
FERMILAB-PUB-13-326-APC

Evolution of beam distribution in crossing a Walkinshaw resonance
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Abstract
The third-integer coupling resonance atνx −2νz = ℓ, known as the Walkin-
shaw resonance, is important in high-power accelerators. We find that when
the betatron tunes ramp through a Walkinshaw resonance, the fractional
emittance growth (FEG) is a universal function of the effective resonance
strength:G1,−2,ℓ

√
ǫxi |∆(νx−2νz)/∆n|−1/2, whereG1,−2,ℓ is the resonance

strength,ǫxi and ǫzi are the initial horizontal and vertical emittances, re-
spectively, and|∆(νx − 2νz)/∆n| is the resonance crossing rate per revolu-
tion. At large effective resonance strengths, the FEG reaches an asymptotic
maximum value(FEG)

max
∼ 2ǫxi/ǫzi for ǫxi ≫ 1

2
ǫzi, or ǫzi/(2ǫxi) for

ǫxi ≪ 1

2
ǫzi. There is little emittance exchange atǫxi = 1

2
ǫzi, which can be

used to minimize emittance growth in crossing a Walkinshaw resonance.
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The third-integer coupling resonance at νx − 2νz = ℓ, known as the Walkinshaw resonance,
is important in high-power accelerators. We find that when the betatron tunes ramp through a
Walkinshaw resonance, the fractional emittance growth (FEG) is a universal function of the effective

resonance strength: G1,−2,ℓ
√

ǫxi |∆(νx − 2νz)/∆n|−1/2, where G1,−2,ℓ is the resonance strength, ǫxi

and ǫzi are the initial horizontal and vertical emittances, respectively, and |∆(νx − 2νz)/∆n| is the
resonance crossing rate per revolution. At large effective resonance strengths, the FEG reaches
an asymptotic maximum value (FEG)

max
∼ 2ǫxi/ǫzi for ǫxi ≫ 1

2
ǫzi, or ǫzi/(2ǫxi) for ǫxi ≪ 1

2
ǫzi.

There is little emittance exchange at ǫxi = 1

2
ǫzi, which can be used to minimize emittance growth

in crossing a Walkinshaw resonance.

PACS numbers: 29.20.-c, 29.20.Dh, 41.60.Ap, 41.85.-p

Low-order coupling resonances are of concern to the
design and operation of circular accelerators. The third-
integer difference resonance νx − 2νz = ℓ, known as
the Walkinshaw resonance, is sometimes unavoidable in
many high-power accelerators, such as isochronous cy-
clotrons, nonscaling FFAGs, and other low-energy ac-
celerators. This resonance becomes a focus of design
and operation of all cyclotrons [1]. It has been termed
“formidable barrier” and “impassable” [2], and may
cause emittance growths and beam loss. Although all
the adverse effects of the resonance have long been ex-
perienced, however, the dynamic of emittance growths
has not been fully analyzed and understood. So far the
only means of reducing emittance growths have been fast
passage and the reduction of the resonance strength.

There had been theoretical analysis on the νx − 2νz

resonance [2, 3], and subsequent experimental measure-
ments in storage rings [4, 5]. These papers, however,
deal essentially with single-particle motion near the reso-
nance at fixed betatron tunes. This paper investigates
instead the beam dynamics while the betatron tunes
ramp through the third-integer coupling resonance. We
study emittance growths and scaling laws. Methods are
given to alleviate the emittance growth. Hopefully, beam
power improvement could become possible.

In term of the horizontal and vertical action-angle co-
ordinates (Jx, φx) and (Jz, φz), the Hamiltonian near the
νx − 2νz = ℓ resonance can be approximated as [5, 6]

H = νxJx + νzJz +
1

2
αxxJ2

x + αxzJxJz +
1

2
αzzJ

2
z

+G1,−2,ℓJ
1/2
x Jz cos(φx − 2φz − ℓθ + ξ1,−2,ℓ) + · · · .

Here, the orbiting angle θ = s/R serves as the “time
coordinate,” R is the the mean radius, νx and νz are
respectively the horizontal and vertical betatron tunes, ℓ
is an integer, and the nonlinear detuning parameters are

αxx,zz = −
∮

β2
x,zB

′′′

z (s)

16πBρ
ds, αxz =

∮

βxβzB
′′′

z (s)

8πBρ
ds.

The resonance strength G1,−2,ℓ ≥ 0 and its phase ξ1,−2,ℓ

are represented by

G1,−2,ℓ ejξ1,−2,ℓ =

√
2

8π

∮

β1/2
x βz

B′′

z (s)

Bρ
×

× ej[χx(s)−2χz(s)−(νx−2νz−ℓ)θ]ds,

where βx,y and χx,y(s) =
∫ s

0
ds′/βx,y(s

′) are the hori-
zontal/vertical betatron functions and betatron phases.

In above, B′′

z and B
′′′

z are, respectively, the sextupole
and octupole magnetic field components around the ring,
with Bρ representing the rigidity of the beam.

The Hamiltonian is canonically transformed to the ro-
tating frame using the generating function:

F2(φx, φz , J1, J2) = (φx − 2φz − ℓθ + ξ1,−2,ℓ)J1 + φzJ2.

The coordinate transformation is

φ1 = φx − 2φz − ℓθ + ξ1,−2,ℓ, Jx = J1,

φ2 = φz, Jz = −2J1 + J2,

and the new Hamiltonian becomes H̃ = H1(J1, φ1, J2) +
H2(J2), where H2(J2) = νzJ2 + 1

2α22J
2
2 and

H1(J1, φ1, J2) = δJ1 +
1

2
α11J

2
1 + α12J1J2

+ G1,−2,ℓJ
1/2
1 (J2 − 2J1) cos(φ1). (1)

Here δ = νx − 2νz − ℓ is the resonance proximity param-
eter and the transformed detuning parameters are α11 =
αxx − 4αxz + 4αzz, α12 = αxz − 2αzz, and α22 = 4αzz.

Hamilton’s equations of motion are dJ2

dθ = − ∂H̃
∂φ2

= 0,
dφ2

dθ = ∂H̃
∂J2

, and

dJ1

dθ
= − ∂H̃

∂φ1
= G1,−2,ℓJ

1/2
1 (J2 − 2J1) sin(φ1), (2)

dφ1

dθ
=

∂H̃

∂J1
= δ + α12J2 + α11J1

+ G1,−2,ℓ
J2 − 6J1

2J
1/2
1

cos(φ1). (3)
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Particle dynamics obey Eqs. (2) and (3) at constant J2

and H1, which are invariants if the betatron tunes are
not changed. However, we study the dynamics of particle
motion during the passage of a resonance. The rate of
resonance crossing is normally small, and thus H1 are
still quasi-constant of motion for each particle.

The fixed points of the Hamiltonian H1 are obtained
by equating both Eqs. (2) and (3) to zero. Two unsta-
ble fixed points (UFP) are located at the intersection
between the Courant-Snyder (CS) circle (2J1 = J2) and
the coupling arc. Separatrices at other various condi-
tions have been shown in Ref. [3]. Figure 2 in Ref. [5]
shows also experimental data of one of the separatrix
for this resonance, where the CS and coupling circles
are expressed in phase space coordinates: (X, P ) =
(
√

2βxJ1 cosφ1,−
√

2βxJ1 sinφ1) with βx being the hor-
izontal betatron-function at the observation point. The
separatrix is the Hamiltonian torus that passes through
the UFP; i.e.,

1

2

(

J2 − 2J1

)

{

− δ − 1

2
α11

(

J1 +
J2

2

)

− α12J2

+ 2G1,−2,ℓJ
1/2
1 cos(φ1)

}

= 0,

which is composed of a CS circle 2J1 = J2, and a coupling
arc α11(2J1) − 4

√
2G1,−2,ℓ

√
2J1 cosφ1 + 4δ + 4α12J2 +

α11J2 = 0. For particles with 2J1 < J2, their flows
revolve around the stable fixed points at φ = 0 or π, and

2α11J
3/2
1 ∓ 6G1,−2,ℓJ1 + 2(δ + α12J2)J

1/2
1 ± G1,−2,ℓJ2 =

0. Experimental data depicting the Hamiltonian flow of
these particles have been shown in Fig. 7 of Ref. [5].

Now, we study the effects of the Walkinshaw resonance
on a beam of particles. When the betatron tunes ramp
through a Walkinshaw resonance, all fixed points move
across the beam, and the beam distribution will evolve
as well. Consider a beam with bi-Gaussian distribution

ρ2(Jx, Jz) =
1

ǫxǫz
exp

{

−Jx

ǫx
− Jz

ǫz

}

, (4)

where ǫx and ǫz are, respectively, the horizontal and ver-
tical rms emittances of the beam [6]. Now Jx and Jz

are transformed to J1 and J2. The invariant distribution
function in J2 can be obtained by integrating over J1:

ρ1(J2) =
1

2ǫx − ǫz

[

exp

(

− J2

2ǫx

)

− exp

(

−J2

ǫz

)]

. (5)

As the betatron tunes ramp through the νx − 2νz = ℓ
resonance, the action J2 is invariant, and the distribution
function ρ1(J2) is invariant. The first moment 〈J2〉 =
2ǫx + ǫz is also invariant, and thus ∆ǫz = −2∆ǫx. For
the above bi-Gaussian distribution, the maximum of the
invariant distribution function occurs at

J2,max =
2ǫxǫz

2ǫx − ǫz
ln

2ǫx

ǫz
.

Since J2 varies from particle to particle, it is advan-
tageous to study the beam distribution in the variable

u = J1/J2. The transformed beam distribution is

ρ2a(u, J2) =
J2

ǫxǫz
exp

{

−
(

u

ǫx
+

1 − 2u

ǫz

)

J2

}

, (6)

where the variables u ∈ [0, 1
2 ] and J2 ∈ [0,∞]. In this

representation, all particles in the beam have the same
CS circle at u = J1/J2 = 1/2. We also note that when
ǫx = 1

2 ǫz, ρ2a(u, J2) is independent of u for all J2. Inte-
grating over J2, we find the 1D distribution as

ρ1a(u) =
ǫx/ǫz

[ǫx/ǫz + (1 − 2ǫx/ǫz)u]2
, u ∈

[

0,
1

2

]

. (7)

which is ploted in Fig. 1. When ǫxi > 1
2ǫzi, there are more

particle at higher J1 actions, and we expect that the hor-
izontal emittance will decrease in crossing a Walkinshaw
resonance. Conversely, when ǫxi < 1

2ǫzi, the horizontal
emittance will increase in crossing the Walkinshaw reso-
nance. At the condition ǫxi = 1

2ǫzi, the distribution func-
tion is uniform, and we expect no emittance exchange
during the crossing of a Walkinshaw resonance.

FIG. 1: The distribution of a bi-Gaussian beam in the u =
J1/J2 action coordinate, for various horizontal and vertical
emittance ratios, ǫxi/ǫzi = 0.1, 0.2, · · · , 2.0. If ǫxi > 1

2
ǫzi,

there are more particles with higher J1 = Jx actions, and
vice versa. The distribution is uniform when ǫxi = 1

2
ǫzi.

When the betatron tunes ramp through a νx −2νz = ℓ
resonance with ǫxi > 1

2ǫzi, there are more particles with
higher horizontal actions. They are drawn along the cou-
pling arc towards the center of the CS circle with their ac-
tions reduced, thus decreasing the horizontal beam emit-
tance. Since J2 = 2Jx + Jz is an invariant, their ver-
tical actions will increase and so will the vertical emit-
tance of the beam. This process is nearly independent of
the detuning parameters of the accelerator. Noting that
2∆ǫx + ∆ǫz, we define the fractional emittance growth

(FEG) of a difference resonance as

FEG ≡
∣

∣

∣

∣

∆ǫx

ǫxi

∣

∣

∣

∣

+

∣

∣

∣

∣

∆ǫz

ǫzi

∣

∣

∣

∣

=

∣

∣

∣

∣

∆ǫx

ǫxi

∣

∣

∣

∣

(

2ǫxi

ǫzi
+ 1

)

=

∣

∣

∣

∣

∆ǫz

ǫzi

∣

∣

∣

∣

(

ǫzi

2ǫxi
+ 1

)

. (8)
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The definition of the FEG is not unique. One may
define it as |∆ǫx/ǫxi|, or ∆ǫz/ǫzi| or simply ∆ǫx/ǫxi +
∆ǫz/ǫzi. These other definitions can not provide full
range of scaling properties that we will discuss in the
text below.

Multi-particle simulations were performed to study the
dynamics of resonance crossing. Details of these simula-
tions have been published in Ref. [7]. Macro-particles,
typically 5000, are populated in bi-Gaussian distribution
with initial rms emittances ǫxi and ǫzi. The rms beam
emittances are computed by using the second moments of
the phase-space distributions [6] at each revolution. Sex-
tupoles are used to control the strength of the Walkin-
shaw resonance, and octupoles are used to control the
detuning parameters. The betatron tunes are varied lin-
early to cross a νx−2νz = ℓ resonance. Figure 2 shows the
evolution of the horizontal and vertical emittances dur-
ing the crossing the difference resonance with α11 rang-

FIG. 2: The resonance crossing rate is −1.0 × 10−4 for
a third-integer difference resonance with resonance strength
G1,−2,ℓ = 3.328 (πm)−1/2 and ǫxi = ǫzi = 5.0 πµm. The
detuning parameters are α11 = 0 and ±2254 (πm)−1.

ing from −2254 to +2254 (πm)−1, which correspond to
a tune spread of 6α11ǫxi ≈ 0.067 within the beam. Al-
though the beam emittances evolve faster or slower across
the resonance according to the detuning parameters due
to crossing the resonance earlier or later, the final FEGs
are independent of the detuning parameters. Simulations
with larger emittances will reach the same conclusions as
will be demonstrated later. In FFAG accelerators and cy-
clotrons, the ramp rates depend on the available rf sys-
tems. One would try to ramp through the resonances
as fast as possible to avoid adverse effects. The typical
tune-ramp rate is about 10−3 ∼ 10−5 per revolution, and
we use these typical tune-ramp rate for our simulations.
At these tune ramp rates, the beam particles follow their
Hamiltonian flow, one can say that their motion is adi-
abatic. Particle motion in accelerator usually obeys the
adiabatic condition in resonance crossing.

Now, we study the scaling properties of the FEG
vs accelerator parameters. Figure 3 shows results of

simulations with ǫxi = ǫzi. The FEGs depend essen-

FIG. 3: The FEG vs the effective resonance parameter for
initially equal-emittance-Gaussian-distributed beams. Note
that the FEG depends only on a single effective resonance
strength: G1,−2,ℓ

√
ǫxi/

p

|∆(νx − 2νz)/∆n|. The FEGs are
independent of the detuning parameters α11.

tially on a single effective resonance strength parameter
Geff = G1,−2,ℓ

√
ǫxi/

√

|∆(νx − 2νz)/∆n|, but are inde-
pendent of detuning parameters. Note that the maxi-
mum FEG for equal initial emittances is about 1.5. This
means that the maximum fractional emittance growth in
the vertical plane is about 1.0, and the maximum frac-
tional horizontal emittance reduction is about 0.5.

Figure 1 shows that there are more particles in lower J1

actions when ǫxi < 1
2ǫzi. Thus the horizontal emittance

will increase and the vertical emittance will decrease.
Figure 4 shows the emittance exchange for ǫxi = 1 πµm,
and ǫzi = 10 πµm with |∆(νx−2νz)/∆n| = 8×10−5. The
horizontal emittance increases while the vertical emit-
tance decreases with the FEG ∼ 4.5.

FIG. 4: The resonance crossing rate is −8.0 × 10−5 for a
third-integer difference resonance of strength G1,−2,ℓ = 3.02

(πm)−1/2 and ǫxi = 1.0 πµm, and ǫzi = 10.0 πµm. The
detuning parameter is fixed at α11 = 600 (πm)−1.

According to the FEG scaling law in Eq. (8), when

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



4

2ǫxi ≫ ǫzi, the maximum FEG is ∼ 2ǫxi/ǫzi, and when
2ǫxi ≪ ǫzi, the maximum FEG is ∼ ǫzi/(2ǫxi). Figure 5
gathers a large amount of simulation data, depicting the
FEG vs ǫxi/ǫzi. The dashed and dotted lines show the
asymptotic maxima FEG = 2ǫxi/ǫzi and ǫzi/(2ǫxi) of
Eq. (8). At ǫxi ≈ 1

2ǫzi, there is little emittance ex-
change. Although Fig. 1 is based on bi-Gaussian dis-
tribution, the FEG scaling law works for other distri-
butions as well. The circle, rectangular and diamond
symbols in Fig. 5 represent the results for a beam with
an initial uniform beam distribution in both or one of
the horizontal and vertical phase spaces. If the initial
beam distribution in the horizontal and vertical planes
are independent, and has the same functional form, i.e.,
ρ3(Jx, Jz) = f(Jx/ǫx)f(Jz/ǫz), the corresponding beam
distribution function ρ3a(u, J2) will be symmetric in the
u-variable about ǫx = 1

2ǫz. Thus there will be no net
emittance exchange because there are equal number of
particles that increase or decrease their actions in cross-
ing the resonance.

FIG. 5: The maximum fractional emittance growth (FEG) vs
ǫxi/ǫzi. The dashed and dotted lines correspond to FEGmax ≈
2ǫxi/ǫzi and ǫzi/2ǫxi. Note that near ǫxi ∼ 0.5ǫzi, there is
no emittance exchange. The circle symbols correspond to
uniform distribution in both transverse phase spaces, and all
other data are obtained from bi-Gaussian distribution.

In conclusion, multi-particle simulations and Hamilto-
nian dynamics are employed to study beam property in
crossing a Walkinshaw resonance. We find that the emit-
tance growth obeys a scaling law depending essentially on
a dimensionless effective resonance strength parameter:
G1,−2,ℓ

√
ǫxi |∆(νx − 2νz)/∆n|−1/2 (see Fig. 3), which is

detuning independent. The fractional emittance growth
(FEG) reaches a maximum saturation value at a large ef-
fective resonance strength. The maximum FEG depends
essentially on ǫxi/ǫzi. For 2ǫxi ≫ ǫzi, the maximum FEG
∼ 2ǫxi/ǫzi, and for 2ǫxi ≪ ǫzi, the maximum FEG is
ǫzi/(2ǫxi) as shown in Fig. 5. If the initial emittances
of the beam are known, one can predict the emittances
after crossing a strong third-integer coupling resonance.

To avoid emittance exchange in passing through a
Walkinshaw resonance, we can prepare a beam with an
initial horizontal emittance equal to half of the vertical.
The minimization of emittance growths and beam loss
crossing a Walkinshaw resonance could hopefully lead to
an improvement in beam currents in circular accelerators.

Now we consider a beam with equal initial horizon-
tal and vertical emittance ǫ0, After passing through a
strong νx − 2νz resonance, the final emittances will be
ǫx ≈ 1

2ǫ0 and ǫz ≈ 2ǫ0. If the vertical aperture is not an
issue, the smaller horizontal emittance can pass through
a smaller magnetic/electric septum gap. If this result-
ing beam is made to pass through the same resonance
again at a similarly strong strength, the horizontal emit-
tance and vertical emittance will be exchanged again and
restored to its original values; i.e., the final beam emit-
tances are ǫx ≈ ǫz ∼ ǫ0. All these predictions can be
tested experimentally in a cyclotron or circular accelera-
tors.
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