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The observed acceleration of the Universe can be explained by modifying general relativity. One such
attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using
results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution
of structure in the universe, confronting the model with three tests: gravitational lensing, redshift
space distortions, and the estimator of gravity EG. Current data favor general relativity (GR)
over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads
to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the
growth rate preferring GR by 7.8 sigma; and the single measurement of EG favoring GR, but by less
than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck
limits. The larger lesson is that a successful modified gravity model will likely have to suppress the
growth of structure compared to general relativity.

INTRODUCTION

The physics driving the observed acceleration of the
Universe remains a mystery. Two big competing ideas
for the cause are a new substance that contributes to the
energy density relatively recently (dark energy) vs. a new
formulation of gravity that enables acceleration even in
the presence of ordinary matter [1–4]. Models in both
camps can reproduce the observed redshift-distance rela-
tion, so an emerging method to distinguish these models,
to answer the (age-old) question “Is the anomaly due to
new stuff or to modified gravity?”, is to study the evo-
lution of structure over time for a fixed expansion his-
tory [5, 6]. An important realization (see, e.g., [7–9])
is that dark energy models based on general relativity
tend to predict evolution different than modified gravity
models.

Here we apply this technique to a modified gravity
model proposed by Deser and Woodard [10, 11], designed
to fit the expansion history [12, 13], and recently analyzed
for its effect on the growth of perturbations [14]. In the
last of these papers, we concluded that two measures of
perturbations – the effective Newton’s constant and the
gravitational slip – differ from that in general relativity
at the ten percent level. Here we study the observational
implications of these deviations and confront them with
current data.

We fix the redshift-distance relation and the ampli-
tude of fluctuations, σ8, using temperature data from the
Planck satellite and polarization data from WMAP [15,
16] as applied to the 5-parameter flat ΛCDM model. A
given parameter set fixes the redshift-distance relation
and also the initial amplitude of fluctuations but not the
growth of these fluctuations. In particular, we set

σ8(zinit) = σ8(z = 0)
DGR(zinit)

DGR(0)
, (1)

where D is the growth function and the GR superscript
indicates growth in general relativity. We set zinit = 9,
long before any substantial difference between GR and
nonlocal gravity arise. Once these parameters are fixed,
both GR and nonlocal gravity are zero-parameter the-
ories that make unambiguous predictions for the three
tests we consider. The comparisons are for the Planck
best-fit values of the parameters: Ωm = 0.318, σ8 =
0.83, h = 0.67. In the conclusion we consider the full
range of allowed Planck parameters to gauge the statis-
tical significance.

The backdrop to this test is the realization that the
amplitude of the observed fluctuations in the Universe
today is a bit lower than expected in the simplest ΛCDM
model [17, 18] given the measurement of this amplitude in
the early Universe by Planck [16]. Modified gravity mod-
els then will fit the data better if they suppress growth
compared to that found in a general relativity model.
Nonlocal gravity does the opposite – it enhances growth
– so is statistically disfavored.

DEVIATIONS FROM GENERAL RELATIVITY

The perturbed Friedman-Robertson-Walker metric is
written as

ds2 = − (1 + 2Ψ(t, ~x)) dt2 +a2(t)dx2 (1 + 2Φ(t, ~x)) . (2)

Non-relativistic particles respond to the time component
of the metric, to the potential Ψ. In cosmology this man-
ifests itself as a force term in the Jeans equation propor-
tional to Ψ. Relativistic particles respond to both po-
tentials, so gravitational lensing for example is governed
by Ψ − Φ. In general relativity, at late times, typically
Φ = −Ψ.

There are several ways to parameterize deviations from
general relativity. In Ref. [14], we chose the convention
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of presenting

η ≡ Φ + Ψ

Φ
Geff

G
≡ k2Φ

4πGρ̄a2δ
(3)

where G is Newton’s constant; ρ̄ the mean matter den-
sity; and δ the fractional over-density in matter. Both
of these functions were shown to be scale-independent
in nonlocal gravity (on scales smaller than the horizon).
We plotted these functions using a perturbative solution,
where the new source terms were evaluated using their
GR values. For this work we also solved the full integro-
differential equation, obtaining a more exact solution for
η and Geff . The solutions are similar apart from an incor-
rect sign in Fig. 5 of Ref. [14]: η is actually negative not
positive. The upshot is that, for a fixed over-density δ,
the potential |Ψ| is larger than in GR. That is, the forcing
term for the growth of structure is larger in the nonlocal
model. This leads directly to the conclusion that growth
is enhanced in this model.

One way to quantify this is to follow the parameteri-
zation of Ref. [19] and more recently [9]. They defined1

Ψ ≡ [1 + µ(k, a)] ΨGR

Ψ− Φ = [1 + Σ(k, a)] [ΨGR − ΦGR] . (4)

So changes in growth of structure are determined by µ
and in lensing by Σ. The relation to the first set of pa-
rameters is 1 + µ = (1 − η) × Geff/G. The first factor
is significantly larger than unity, overwhelming the fact
that Geff is slightly less than G, so µ is positive, and a
similar conclusion hold for Σ. Fig. 1 shows µ and Σ as
a function of redshift. Since both are positive, structure
will grow faster than in general relativity and lensing will
be more pronounced.

GROWTH OF PERTURBATIONS

The equations governing the growth of perturbations
are altered in the presence of modified gravity models by
the factor of 1 + µ [9, 20, 21]

d2δ

da2
+

[
d ln(H)

da
+

3

a

]
dδ

da
− 3

2
[1 + µ]

Ωm
E2(a)a5

δ = 0 (5)

where E ≡ H/H0.
The growth function, D(a), is the solution to Eq. (5)

with initial conditions: D(a) = a as is appropriate at
early times (z ∼ 10) when matter dominates and over-
densities simply increase with the scale factor. Fig. 2

1 Note that their definition of Φ differs from ours by a minus sign.
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FIG. 1: Two functions that quantify deviations from general
relativity as defined in Eq. (4). The growth of structure is
sensitive to µ while gravitational lensing, which is determined
by photon geodesics, is sensitive to Σ.

shows the growth function in the nonlocal model and
in ΛCDM. Starting with the same initial conditions, as
measured for example by Planck, a universe governed
by nonlocal gravity would become more inhomogeneous
than one governed by GR. We will now see that this is
not a good thing.
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FIG. 2: The growth function D(z) in both nonlocal gravity
and general relativity with a cosmological constant.
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WEAK LENSING

Lensing spectra are sensitive to both the redshift-
distance relation and to the gravitational potentials.
Here we fix the redshift-distance relation and the initial
amplitude of fluctuations and examine the predictions
for the spectrum in the presence of the modifications to
gravity. With these parameters fixed, the two models –
GR and nonlocal gravity – have no freedom left so make
unambiguous predictions. The power spectrum of the
convergence of galaxies in two redshift bins is [9, 20]

Cijl =

(
3ΩmH

2
0

2

)2 ∫ ∞

0

dχ
gi(χ)gj(χ)

a2(χ)
P (l/χ;χ)

× [1 + Σ(χ)]
2
, (6)

where the weighting function in each redshift bin is de-
fined as

gi(χ) ≡
∫ ∞

χ

dχ′ dni
dχ′

(
1− χ

χ′

)
(7)

and dni/dχ is the redshift distribution of source galaxies
in bin i. The “relativistic” correction factor Σ explicitly
affects the spectrum, but µ also enters implicitly because
of its effect on the growth and therefore on the 3D power
spectrum P . CFHTLenS reported measurements of the
angular correlation function, ξ+, which can be expressed
as an integral of the spectrum Cl weighted by the Bessel
function J0(lθ).

Here we use the two-bin data set also used for exam-
ple in Ref. [9], as the high redshift bins are least con-
taminated by intrinsic alignments [22]. Fig. 3 shows the
auto-spectra in these two bins and the cross-spectrum
along with the predictions for the nonlocal model and
for standard ΛCDM.

The points in Fig. 3 are highly correlated, especially
the different spectra in the same angular bin, with cor-
relation coefficients exceeding 0.5 at the largest angles.
This reduces the statistical significance of the difference
between the nonlocal model and GR. Although the chi-
by-eye in Fig. 3 overwhelmingly prefers GR, including
the full covariance matrix leads to a ∆χ2 = 34.3 or a
5.9-σ preference for general relativity over the nonlocal
model.

REDSHIFT SPACE DISTORTIONS

Redshift space distortions are sensitive to the rate at
which the over-densities grow. Fig. 4 shows the log-
arithmic derivative of the growth function as a func-
tion of redshift in the nonlocal model and in ΛCDM.
The measurements probe the product of the growth rate
β ≡ d lnD/d ln a and σ8(z), a measure of the clustering
amplitude.
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FIG. 3: ξ+ in three different redshift bins as measured in
CFHTLenS [23] (black points with error bars). Top and bot-
tom panels show the correlation function in the high and low
redshift bins respectively, while the middle panel shows the
cross spectrum. Both model have the redshift-distance rela-
tion corresponding to Planck parameters.
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FIG. 4: The logarithmic derivative of the growth function as a
function of redshift; this is directly measured in spectroscopic
surveys capable of probing redshift space distortions. Data
points come from the WiggleZ survey [24], 2dF [25], BOSS [26]
and SDSS LRG’s [27].

A number of surveys have made measurements of βσ8.
Fig 4 shows the compilation from Ref. [28] that includes
various incarnations of the Sloan Survey [26, 27], the
2dF galaxy survey [25], and Wiggle-Z [24]. These mea-
surements are plotted against the predictions of GR and
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nonlocal gravity and show a 7.8-sigma preference for GR
(with the parameters fixed at their best-fit values from
Planck).

ESTIMATOR OF GRAVITY, EG

Gravitational lensing is sensitive to the combination
Ψ − Φ, while spectroscopic surveys are sensitive to the
velocity field, which via the continuity equation is related
to the time derivative of the over-density. Combining
the two, therefore, enables [29] a test of modified gravity
models. In particular, an estimator of the large scale
properties of gravity is

EG ≡
k2a(Φ−Ψ)

3H2
0βδ

(8)

where β ≡ d lnD/d ln a relates the velocity field to the
density field. Using Eq. (4) and the fact that ΨGR −
ΦGR = −8πGa2ρ̄δ/k2, we see that [9]

EG =
Ωm [1 + Σ]

β
. (9)

The growth rate β is larger in nonlocal gravity, but Σ is
positive so there is an interesting interplay between the
two effects. On balance, the Σ enhancement wins, leading
to larger values of EG in the nonlocal model. Fig. 5
shows this behavior as a function of redshift along with
the measurement of Ref. [30]. The current measurement
slightly favors GR, but upcoming measurements will do
significantly better at differentiating these two models.
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FIG. 5: Estimator of gravity, EG, as a function of redshift
in standard and modified gravity models. The data point is
from Ref. [30].

CONCLUSIONS

Weak lensing data from CFHTLenS and measurements
of the growth rate from a variety of galaxy surveys favor
general relativity over nonlocal gravity with very high
statistical significance. The extent to which the nonlocal
model is dis-favored can be quantified in several ways.
Once the redshift-distance relationship and primordial
fluctuation amplitude are fixed, both models have no
freedom remaining. Above we quoted the significance
assuming these parameters were fixed at their best fit
values as measured by Planck. This is clearly too restric-
tive, and relaxing this requirement lowers the statistical
significance. A simple way to account for the uncertainty
in the parameters is to compute the ∆χ2 over the full re-
gion in parameter space allowed by Planck. When we
do this, the mean ∆χ2 for RSD is 58, while for lensing
it is 38. A more Bayesian approach is to marginalize
each likelihood (GR and nonlocal) over all parameters
and compute the ratio of the marginalized likelihoods.
This likelihood ratio is 8.8 × 107 : 1, corresponding to a
6-sigma preference for general relativity.

Two other measurements of interest are the abundance
of massive clusters and the Integrated Sachs-Wolfe (ISW)
effect. The former likely would add to the statistical sig-
nificance of the preference for GR [17], while the latter
has limited statistical power but might favor the nonlo-
cal model, given the positive value of Σ [31]. We have
included neither since our calculation of the deviations
breaks down on the large scales probed by the ISW ef-
fect and because we have not run simulations needed to
calibrate cluster abundances.

The larger point is that the recent Universe, as mea-
sured by galaxy surveys, is relatively smooth compared
to the early Universe, as measured by Planck. Many the-
ories of modified gravity, and the nonlocal model is one
of them, enhance the growth of perturbations, thereby
exacerbating the conflict between the early and late Uni-
verse data. Simply put, models in which structure grows
more slowly than in general relativity are currently fa-
vored. Given how difficult it has been to find a com-
pelling alternative to general relativity, this simple clue
might help guide future model building.
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