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We present an algorithm for calculating the impedance of infinitely long beam pipes with arbitrary
cross section. The method is not restricted to ultrarelativistic beams or perturbative approximations
with respect to the wall surface impedance or skin penetration depth. We exemplify our algorithm
with a calculation of the impedance for rectangular metallic beam pipes. Unlike the situation in the
perturbative regime, where the beam pipe geometry modifies the metallic resistive-wall impedances
by only a multiplicative factor, the beam pipe geometry has a more complex influence on the
impedance when nonultrarelativistic effects are significant and in the ultrarelativistic regime at both
small and large frequencies. Since our algorithm requires the boundary conditions at the beam pipe
wall to be provided as linear relations between the transverse components of the electromagnetic
field, we discuss a general algorithm to calculate these boundary conditions for multilayer beam
pipes with arbitrary cross section.

I. INTRODUCTION

Impedance plays an important role in the beam dynamics of high intensity accelerators, being a leading cause for
losses and instabilities. There is a vast literature addressing impedance calculations in accelerators. See, for example,
[1–3] and the references therein. With a few exceptions, the vast majority of impedance studies address cylindrical [3–
12] and parallel-plane [13–16] beam pipes. Since these systems are highly symmetric, characteristic modes can be
decoupled and analytical expressions for the impedance can be derived. Of particular interest is the calculation of
impedance in multilayer beam pipes; the problem has been addressed in the literature for both cylindrical [8–12] and
parallel-plane [14, 15] geometries. Beam pipes of general cross section have also been addressed in the literature [17–
19], but only in the ultrarelativistic approximation and for single-layered metallic pipes in the frequency region where
perturbation theory with respect to the penetration skin depth is valid.

In this paper, we present a method for calculating the resistive wall impedance for infinitely long beam pipes with
general cross section. Unlike previous investigations, our method works for systems with large wall surface impedances
and in the nonperturbative regime for metallic pipes at both small and large frequencies. Another important difference
from the existing literature is that our method does not impose an ultrarelativistic approximation. The ability to
calculate the impedance for nonultrarelativistic beams and for systems with large wall surface impedance is extremely
important for machines like the Fermilab Booster synchrotron, which has laminated magnets characterized by very
large surface impedance [13, 16] and an injection energy of 400MeV (γ = 1.42).

To illustrate our algorithm, we calculate the impedance of a rectangular metallic beam pipe, for both ultrarelativistic
and finite-γ cases. The ultrarelativistic perturbative regime is in perfect agreement with the work of Yokoya [18], which
showed that the rectangular beam pipe impedance has a behavior similar to that of the circular and the parallel-plane
geometries, the difference being only a renormalizing factor. However, we find that this simple renormalization is not
valid at small and large frequencies, nor is it valid in the frequency regions where the nonultrarelativistic effects are
noticeable.

The algorithm assumes that the electromagnetic field boundary conditions at the pipe walls are known and are
provided as linear relations between the field transverse components. An example is the boundary conditions provided
via the wall surface impedances. We discuss how the boundary conditions can be calculated for multilayer beam pipes
of arbitrary cross section, using a similar numerical method to that used for calculating the impedance.

In order to check the correctness of our code, we compare the simulations with the analytical results for the parallel-
plane pipe impedance. Since, to our knowledge, the expressions for the non-ultrarelativistic parallel-plane impedance
as function of wall surface impedances were never published, we present briefly their calculation in here.

The paper is organized as follows. The impedance algorithm is derived in Section II. In Section III the impedance
of the rectangular beam pipe is calculated. Conclusions are presented in Section IV. In Appendix A an algorithm
designed to calculate the electromagnetic field boundary conditions in multilayer beam pipes of arbitrary cross section
is discussed. In Appendix B we present a derivation of the nonultrarelativistic impedance for the parallel-plane beam
pipe. Appendix C presents a modified version of the impedance calculation algorithm which might be useful for
numerical optimization.
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II. FORMALISM

Inside the vacuum beam pipe, the electric and magnetic fields are given by

~E = −∇Φ −
∂ ~A

∂t
(1)

and

Z0
~H = c∇× ~A , (2)

where Φ and ~A are the electric and magnetic vector potentials, respectively. The equations for the potentials in the
vacuum beam pipe are

∇2Φ −
1

c2

∂2Φ

∂t2
= −

ρ

ǫ0
(3)

∇2 ~A −
1

c2

∂2 ~A

∂t2
= −µ0

~j (4)

∇ ~A +
1

c2

∂Φ

∂t
= 0 . (5)

Eq. 5 is the Lorentz gauge condition. Within the Lorentz gauge constraint, the potentials can undergo a gauge
transformation

~A′ = ~A −∇χ (6)

Φ′ = Φ +
∂χ

∂t
(7)

with the gauge field satisfying

∇2χ −
1

c2

∂2χ

∂t2
= 0 . (8)

The impedance describes the response of a witness particle to the electromagnetic field created in the accelerator
walls by a source particle. We assume a source particle with a transverse offset (x0, y0) moving in the z (longitudinal)
direction with velocity βc. The charge density and electric current are given by

ρ(x, y, z, t) = ρ(x, y, z − βct) = ρδ(x − x0)δ(y − y0)e
i(ωt−kz) (9)

~j(x, y, z, t) = ~j(x, y, z − βct) = ρδ(x − x0)δ(y − y0)βcẑei(ωt−kz). (10)

We are looking for synchronous solutions

~E(x, y, z, t) = ~E(x, y)ei(ωt−kz) (11)

~H(x, y, z, t) = ~H(x, y)ei(ωt−kz) . (12)

where k = ω
βc

.

The impedance terms are defined as derivative of a given order of the electromagnetic force acting on the witness
particle with respect to the source or/and witness particle displacement. Here we consider only the zeroth- and
first-order terms.

We assume the following definitions: The zeroth-order longitudinal impedance is

Z || = −
Fz

qρβc
(x = y = x0 = y0 = 0). (13)

The first-order horizontal transverse impedances are

Zw
x = −

1

iqρβc

∂Fx

∂x
(x = y = x0 = y0 = 0) (14)

Zs
x = −

1

iqρβc

∂Fx

∂x0
(x = y = x0 = y0 = 0), (15)



where Zw
x (Zs

x) describes the effect proportional to the displacement of the witness (source) particle. It is customary
to define the transverse impedance with a factor of i [4].

For beam pipes with low symmetry it is possible that a vertically displaced source particle kicks the witness particle
in the horizontal plane or that a vertical displaced witness particle is kicked horizontally by a term proportional to
its vertical displacement [20]. Correspondingly, the following transverse impedances can be defined

Zsy
x = −

1

iqρβc

∂Fx

∂y0
(x = y = x0 = y0 = 0), (16)

Zwy
x = −

1

iqρβc

∂Fx

∂y
(x = y = x0 = y0 = 0). (17)

Similar equations can be written for the vertical impedances.

A. Potential field equations

In Fourier space (x, y, k, ω), for the charge and the current given by Eqs. 9 and 10, the potential equations, Eqs. 3
and 4, read

∂2Φ

∂x2
+

∂2Φ

∂y2
− k2

rΦ = −
ρ

ǫ0
δ(x − x0)δ(y − y0) (18)

∂2 ~A

∂x2
+

∂2 ~A

∂y2
− k2

r
~A = −

β

c

ρ

ǫ0
δ(x − x0)δ(y − y0)ẑ . (19)

where

k2
r = k2 −

ω2

c2
= k2(1 − β2) =

k2

γ2
. (20)

It is convenient to eliminate the calculation of the z-component of the vector potential by fixing the gauge such
that

Az =
β

c
Φ. (21)

This, together with the Lorentz gauge constraint, Eq. 5, yields the following equation for the remaining components
of the vector potential

∂xAx + ∂yAy = 0 . (22)

By employing Green’s Theorem [21], the solution for Eqs. 18 and 19 can be written formally as

Φ(x, y) = Φ0(x, y) +

∮

D(x, y; rl)Φ(rl)dl −

∮

G(x, y; rl)∂nΦ(rl)dl (23)

Ax,y(x, y) =

∮

D(x, y; rl)Ax,y(rl)dl −

∮

G(x, y; rl)∂nAx,y(rl)dl (24)

where the one-dimensional integrals are taken along the beam pipe contour in the transverse plane and

G(x, y; x′, y′) = −
1

2π
K0(krR) (25)

R =
√

(x − x′)2 + (y − y′)2 (26)

is the Green function satisfying

∂2G

∂x2
+

∂2G

∂y2
− k2

rG = δ(x − x′)δ(y − y′). (27)

K0 is the modified Bessel function of the second kind, Φ0 is the free space (i.e. no beam pipe) solution

Φ0(x, y) = −

∫

G(x, y; x′, y′)
ρ(x′, y′)

ǫ0
dx′dy′ =

ρ

2πǫ0
K0(kr

√

(x − x0)2 + (y − y0)2) (28)

and

D(x, y; rl) = ∂nG(x, y; rl) (29)

where the normal derivative ∂n is taken in rl, i.e. on the wall contour, and outward.



1. Discretized equations

Eqs. 23 and 24 show that the solution is determined once the potentials and their normal components on the beam
pipe’s wall are known. Our algorithm finds the solution numerically, by taking N points at position ri on the contour.
The discretized equations for the surface potentials Φ(ri) ≡ Φ̄i and ∂nΦ(ri) ≡ ∂Φi are

Φ̄i = Φ̄0i +

N−1
∑

j=0

(

Di,jΦ̄j − Gi,j∂Φj

)

, (30)

Āxi =

N−1
∑

j=0

(

Di,jĀxj − Gi,j∂Axj

)

, (31)

Āyi
=

N−1
∑

j=0

(

Di,jĀyj
− Gi,j∂Ayj

)

. (32)

The bars over the potentials indicate in our notation that they are evaluated on the surface contour. The equations
can be written in a compact matrix form:

Φ̄ = Φ̄0 + DΦ̄ − G∂Φ (33)

Āx = DĀx − G∂Ax (34)

Āy = DĀy − G∂Ay . (35)

We have 6N variables, Φ̄i, Āxi, Āyi
, ∂Φi, ∂Axi, ∂Ayi

, i = 1, N , and 3N equations, Eqs. 30, 31, 32. The gauge
fixing condition, Eq. 22, and the field boundary conditions provide the other set of 3N equations required to solve the
problem. A straightforward way to solve the problem is to consider all 6N independent variables and to reduce the
problem to a system of 6N complex linear equations, as described in the Appendix C. However, it is possible reduce
the problem to a set of 2N linear equations. From Eqs 30, 31, 32 one can write the potentials’ normal derivatives as
function of the potentials

∂Φ = U Φ̄ + ∂Φ
∞

(36)

∂Ax = UĀx (37)

∂Ay = UĀy (38)

where

U = G−1(D − I) (39)

and

∂Φ
∞

= G−1Φ̄0. (40)

∂Φ
∞

is the normal derivative of the potential of a perfectly conducting beam pipe (with conductivity σ = ∞).
So far the 3N surface potentials (Φ̄i, Āxi, Āyi) , i = 1, N , have been considered as independent variables. The gauge

fixing constraint Eq. 22, eliminates one more set of N variables. Eq. 22 can be written as a function of the normal
and tangential derivative of the vector potentials. By considering the discretized tangential derivative of the potential
to the surface to be

∂||Φ̄i =
Φ̄i+1 − Φ̄i−1

2hi

, (41)

where 2hi is the distance on the surface between the points ri+1 and ri−1, one can write the tangential derivative
matrix as

∂||(i, j) =
1

2hi

(δi,j+1 − δi,j−1). (42)

However, depending on the surface characteristics, a more suitable discretization of the tangential derivative can be
chosen. At any point ri, the surface is characterized by a tangential vector ~ti = txi

~i+ tyi
~j and a surface normal vector

~ni = nxi
~i + nyi

~j. Eq. 22 on the surface reads

(

tx∂|| + nx∂n

)

Āx +
(

ty∂|| + ny∂n

)

Āy = 0. (43)



Employing Eqs. 37 and 38 the gauge constraint becomes

(

tx∂|| + nxU
)

Āx +
(

ty∂|| + nyU
)

Āy = 0. (44)

Eq. 44 allows us to write Āx and Āy as function of single independent variable Ā, thus

Āx = LxĀ (45)

Āy = LyĀ (46)

For example, one can choose Āx as the independent variable and express Āy as function of Āx

Ā = Āx (47)

Lx = I (48)

Ly = −
(

ty∂|| + nyU
)−1 (

tx∂|| + nxU
)

. (49)

However, other choices might be more convenient, depending on the particular problem.
We reduced the number of independent variables to 2N , (Φ̄i, Āi), i = 1, N . They are to be determined from the

continuity conditions of the tangential fields at the wall. Using the potential equations Eqs. 36, 37, 38, 45 and 46 in
Eqs. 1 and 2, the fields at the wall become

Ēz = i
k

γ2
Φ̄ (50)

Ēt = −∂||Φ̄ − iω(txLx + tyLy)Ā (51)

Z0H̄z = c
[

(tx∂|| + nxU)Ly − (ty∂|| + nyU)Lx

]

Ā (52)

Z0H̄t = β(~t × ~n)zU Φ̄ + ikc(txLy − tyLx)Ā + β(~t × ~n)z∂Φ
∞

(53)

Our algorithm assumes the boundary conditions form of a system of 2N linear equations

Ēz = R11H̄z + R12H̄t (54)

Ēt = R21H̄z + R22H̄t (55)

where the matrix R elements depend on the wall geometry and on the electromagnetic properties of the medium
outside the beam pipe. Often the boundary conditions can be determined as an independent problem. We present
an algorithm for determining the boundary conditions for a multilayer beam pipe with arbitrary cross section in
Appendix A.

As an example, assume that the wall surface impedances,

Rz =
Ēz

H̄t

(56)

Rt =
Ēt

H̄z

(57)

are known at every point on the surface. This would correspond to R11ij = δijRz , R12 = R21 = 0 and R22ij = δijRt.
These boundary conditions are specific to metallic beam pipes characterized by large conductivity. The equations for
(Φ̄, Ā) become

∂||Φ̄ +

[

iω(txLx + tyLy) +
Rt

Z0
c(tx∂|| + nxU)Ly − (ty∂|| + nyU)Lx

]

Ā = 0 (58)

(

i
k

γ2
−

Rz

Z0
β(~t × ~n)zU

)

Φ̄ − ikc
Rz

Z0
(txLy − tyLx)Ā =

Rz

Z0
β(~t × ~n)z∂Φ

∞
. (59)

The problem reduces to the linear equation

MP = S, (60)

where M is a complex 2N × 2N matrix and P = (Φ̄, Ā) and S ∝ ∂Φ
∞

∝ Φ̄0 are vectors of size 2N . For our choice of
the boundary conditions given by Eqs. 56 and 57, S = (0, Rz

Z0

βG−1Φ̄0).



For beam pipes with specific symmetries the number of independent variables can be reduced by a factor equal
to the number of symmetries. For example, for the calculation of the longitudinal impedance in a rectangular beam
pipe, the size of the problem can be reduced by a factor of four. For the calculation of the rectangular transverse
impedances, which require an off-centered source along one transverse direction, the size of the problem can be reduced
by a factor of two.

Many applications, such as numerical beam dynamics simulations, require knowledge of the contribution of the
wall finite conductivity to the impedance. For this it is necessary to subtract the contribution corresponding to the
perfectly conducting wall. For an ideal conductor

Φ∞(x, y) = Φ0(x, y) −
∑

j

G(x, y; rj)∂Φ
∞

j . (61)

The wall finite conductivity contribution to the potential is

Φσ(x, y) = Φ(x, y) − Φ∞(x, y) =
∑

j

(

D(x, y; rj)Φ̄j − G(x, y; rj)(∂Φj − ∂Φ
∞

j )
)

. (62)

We would like to highlight a subtlety in the calculation of the discrete Green function matrices G and D. These
matrices connect points along the wall surface and should be derived from Eq. 23 by taking proper limit when the
wall is approached from inside. Since G(R) is singular for R = 0, and at small R

G(R) ∝ −K0(krR) ≈ ln
krR

2
+ γe, (63)

where γe = 0.57721 is the Euler’s constant, we take

Gii = −
1

2π
2

∫

hi
2

0

dsK0(krs) =
hi

2π

(

ln
krhi

4
− 1 − γe

)

. (64)

A careful examination of

lim
ǫ→0

∫

D(~r − ~nǫ, ~r′)Φ(~r′)d~r′ =
1

2
Φ(~r) (65)

when ~r is on the integration contour shows that

Dii =
1

2
. (66)

B. Impedances

The forces acting on the witness particle are

Fz = qEz = qi
k

γ2
Φ (67)

Fx = q (Ex − βZ0Hy) = −
q

γ2
∂xΦ (68)

Fy = q (Ey + βZ0Hx) = −
q

γ2
∂yΦ. (69)

The impedances defined in Eqs. 13, 14, 15, 16 and 17 become

Z || = −iZ0
k

γ2β

ǫ0

ρ
Φ(x = y = x0 = y0 = 0) (70)

Zw
x = −Z0

i

γ2β

ǫ0

ρ

∂2Φ

∂x2 (x = y = x0 = y0 = 0) (71)

Zs
x = −Z0

i

γ2β

ǫ0

ρ

∂2Φ

∂x∂x0
(x = y = x0 = y0 = 0) (72)

Zsy
x = −Z0

i

γ2β

ǫ0

ρ

∂2Φ

∂x∂y0
(x = y = x0 = y0 = 0) (73)

Zwy
x = −Z0

i

γ2β

ǫ0

ρ

∂2Φ

∂x∂y
(x = y = x0 = y0 = 0) (74)



The calculation of Zw
x and Zwy

x require the derivatives of the potential at the witness particle position

∂2Φ

∂x2 =
∑

j

(

∂2D(x, y; rj)

∂x2 Φ̄j −
∂2G(x, y; rj)

∂x2 ∂Φj

)

(75)

and

∂2Φ

∂x∂y
=

∑

j

(

∂2D(x, y; rj)

∂x∂y
Φ̄j −

∂2G(x, y; rj)

∂x∂y
∂Φj

)

. (76)

Note that only the solution of Eq. 60 for a centered source is required, as is the case for the longitudinal impedance.
Thus the calculation of the transverse impedance due to the witness particle displacement requires very small extra
computational effort after the longitudinal impedance has been calculated and (Φ̄, ∂Φ) determined.

Calculation of Zs
x requires the derivation with respect to the source particle position

∂2Φ

∂x∂x0
=

∑

j

(

∂D(x, y; rj)

∂x

∂Φ̄j

∂x0
−

∂G(x, y; rj)

∂x

∂(∂Φj)

∂x0

)

(77)

Since the potentials on the contour are found by solving a linear equation, the derivative with respect to x0 can be
found by solving

M
∂P

∂x0
=

∂S

∂x0
. (78)

where ∂P
∂x0

=
(

∂Φ̄
∂x0

, ∂Ā
∂x0

)

. Similar equations can be written for ∂P
∂y0

which is required for calculating Zsy
x . The

calculation of the transverse impedances caused by the source particle displacement requires solving 2N linear complex
equations which are different from the one corresponding to the longitudinal impedance.

III. RECTANGULAR PIPE IMPEDANCE

A. Discussion

The metallic beam pipes are characterized by large conductivity and, implicitly, by small surface impedance

Rz =
1 + i

δσ
= (1 + i)

√

ωµ

2σ
, (79)

where δ is the penetration skin depth. Therefore the first order approximation in Rz works very well in the ultrarela-
tivistic limit in the frequency region relevant for most beam dynamics problems. In this approximation the impedance
is proportional to Rz. The approximation fails at small frequencies when

Rz

Z0kb
>
∼ 1 or k <

∼
µr

µ0cσb2
, (80)

and at large frequency when

Rz

Z0
kb >

∼ 1 or k >
∼

(

µ0cσ

b2µr

)
1

3

, (81)

as can be deduced from the analytical expression of the impedance for the circular and parallel-plane geometries [13,
16]. For typical metallic pipes the small frequency regime is relevant for distances larger than z >

∼ 106m−107m, while
the large frequency regime is relevant at short range, z <

∼ 10µm − 100µm. One might argue that these length scales
make only the perturbative region of interest for beam dynamics. However, note that the short (long) length scale is
proportionally increased (decreased) by the increase in the wall surface impedance, as can be inferred from Eqs. 80
and 81. The wall surface impedance can easily be increased by orders of magnitude by increasing the magnetic
permeability and/or by reducing the conductivity. More complicated structures, like laminated chambers, are also
characterized by orders of magnitude higher wall surface impedance [13, 16].



FIG. 1: Perturbative region defined outside the range of validity of Eqs. 80 and 81. Ultrarelativistic limit, γ = 1000. The

longitudinal impedance is proportional to ω
1

2 while the transverse impedances are proportional to ω−

1

2 . The proportionality
coefficients defined by Eqs. 82, 83, cl (cross), csx (plus), csy (star), cwx (diamond) and cwy (circle), are plotted on top
Yokoya’s [18] Figure 8. Note that the impedances for a

b
= 2 ( a−b

a+b
= 0.33) are very close to the parallel-plane limit ( a−b

a+b
= 1).

The small frequency regime is relevant for large distance effects such as coherent tune shift in chambers with low
symmetries [24]. The methods for impedance calculations for beam pipes with arbitrary cross section described in [17]
and in [18] do not address this region.

The large frequency regime is relevant for short bunches; it is called the short-range resistive wall regime in the
literature [23]. For circular chambers in the ultrarelativistic limit Bane [23] showed that the impedance in the large
frequency regime can be modeled by a low-Q resonator. The method described in [17] does not address this region.
Yokoya’s algorithm [18] addresses the large frequency regime but neglects the contribution of the tangential surface
impedance Rt. While the contribution of Rt to the coupling impedance is small in the ultrarelativistic limit, it
becomes important in the nonultrarelativistic regime at large frequencies. By inspecting the analytical results for
the parallel-planes (Eqs. B35 and B36) and circular (Eq. 20 in [10]) geometries, one can see that the first order Rt

correction is O(kRt

γ2 ), similar in magnitude to the Rz correction term (which is O(kRz)).

Our algorithm calculates the impedance at small and at large frequency and in the perturbative region, for both
nonultrarelativistic and ultrarelativistic regimes, as we show in the next section.

B. Results

We present results for a rectangular steel beam pipe with the conductivity σ = 0.23× 107 Ω−1m−1 and dimension
2a × 2b. The longitudinal surface impedance Rz is given by Eq. 79 and Rt = −Rz. Ultrarelativistic, γ = 1000,
and non-ultrarelativistic, γ = 1.42, cases are considered. The vertical dimension is kept constant b = 3 cm while the
horizontal one is varied such as the ratio a

b
increases from 1 to 3. For a = 2b we find that the impedance is already

close to the corresponding parallel-plane limit.
First we benchmarked our algorithm by comparing the simulations for a parallel-plane beam pipe with the analytical

results. The parallel-plane problem can be solved analytically as shown in Appendix B. We find that the algorithm
converges to the exact results for N of order of thousands.
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FIG. 2: Large frequency regime, γ = 1000. The perturbation approximation fails when f >≈ 60GHz. The real (imaginary)
part of the impedance is plotted with solid (dashed) line. At large frequencies the longitudinal impedance (a) decreases with
increasing a

b
, while the transverse impedances caused by the witness particle displacement (b) increase with increasing a

b
. The

transverse impedances caused by the source displacement (c) and (d) decrease with increasing a

b
.

In the ultrarelativistic regime and in the perturbative region defined outside the range of validity of Eqs. 80
and 81, the longitudinal impedance is proportional to ω

1

2 while the transverse impedances are proportional to ω− 1

2 .
The same behavior is known for circular and parallel-plane impedances. We define the proportionality coefficients
cl, cwy, cwx, csy, csx by

Z || = cl

Rz

2πb
(82)

(Zw
y , Zw

x , Zs
y , Zs

x) = (cwy, cwx, csy, csx)
Rz

πkb3
, (83)

as in Yokoya’s paper [18]. Our results agree with those presented by Yokoya [18], as can be seen in Fig. 1. Here we
plot the coefficients on top of Fig.8 from Ref [18]. Note that the longitudinal impedance for a square pipe, i.e., for
a = b, is equal to that corresponding to a parallel plane chamber, i.e., for a ≫ b. Starting from a square pipe and
increasing a

b
, the longitudinal impedance decreases slightly until a

b
≈ 1.35 (a−b

a+b
≈ 0.15) where cl = 0.94, and then

increases asymptotically back. The transverse impedance caused by the witness particle displacement increases form
zero to the value corresponding to the parallel-plane chamber when a

b
(a−b

a+b
) is varied from 1 to 2 (0 to 0.33). Due to

the Panofsky-Wenzel theorem, Zw
x = −Zw

y in the ultrarelativistic limit. The zero value of Zw
x and Zw

y for a square
pipe is a consequence of the large degree of symmetry [20]. The vertical transverse impedance caused by the source
particle’s displacement, Zs

y , has a small dependence on a
b

while Zs
x decreases to half of its initial value when a

b
(a−b

a+b
)

is varied from 1 to 2 (0 to 0.33).
The ultrarelativistic impedance in the high frequency regime is presented in Fig. 2. For our parameters the

perturbation theory fails when f >≈ 60GHz. At large frequencies the longitudinal impedance and the vertical
impedances caused by the source displacement decrease with increasing a

b
, while the transverse impedance caused by

the witness particle displacement increases with increasing a
b
.

Non-ultrarelativistic effects dramatically change the impedance at high frequency. In Fig. 3 we show the impedance
for γ = 1.42. The ω

1

2 behavior of the longitudinal impedance is valid up to only ≈ 0.4GHz. Above this frequency the
impedances corresponding to different values of a

b
are not proportional to each other. Above 1GHz the longitudinal

impedance decreases with increasing a
b
. The transverse impedances caused by the displacement of the witness particle

increase with increasing a
b
. Note that for the square beam pipe the transverse impedances Zw

x and Zw
y are nonzero,
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FIG. 3: Non-ultrarelativistic impedance, γ = 1.42. The real and the imaginary part of the impedance fall on top of each
other. Finite γ effects shows for f >≈ 0.4GHz. The impedances corresponding to different value of a

b
are not proportional

to each other. a) Longitudinal impedance. At large frequencies (above 1GHz) the longitudinal impedance decreases with
increasing a

b
. b) The transverse impedances caused by the witness particle displacement, −Zw

x (dashed-dotted line) and Zw
y

(solid line), increase with increasing a

b
. The plots for a

b
= 2 (blue) and a

b
= 3 (orange) are on top of each other. Note that

−Zw
x 6= Zw

y , unlike the ultrarelativistic case. c) The horizontal transverse impedance Zs
x decreases with increasing a

b
. d) The

vertical transverse impedance Zs
y show negligible dependence on a

b
.

unlike in the ultrarelativistic case. Unlike the ultrarelativistic case, Zw
x 6= −Zw

y as can be seen in Fig. 3 -b. The
horizontal transverse impedance caused by the source displacement, Zs

x, Fig. 3 -c, decreases with increasing a
b

while
Zs

y , Fig. 3 -d, show negligible dependence of a
b
.

The small-frequency nonperturbative regime for γ = 1.42 is shown in Fig. 4. At small frequencies the non-
ultrarelativistic corrections are negligible aside a multiplicative factor of β for the transverse impedance [14]. For
our beam pipe parameters, this regime is effective for f <≈ 100KHz. An increase in the value of the wall surface
impedance will, however, increase the characteristic frequency of this regime by a similar order of magnitude. The
longitudinal impedance has a similar behavior to the one characteristic of the perturbative regime, i.e., a small decrease
followed by an asymptotic increase when going from the square beam pipe to the parallel-planes limit. However, the
longitudinal impedance has no perfect ω

1

2 behavior and the difference between the real and the imaginary part is
noticeable. The transverse impedances caused by the witness particle displacement, −Zw

x = Zw
y , increase from zero

to the value corresponding to the parallel-planes limit. The horizontal impedances caused by the source displacement
Zs

x decreases to half when going from the square beam pipe to parallel-plane limit. The vertical impedance Zs
y shows

a small decrease with increasing a
b
. Note that our algorithm captures well the low frequency features of the transverse

impedance, namely that the real part goes to zero and the imaginary part goes to a finite value when the frequency
approaches zero [13].

IV. CONCLUSIONS

We present an algorithm for calculating the impedance in beam pipes with arbitrary cross section. The method
is nonperturbative, works at small and large frequencies, and does not assume the ultrarelativistic approximation.
The equations for the electromagnetic potentials are discretized and the solution is obtained after solving a system of
linear algebraic equations.

The impedance algorithm assumes that the electromagnetic field boundary conditions at the beam pipe wall are
known and are provided as linear relations between the field transverse components. We describe an algorithm to



0 0.01 0.02
f(MHz)

0

10
-6

20
-6

30
-6

Z
|| /(

Z
0L

)(
m

-1
)

a/b=1
a/b=1.05
a/b=1.33
a/b=2
a/b=3

0 0.003 0.006
f(MHz)

0

10

20

-Z
w

x, Z
w

y/(
Z

0L
)(

m
-2

)

0 0.003 0.006
f(MHz)

0

20

40

60
Z

s x/(
Z

0L
)(

m
-2

)

0 0.003 0.006
f(GHz)

0

20

40

60

Z
s y/(

Z
0L

)(
m

-2
)

a)

c) d)

b)

FIG. 4: Small frequency nonperturbative region, f <≈ 100KHz. γ = 1.42. The real part (solid line) and the imaginary part
(dashed line) of impedances do not coincide. a) Longitudinal impedance. b) The transverse impedance caused by the witness
particle displacement increases with increasing a

b
. c) The horizontal impedance Zs

x decreases with increasing a

b
. The parallel-

planes Zs
x is about half of the square beam pipe Zs

x. d) The vertical impedance Zs
y shows a slight decrease with increasing

a

b
.

calculate the boundary conditions for the general case of the multilayer beam pipe of arbitrary cross section.
Our simulations are checked against the analytical results for the parallel-plane beam pipe. We present an analytical

derivation of the non-ultrarelativistic parallel-plane impedance as function of wall surface impedance.
We show results for a rectangular metallic beam pipe, for both ultrarelativistic and finite-γ cases. The ultrarela-

tivistic perturbative regime is in perfect agreement with the work of Yokoya [18]. The rectangular longitudinal beam

pipe impedance is proportional to ω
1

2 while the rectangular transverse impedances behave as ω− 1

2 . This behavior
is similar to the one characteristic of the circular and the parallel-plane beam pipes, the influence of the beam pipe
geometry being captured by a renormalization factor. We find that this simple renormalization is not valid when the
nonultrarelativistic effects are important or in the ultrarelativistic approximation at small and at large frequencies.
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Appendix A: Algorithm for the wall boundary conditions of multilayer structures with arbitrary cross section

Our algorithm for the impedance calculation assumes knowledge of the wall boundary conditions in a form given by
Eqs. 54 and 55. For an infinitely thick metallic beam pipe, the large wall conductivity limit makes it possible to use
the boundary conditions in Eqs. 56 and 57. Nevertheless, in general one needs to calculate the boundary conditions
by solving the electromagnetic problem outside the vacuum beam pipe. Here we present a numerical algorithm for
calculating the wall boundary conditions for multilayer beam pipes with arbitrary cross section.



Let us assume that the medium outside the beam pipe is characterized by Ohm’s law,

~j = σ ~E. (A1)

By choosing the gauge

∇ ~A +
ǫrµr

c2

∂Φ

∂t
+ µσΦ = 0, (A2)

the equations for the potentials can be written as

∂2Φ

∂x2
+

∂2Φ

∂y2
− λ2Φ = 0 (A3)

and

∂2 ~A

∂x2
+

∂2 ~A

∂y2
− λ2 ~A = 0, (A4)

where

λ2 = k2
(

1 − ǫrµrβ
2
)

+ iωµσ . (A5)

The solution for the potentials can be expressed as before

Φ(x, y) =

∮

Dλ(x, y; rl)Φ(rl)dl −

∮

Gλ(x, y; rl)∂nΦ(rl)dl (A6)

and analogously for ~A. Fixing the gauge such that

Az = ǫrµr

β

c

(

1 − i
µσc2

ǫrµr

)

Φ, (A7)

the same constraint as in the vacuum is implied for Ax and Ay,

∂xAx + ∂yAy = 0. (A8)

Following similar reasoning to that described in Section IIA, one can consider two sets of independent variables
(Φ̄, Ā) to completely determine the solutions:

Āz = gΦ̄ (A9)

∂Φ = U Φ̄ (A10)

∂Ax,y = UĀx,y (A11)

Āx,y = Lx,yĀ, (A12)

where

g = ǫrµr

β

c

(

1 − i
µσc2

ǫrµr

)

. (A13)

The matrices U and Lx,y are determined by the medium’s properties and surface geometry.
Let us assume that the medium outside the beam pipe extends to infinity, i.e., that we have a one-layer problem.

Only the surface potentials at the beam pipe wall are present in the field equations. Note that these surface potentials
are different from the ones inside the beam pipe with only the tangential electromagnetic fields being continuous
across the surface. The tangential fields at the surface read

Ēz = ik(1 − βcg)Φ̄ (A14)

Ēt = −∂||Φ̄ − iω(txLx + tyLy)Ā (A15)

µrZ0H̄z = c
[

(tx∂|| + nxU)Ly − (ty∂|| + nyU)Lx

]

Ā (A16)

µrZ0H̄t = β(~t × ~n)zU Φ̄ + ikc(txLy − tyLx)Ā. (A17)



By inverting the set of equations given by Eqs. A16 and A17, one can write

(

Φ̄
Ā

)

= H

(

H̄z

H̄t

)

, (A18)

where H is a 2N × 2N complex matrix. Using Eq. A18, Eqs. A14 and A15 can be written as

(

Ēz

Ēt

)

= R

(

H̄z

H̄t

)

(A19)

Since the tangential fields are continuous across the surface, this equation represents the boundary condition used in
Eq. 54-Eq. 55. Note that finding the boundary conditions for one-layer problem implies calculating the inverse of a
2N × 2N complex matrix.

Next we consider a two layer problem, where medium 1 outside the vacuum beam pipe has as its inner surface the
vacuum beam pipe and as its outer surface medium 2. We assume that medium 2 extends to infinity. We denote the
fields and potentials inside medium 1 at the outer surface Ēz1, Ēt1, H̄z1, H̄t1, Φ̄1, and Ā1, and at the inner surface
ēz1, ēt1, h̄z1, h̄t1, φ̄1, and ā1. Eqs A10 and A11 can be rewritten for the potentials at the outer surface as

∂Φ1 = U1Φ̄1 + u1φ̄1 (A20)

∂Ax,y1 = U1Āx,y1 + u1āx,y1, (A21)

where U1 is a N2 × N2 matrix and u1 is a N2 × N1 matrix. N2 is the number of points at the outer surface while N1

is the number of points at the inner surface.
The boundary condition at surface 2 (the outer surface of medium 1), is given by the equation

(

Ēz1

Ēt1

)

= R2

(

H̄z1

H̄t1

)

, (A22)

where R2 can be calculated for medium 2 in the same way as R in Eq. A19 was calculated in the previous one-layer
example. The system of equations given by Eqs. A20, A21, and A22 and the fixed gauge condition Eq. A8 is similar
to that given by Eqs. 36, 37, 38 and 22. One can regard the inner surface potentials p1 = (φ̄1, ā1) as the source for the
electromagnetic field inside medium 1. Therefore, for the outer surface potentials P1 = (Φ̄1, Ā1) one gets an equation
similar to Eq. 60

M1P1 = S1 , (A23)

where M1 is a complex 2N2 × 2N2 matrix containing information about the electromagnetic properties of medium 2.
S1 elements are proportional to p1 just as S is proportional to the source potential Φ̄0 in Eq. 60.

By inverting M1, one can write the solution as

P1 = Bp1, (A24)

where B is a 2N2 × 2N1 matrix. Using Eq. A24 and the equation for the derivative of the potentials on the inner
surface deduced from Eqs A10 and A11,

∂φ1 = V1Φ̄1 + v1φ̄1 (A25)

∂a1 = V1Ā1 + v1ā1 , (A26)

one can write

∂p1 = u2p1 . (A27)

Since the outer potentials (Φ̄1, Ā1) have been eliminated, Eq. A27 corresponds to Eqs. A10-A11 for the one-layer
problem. From this point one can proceed as in the one-layer problem.

Calculating the boundary conditions for a two-layer beam pipe requires inverting two 2N2×2N2 and one 2N1×2N1

complex matrices. In general any extra layer will add a new surface and will require inverting two extra 2M × 2M
complex matrices, where M is the number of points necessary to describe the fields at the new surface.



Appendix B: Analytical solution for non-ultrarelativistic parallel-plane beam pipe impedance

For a beam pipe with parallel-plane geometry, due to the translational symmetry along the horizontal direction,
the different horizontal modes are decoupled and the problem can be solved analytically.

Consider a beam with a vertical offset y = y0 moving along the z-direction between two parallel plates along the
x-direction. The distance between the parallel plates is 2b.
The spectral decomposition along the horizontal direction can be written as

(Φ(x, y), Ay(x, y), Az(x, y)) =

∫ ∞

−∞

(Φ(η, y), Ay(η, y), Az(η, y)) cos(ηx)dη (B1)

Ax(x, y) =

∫ ∞

−∞

Ax(η, y) sin(ηx)dη

(Hx(x, y), Ey(x, y), Ez(x, y)) =

∫ ∞

−∞

(Hx(η, y), Ey(η, y), Ez(η, y)) cos(ηx)dη (B2)

(Ex(x, y), Hy(x, y), Hz(x, y)) =

∫ ∞

−∞

(Ex(η, y), Hy(η, y), Hz(η, y)) sin(ηx)dη .

In Fourier space, (η, y, k, ω), Eqs. 3 and 4 read

∂2Φ

∂y2
− m2Φ = −

ρ

ǫ0
δ(y − y0) (B3)

∂2 ~A

∂y2
− m2 ~A = −µ0βcρδ(y − y0)ẑ , (B4)

where

m2 = η2 + k2 −
ω2

c2
= η2 +

k2

γ2
. (B5)

The solution for the equation

(
∂2

∂y2
− m2)G(y) = δ(y − y0) (B6)

is

G(y) = −
1

2|m|
e−|m(y−y0)| . (B7)

The potential equations are

Φ =
ρ

2ǫ0

e−m|(y−y0)|

m
+ am coshmy + ām sinhmy (B8)

Ax = mbm coshmy + mb̄m sinhmy (B9)

Ay = −ηb̄m coshmy − ηbm sinhmy (B10)

Az =
β

c
Φ, (B11)

where we have imposed the gauge condition Eq. 22.
The electromagnetic field components are

Ez = i
k

γ2

(

ρ

2ǫ0

e−m|(y−y0)|

m
+ am coshmy + ām sinhmy

)

(B12)

Ex =
η

m

ρ

2ǫ0
e−m|(y−y0)| + (ηam − ikβcmbm) coshmy +

(

ηām − ikβcmb̄m

)

sinhmy (B13)



Ey = sgn(y − y0)
ρ

2ǫ0
e−m|(y−y0)| −

(

mām − ikβcηb̄m

)

coshmy − (mam − ikβcηbm) sinhmy (B14)

Z0Hx = −sgn(y − y0)β
ρ

2ǫ0
e−m|(y−y0)| +

(

mβām − ikcηb̄m

)

coshmy + (mβam − ikcηbm) sinhmy (B15)

Z0Hy =
ηβ

m

ρ

2ǫ0
e−m|(y−y0)| + (ηβam − ikcmbm) coshmy +

(

ηβām − ikcmb̄m

)

sinhmy (B16)

Z0Hz = −c
k2

γ2

(

b̄m coshmy + bm sinhmy
)

. (B17)

The coefficients am, ām, bm and b̄m are to be determined from the boundary conditions at the chamber walls. The
boundary conditions are given by the surface wall impedance

Rz(η) = ±
Ez(η)

Hx(η)

∣

∣

∣

∣

y=±b

(B18)

Rx(η) = ∓
Ex(η)

Hz(η)

∣

∣

∣

∣

y=±b

, (B19)

which imply

Ez(b) + Ez(−b) = Rz(Hx(b) − Hx(−b)) (B20)

Ez(b) − Ez(−b) = Rz(Hx(b) + Hx(−b)) (B21)

Ex(b) + Ex(−b) = −Rx(Hz(b) − Hz(−b)) (B22)

Ex(b) − Ex(−b) = −Rx(Hz(b) + Hz(−b)) . (B23)

These equations yield two systems of two independent linear equations. From Eqs. B20 and B22 one has

am

(

−i
k

γ2
coshmb +

Rz

Z0
βm sinhmb

)

− bmikcη
Rz

Z0
sinhmb =

ρ coshmy0

2ǫ0
e−mb

(

i
k

mγ2
+ β

Rz

Z0

)

(B24)

amη coshmb − bm

(

ikβcm coshmb +
Rx

Z0
c
k2

γ2
sinhmb

)

= −
ρ coshmy0

2ǫ0
e−mb η

m
, (B25)

with solution

ξη = i k
γ2 am = − ρ cosh my0

2ǫ0
× (B26)

η2

m2

Rz
βZ0

sech2 mb+

{

1

γ2

[

i k
m

+
(

k2

m2
−1

)

Rz
βZ0

−i k
m

RzRx

Z2

0

tanhmb

]

+ 1

γ4

k2

m2

Rx
βZ0

tanh mb

}

e−mb sech mb

1+i
Rz
βZ0

( k
m

−m
k

) tanh mb+RzRx

Z2

0

tanh2 mb− i

γ2

Rx
βZ0

k
m

tanh mb
.

Eqs. B21 and B23 yield

ām

(

−i
k

γ2
sinhmb +

Rz

Z0
βm coshmb

)

− b̄mikcη
Rz

Z0
coshmb =

ρ sinhmy0

2ǫ0
e−mb

(

i
k

mγ2
+ β

Rz

Z0

)

(B27)

āmη sinhmb − bm

(

ikβcm sinhmb +
Rx

Z0
c
k2

γ2
coshmb

)

= −
ρ sinhmy0

2ǫ0
e−mb η

m
, (B28)

with solution

ξ̄η = i k
γ2 ām = − ρ sinh my0

2ǫ0
× (B29)

η2

m2

Rz
βZ0

csch2 mb+

{

1

γ2

[

i k
m

+
(

k2

m2
−1

)

Rz
βZ0

−i k
m

RzRx

Z2

0

cothmb

]

+ 1

γ4

k2

m2

Rx
βZ0

cothmb

}

e−mb csch mb

1+i
Rz
βZ0

( k
m

−m
k

) coth mb+RzRx

Z2

0

coth2 mb− i

γ2

Rx
βZ0

k
m

coth mb
.

Note that the longitudinal component of the electric field is

Ez = ξη coshmy + ξ̄η sinhmy +
i

γ2

ρ

2ǫ0
e−|m(y−y0)|

k

|m|
. (B30)



For an ideal conducting beam pipe (Rz = Rx = 0), the electric field is

E∞
z = ξ∞η cosh my + ξ̄∞η sinhmy +

i

γ2

ρ

2ǫ0
e−|m(y−y0)|

k

|m|
, (B31)

where

ξ∞η = −i
k

γ2m

ρ coshmy0

2ǫ0
e−mb sech mb (B32)

ξ̄∞η = −i
k

γ2m

ρ sinhmy0

2ǫ0
e−mb cschmb . (B33)

The finite-conductivity contribution to the electric field is

Eσ
z = Ez − E∞

z = ξσ
η coshmy + ξ̄σ

η sinhmy (B34)

where

ξσ
η = ξη − ξ∞η = − ρ cosh my0

2ǫ0
sech2 mb × (B35)

Rz
βZ0

η2

m2
+ 1

γ2

[

Rz
βZ0

(

k2

m2
−1

)

−i
RzRx

Z2

0

k
m

tanh mb

]

1+i
Rz
βZ0

( k
m

−m
k

) tanhmb+ RzRx

Z2

0

tanh2 mb− i

γ2

Rx
βZ0

k
m

tanh mb

and

ξ̄σ
η = ξ̄η − ξ̄∞η = − ρ sinhmy0

2ǫ0
csch2 mb × (B36)

Rz
βZ0

η2

m2
+ 1

γ2

[

Rz
βZ0

(

k2

m2
−1

)

−i
RzRx

Z2

0

k
m

coth mb

]

1+i
Rz
βZ0

( k
m

−m
k

) coth mb+RzRx

Z2

0

coth2 mb− i

γ2

Rx
βZ0

k
m

coth mb
.

1. Longitudinal impedance

The resistive wall longitudinal impedance is

Z ||(ω) = −
Eσ

z (x=y=y0=0)
ρβc

= − 1
πρβc

∫ ∞

0 dηξσ
η . (B37)

2. Horizontal transverse impedance

The derivative of the horizontal Lorentz force, Fx, with respect to the witness particle’s displacement is

1

q

∂Fx

∂x
= −

1

γ2
∂2

xΦ = i
η2

k
Ez. (B38)

The horizontal impedance is

Zs
x = −Zw

x =
1

iqρβc

∂Fx

∂x
(x = y = y0 = 0) = −

1

πρβck

∫ ∞

0

dηη2ξη. (B39)

Finally, the ideal conducting beam pipe impedance is

Zs∞
x = −

1

πρβck

∫ ∞

0

dηη2ξ∞η =
j

γ2

Z0

2πβ

∫ ∞

0

dη
η2

m
e−mb sechmb. (B40)

Note that for large γ, when m ≈ η,

Zs∞
x = −Zw∞

x =
i

γ2

Z0

2πβ

∫ ∞

0

dηηe−ηb sech ηb =
i

γ2

Z0

2πβb2

π2

24
, (B41)

in agreement with Laslett’s calculations [22], while the resistive wall horizontal impedance is

Zsσ
x = −Zwσ

x = −
1

πρβck

∫ ∞

0

dηη2ξσ
η . (B42)



3. Vertical impedance

The vertical Lorentz force is

Fy

q
= −

1

γ2
∂yΦ =

i

k
∂yEz =

im

k

(

ξη sinhmy + ξ̄η coshmy
)

+ sgn(y − y0)
1

γ2

ρ

2ǫ0
e−|m(y−y0)|. (B43)

The source transverse impedance is

Zs
y = −

1

iqρβc

∂Fy

∂y0
(x = y = 0 = y0 = 0) = −

1

πρβck

∫ ∞

0

dηm
∂ξ̄

∂y0
(y0 = 0). (B44)

Finally, the ideally conducting beam pipe impedance is

Zs∞
y = −

1

πρβck

∫ ∞

0

dηm
∂ξ̄∞

∂y0
(y0 = 0) =

i

γ2

Z0

2πβ

∫ ∞

0

dηme−mb cschmb =
i

γ2

Z0

2πβb2

π2

12
, (B45)

again in agreement with Laslett’s calculations [22].
The witness transverse impedance is

Zw
y = −

1

iqρβc

∂Fy

∂y
(x = y = 0 = y0 = 0) = −

1

πρβck

∫ ∞

0

dηm2ξη . (B46)

Note that in the ultrarelativistic limit, i.e., when m = η, Zw
y = −Zw

x , in agreement with the Panofsky-Wenzel theorem.

Appendix C: 6N independent variables algorithm

Although it is not necessarily the most efficient way to calculate the potentials, we present here a straightforward
approach which considers all 6N variables, Φ̄i, Āxi, Āyi

, ∂Φi, ∂Axi, ∂Ayi
, i = 1, N , to be independent. This

approach offers a broader view of the equations’ structure and might turn to be useful for numerical optimization and
parallelization for problems where large N is required for convergence.

The fixed gauge condition Eq. 22 on the surface reads

tx∂||Āx + nx∂Ax + ty∂||Āy + ny∂Ay = 0. (C1)

The electromagnetic fields at the wall reads

Ēz = i
k

γ2
Φ̄ (C2)

Ēx = −tx∂||Φ̄ − nx∂Φ − iωĀx (C3)

Ēy = −ty∂||Φ̄ − ny∂Φ − iωĀy (C4)

Z0H̄x = βty∂||Φ̄ + βny∂Φ − ickĀy (C5)

Z0H̄y = −βtx∂||Φ̄ − βnx∂Φ + ickĀx (C6)

Z0H̄z = c(tx∂||Āy + nx∂Ay − ty∂||Āx − ny∂Ax) . (C7)

The boundary conditions Eqs. 56 and. 57 imply

i
k

γ2
Φ̄ −

Rz

Z0
β(txny − tynx)∂Φ − ikc

Rz

Z0
(txĀy − tyĀx) = 0 (C8)

−∂||Φ̄ − (jωtx −
Rt

Z0
cty∂||)Āx − (jωty +

Rt

Z0
ctx∂||)Āy +

Rt

Z0
c(ny∂Ax − nx∂Ay) = 0. (C9)

The equations C1, C8, and C8, together with Eqs. 30, 31 and 32 yield

MP = S (C10)

with

















M00 M01 0 0 0 0
0 0 M12 M13 0 0
0 0 0 0 M24 M25

0 0 M32 M33 M34 M35

M40 0 M42 M43 M44 M45

M50 M51 M52 0 M54 0































Φ̄
∂Φ
Āx

∂Ax

Āy

∂Ay

















=















−Φ̄0

0
0
0
0
0















, (C11)

where P = (Φ̄, ∂Φ, Āx, ∂Ax, Āy, ∂Ay) and S = (−Φ̄0, 0, 0, 0, 0) are vectors of length 6N . Mmn represents a N × N
block matrix, with the specific values

M00 = M12 = M34 = D − I (C12)

M01 = M13 = M35 = −G (C13)

M32ij = txi∂||(i, j) (C14)

M33ij = nxiδ(i, j) (C15)

M34ij = tyi
∂||(i, j) (C16)

M35ij = nyi
δ(i, j) (C17)

M40ij = −∂||(i, j) (C18)

M42ij = −jωtxiδ(i, j) +
Rti

Z0
ctyi

∂||(i, j) (C19)

M43ij =
Rti

Z0
cnyi

δ(i, j) (C20)

M44ij = −jωtyi
δ(i, j) −

Rti

Z0
ctxi∂||(i, j) (C21)

M45ij = −
Rti

Z0
cnxiδ(i, j) (C22)

M50ij = i
k

γ2
δ(i, j) (C23)

M51ij = −
Rzi

Z0
β(txinyi

− tyi
nxi)δ(i, j) (C24)

M52ij = ikc
Rzi

Z0
tyi

δ(i, j) (C25)

M54ij = −ikc
Rzi

Z0
txiδ(i, j). (C26)
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