5 6]
[3 4](s25 + s26)

+
〈1 3〉2[1 6]2〈5 6〉
〈3 4〉(s15 + s16)

− 〈3|(1 + 4)|6]2
〈3 4〉[5 6] − 〈5|(2 + 3)|4]2

[3 4]〈5 6〉 − 2〈3 5〉[4 6]
]

1

〈2|(3 + 4)|1]2

− 1

∆3

〈1|(3 + 4)|2]
〈2|(3 + 4)|1]

(

4〈3 5〉[4 6] + (s12 − s34 − s56)
( 〈3 5〉2
〈3 4〉〈5 6〉 +

[4 6]2

[3 4][5 6]

)

)

(C53)

Appendix D: Numerical results for coefficients

In this Appendix we present numerical values for the coefficients computed in Appendix B,C,
evaluated at a particular phase space point. The chosen point corresponds to,

p1 = (−3.000000000000, 2.121320343560, 1.060660171780, 1.837117307087)
p2 = (−3.000000000000, −2.121320343560, −1.060660171780, −1.837117307087)
p3 = (0.857142857143, −0.315789473684, 0.796850604481, 0.000000000000)
p4 = (2.000000000000, 2.000000000000, 0.000000000000, 0.000000000000)
p5 = (1.000000000000, −0.184210526316, 0.464829519280, 0.866025403784)
p6 = (2.142857142857, −1.500000000000, −1.261680123761, −0.866025403784)

(D1)

Note that all momenta are massless, p2i = 0 and momentum conservation is represented by, p1 +
p2+ p3+ p4+ p5+ p6 = 0 so that the energies of p1 and p2 are negative. Results for the coefficients
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(1+, 2+) (1−, 2+)

dd=6
2 0 −0.1629463101× 101 − 0.1341162858× 102i

dd=6
3 0 +0.1962361656× 101 + 0.1557616902× 101i

d
(0)
1 +0.6333405849× 10−1 + 0.1226578399i 0

d
(2)
1 −0.4596242026× 10−1 + 0.8702498187× 10−1i −0.2581442463+ 0.1155542839× 101i

d
(4)
1 +0.1928295436− 0.7588372864× 10−1i −0.1682541178− 0.1209633209i

d
(0)
2 0 0

d
(2)
2 −0.4441112592× 101 + 0.9753053731× 101i −0.3067119777× 102 − 0.1290256006× 102i

d
(4)
2 +0.1928295436− 0.7588372864× 10−1i −0.1682541178− 0.1209633209i

d
(0)
3 0 0

d
(2)
3 +0.8583748171− 0.8394523120i −0.1354800014× 10−1 + 0.1143682787× 101i

d
(4)
3 +0.1928295436− 0.7588372864× 10−1i −0.1836679557+ 0.9595652764× 10−1i

c
(0)
1 0 0

c
(2)
1 +0.3361485887+ 0.6802422581i −0.1121703089× 101 + 0.2624217171i

c
(0)
2 0 +0.7348718900− 0.1313014150i

c
(2)
2 −0.2538256662+ 0.9988738044× 10−1i −0.9366786568− 0.1462703615i

c
(0)
3 +0.3507990156× 10−1 + 0.6793856342× 10−1i 0

c
(2)
3 +0.1039551379− 0.2479536910i +0.1146266565× 101 + 0.2249571672× 10−1i

c
(0)
4 +0.1121717915× 10−1 − 0.2172409281× 10−1i 0

c
(2)
4 −0.5458186613× 10−1 − 0.3857256335× 10−1i +0.7117245915× 10−1 + 0.5536768984× 10−2i

c
(0)
5 +0.1353203319× 10−1 + 0.2620722562× 10−1i 0

c
(2)
5 −0.7832350223× 10−1 + 0.2515373110× 10−1i −0.2736896597× 10−1 + 0.2057525425× 10−1i

c
(0)
6 +0.3739475560× 10−1 − 0.7242169624× 10−1i 0

c
(2)
6 +0.1737216593+ 0.4034138715i +0.9275509368− 0.1094743189× 101i

b1 0 +0.2169627135+ 0.6541598060i
b2 +0.3181092629× 10−2 + 0.2424812667× 10−1i −0.4358650717× 10−1 − 0.1107093424i
b3 +0.7631131534× 10−2 + 0.1018659988× 10−1i −0.7960623716× 10−1 − 0.1441385947i
b4 +0.6583925572× 10−2 − 0.1993931235× 10−1i −0.7083144889× 10−1 − 0.3686048632i
b5 −0.1739614974× 10−1 − 0.1449541420× 10−1i −0.2293852032× 10−1 − 0.3070700563× 10−1i

R +0.1713240385× 10−1 + 0.1341860496i +0.6830612977× 10−1 + 0.9213040514× 10−1i

TABLE VII: Numerical values of coefficients appearing in the amplitudes A(1+, 2+, 3−, 4+, 5−, 6+) and
A(1−, 2+, 3−, 4+, 5−, 6+), evaluated at the phase space point given in Eq. (D1).

appearing in the amplitudes A(1+, 2+, 3−, 4+, 5−, 6+) and A(1−, 2+, 3−, 4+, 5−, 6+) are shown in
Table VII.

In summary we give the value of the reduced matrix elements at our standard point Eq. (D1)
and for a quark of mass m = 0.4255266775 running in the loop. We find for the LR combination,

A(1+, 2+, 3−, 4+, 5−, 6+) = −0.3327734872 × 10−1 + 0.5996051030 × 10−2 i

A(1−, 2+, 3−, 4+, 5−, 6+) = +0.1157034544 − 0.7783407466 × 10−1 i (D2)

We find for the LL combination using the coefficients given in Eq. (VII),

A(1+, 2+, 3−, 4+, 5−, 6+) = −0.2809004251 × 10−1 + 0.1111561241 i

A(1−, 2+, 3−, 4+, 5−, 6+) = −0.1213182997 × 10−1 − 0.2215976019 × 10−1 i (D3)
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Spinor products are defined by,

〈p q〉 =
√

p−q+eiϕp −
√

p+q−eiϕq ,

[p q] =
√

p+q−e−iϕq −
√

p−q+e−iϕp (D4)

where,

e±iϕp ≡ p1 ± ip2
√

(p1)2 + (p2)2
=

p1 ± ip2
√

p+p−
, p± = p0 ± p3. (D5)
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