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Abstract

We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using

low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heav-

ier by a loop factor. We cover the most sensitive low energy probes including electric dipole

moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A

leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensi-

tivity to PeV squark masses is obtained at present from kaon mixing measurements. A number

of observables, including neutron EDMs, µ to e transitions and charmed meson mixing, will start

probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the

experimental sensitivities. We also discuss the implications of our results for a variety of models

that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a

robust probe of models in which fermion masses are generated radiatively, while LFV searches

remain sensitive to simple-texture based flavor models.
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I. INTRODUCTION

The LHC has placed natural models of supersymmetry (SUSY) under some stress. Direct

limits for gluinos are now beyond a TeV and even direct searches for stops have improved

to above 500 GeV in many scenarios. Furthermore, the discovery of a Higgs with a mass of

∼126 GeV is difficult to accommodate within the minimal supersymmetric standard model

(MSSM) with a natural spectrum. In the MSSM the tree level Higgs mass is below the Z

mass and loops of top squarks are required to push the Higgs mass to the observed value.

This contribution scales only logarithmically with the stop mass and as a result the top

superpartner is now compelled to be heavy. This is in stark contrast with what is required

to tame the quadratic divergence in the Higgs potential for which a light stop is needed.

Though it is premature to exclude a natural supersymmetric spectrum, this situation has

drawn attention to the possibility that perhaps SUSY does not address the hierarchy problem

fully, but merely ameliorates it significantly. An attractive scenario along these lines is one in

which SUSY is slightly split, with gauge superpartners around a TeV, and only fully restored

around 100-1000 TeV [1–12]. If this is the case, the Higgs mass can be accommodated easily

and the fine tuning of the EW scale is a mere one part in 104− 106, a clear improvement on

the 30 orders of magnitude hierarchy problem in the standard model (SM).

A PeV splitting of SUSY, a.k.a. mini-split SUSY, has several notable qualities. Before

the Higgs discovery, split SUSY [13–15] could live in a very wide parameter space with scalar

masses possibly near the GUT scale. Achieving large splittings between scalars and gauginos

required, however, elaborate model building [13]. The problem is that anomaly mediation [2]

gives gauginos a mass which is only a loop factor below the mass of the gravitino and is

difficult to “turn off”. Now that we know the Higgs mass is ∼126 GeV, such a widely split

SUSY is disfavored. Instead, 100-1000 TeV is enough and split SUSY can live where it is

happiest – with SUSY breaking mediated to scalars by Planck suppressed operators and

with anomaly mediation [2]1 giving gauginos mass a loop factor below.

SUSY breaking which is mediated by Planck suppressed operators is well known to gener-

ically violate flavor in the squark and slepton sectors. Interestingly, the 100-1000 TeV scale is

being probed by current and upcoming searches for flavor violating processes and searches for

1 This is the case in which scalar masses are non-sequestered as opposed to the sequestered kind [16].
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FIG. 1: Summary of various low energy constraints (left of the lines are the excluded regions) in

the sfermion mass vs. tanβ plane for the example of 3 TeV bino and wino and 10 TeV gluino,

while fixing the mass insertion parameters to be (δA)ij = 0.3 when using the super-CKM basis.

The dark (light) blue shaded band is the parameter space compatible with a Higgs mass of mh =

125.5±1 GeV within 1σ (2σ). The upper (lower) plot gives the reach of current (projected future)

experimental results collected in Tab. I.

electric dipole moments (EDMs). In this work we investigate the limits that these searches

place on flavor violation at the PeV scale. We will see that in many cases the diagrams

which constrain the split SUSY case are different than those which place constraints in the

well studied low scale SUSY case. Our results are summarized in Fig. 1 in which current

bounds and future sensitivity to the scalar masses is shown in a slice of parameter space

(see the next section for more details of assumptions made). Our conclusion is that the

0.1-1 PeV scale will be probed by a host of experiments in the near future. Constraints

from Kaon oscillations are already probing squark masses of a PeV. Bounds on neutron and

nuclear EDMs are likely to improve by several orders of magnitude and can also probe PeV

scale quarks. Searches for muon lepton flavor violation as well as precision measurements of

D0-D̄0 oscillations will also reach this interesting range.

In Fig. 1 we have assumed that the squark and slepton mass matrices are anarchic in
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flavor space. In contrast, the masses of the corresponding fermions are strongly hierarchical.

In light of this we considered several possible models in which the fermion mass hierarchy

is explained naturally and considered the impact on the sfermion flavor structure and the

reach of low energy probes. Within models in which the fermion mass hierarchy is explained

by flavor textures (e.g. extra dimensions, horizontal symmetries, etc) the structure of the

sfermion mass matrix can fall into several categories, ranging from fully anarchical to hier-

archical. In many of these cases we find that low energy probes remain sensitive to scalars

near the PeV scale.

A distinct possibility is that the quark masses are generated radiatively. Since split SUSY

allows for large flavor violation it introduces a model building opportunity to dynamically

explain the hierarchical structure of the SM quark and lepton masses through the hierarchy

of superpartner loops [17–21]. In this way it is straightforward to account for the mass of the

up quark even within a minimal model, as pointed out recently [12] (doing the same for the

down quark and the electron requires additional model building and may require additional

vector like fields). This attractive possibility interplays with the flavor and EDM bounds

in interesting ways, because it implies a lower bound on the amount of flavor violation and

also has implications for possible alignment of CP phases. For this reason we pay special

attention to the case of radiative mass generation, treating it separately when needed.

There is a rich taxonomy of mini-split SUSY scenarios. The higgsinos can be either at the

TeV or the PeV scale. Also, tan β can be either large or small. Sleptons can be somewhat

lighter than squarks, but do not have to be so. The splitting between the lightest SUSY

particle (LSP) – typically a wino – and the gluino is about an order of magnitude, but can

be smaller if the higgsinos are heavy and/or there are extra vector-like fields at a PeV [12].

In our analysis we will not make any particular choice for these issues and will try to address

the various cases when relevant.

The paper is structured as follows. In Section II we explain the setup and some of

the assumptions we make in deriving our bounds. We also survey the current status of

the various experimental bounds and their prospects in the near future. In Section III

we consider limits from neutron and electron EDM searches. We analyze separately the

large and small µ scenarios because different diagrams dominate in each of the two cases.

In Section IV we consider the limits from meson oscillations and in Section V the limits

from lepton flavor violating processes, including µ → eγ, µ → e conversion, and µ → 3e.
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Section VI is devoted to models that explain the fermion mass hierarchy and the implications

of our bounds for these frameworks. We consider two broad classes of ideas — flavor textures

and generation of fermion masses by loops of superpartners. In section VII we conclude.

Appendix A is devoted to the large-log resummation, and Appendix B collects loop functions

entering the µ→ eγ and µ→ e conversion predictions.

II. THE SETUP AND MAIN HIGHLIGHTS

We are interested in the supersymmetric spectra where the gauginos – bino, wino and

gluino – are all at O(TeV) scale, while sfermions – squarks and sleptons – are significantly

heavier, with masses of O(102 TeV) − O(103 TeV). Higgsinos could be as light as the

gauginos or as heavy as the sfermions and we will consider these two cases separately when

it makes a difference. For concreteness, we assume the MSSM field content. The mini-

split SUSY spectrum means that it may be possible to observe gauginos at the LHC [12].

However, the squarks and sleptons can only be probed through their virtual corrections

to low energy processes. The sensitivity is due to the soft sfermion masses and trilinear

couplings that act as new sources of flavor and CP violation.

Note that for PeV sfermions the left-right sfermion mixing is suppressed by O(mf/mf̃ )

compared to the diagonal m2
f̃
, and can be neglected. We do not make any assumptions about

the flavor structure of the sfermion mass matrices, and thus parametrize the soft masses of

squarks as

m2
Q = m2

q̃(11 + δLq ), m2
U = m2

ũ(11 + δRu ), m2
D = m2

d̃
(11 + δRd ), (1)

and soft masses of sleptons

m2
L = m2

˜̀(11 + δL` ), m2
E = m2

ẽ(11 + δR` ), (2)

where δA are dimensionless matrices that encode the flavor breaking and mass splittings,

and whose elements are all allowed to be O(1). We do not expect a strong mass hierarchy

among the squark and slepton masses and set m2
q̃ = m2

ũ = m2
d̃

and m2
˜̀ = m2

ẽ, for simplicity.

We work in the mass-insertion approximation where (δA)ij are treated as perturbations

and only the diagrams with the lowest numbers of (δA)ij insertions are kept (here A is a

super-index and denotes both L,R superscript and q, u, d, l subscript dependence). In the

numerical examples below, we use the super-CKM basis, where quarks are in the mass-basis
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process current exp. future exp.

K0 mixing εK = (2.228± 0.011)× 10−3 [22] —

D0 mixing AΓ = (−0.02± 0.16)% [23]
±0.007% LHCb [24]

±0.06% Belle II [25]

Bd mixing sin 2β = 0.68± 0.02 [23]
±0.008 LHCb [24]

±0.012 Belle II [25]

Bs mixing φs = 0.01± 0.07 [26] ±0.008 LHCb [24]

dHg < 3.1× 10−29 ecm [27] −

dRa − . 10−29 ecm [28]

dn < 2.9× 10−26 ecm [29] . 10−28 ecm [28]

dp − . 10−29 ecm [28]

de < 1.05× 10−27 ecm YbF [30, 31] . 10−30 ecm YbF, Fr [28]

µ→ eγ < 5.4× 10−13 MEG [32] . 6× 10−14 MEG upgrade [33]

µ→ 3e < 1.0× 10−12 SINDRUM I [34] . 10−16 Mu3e [35]

µ→ e in Au < 7.0× 10−13 SINDRUM II [36] −

µ→ e in Al − . 6× 10−17 Mu2e [37]

TABLE I: Summary of current and selected future expected experimental limits on CP violation

in meson mixing, EDMs and lepton flavor violating processes.

and squark fields are rotated by the same unitary matrices that diagonalize the quarks. In

the plots, we then always set the off-diagonal elements to (δA)ij = 0.3. Incidentally, note

that there is a relation between left-left down-squark and up-squark matrices, δLu = V δLd V
†,

with V the CKM matrix, so that δLd = δLu (1 + O(λ)) with λ ' 0.23 the sine of Cabibbo

angle.

In the rest of the paper, we perform a detailed analysis of the impact that different

low energy experimental results have on the allowed parameter space. The most important

current and projected future limits on low energy probes that we use are collected in Tab. I.

For reader’s convenience we also summarize the sensitivity of the considered low energy

probes on the sfermion mass scale in Fig. 1. Shown are the current and expected future

constraints on the sfermion mass scale and tan β for the example of |mW̃ | = |mB̃| = 3 TeV,
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|mg̃| = 10 TeV and mass degenerate squarks, sleptons and higgsinos, while taking the mass

insertion parameters in the super-CKM basis to be |(δA)ij| = 0.3. All phases are assumed

to be O(1) and chosen such that no large cancellations appear among the various SUSY

contributions to the considered processes. In the case of meson mixing and EDMs, the

constraints scale approximately as ∝ |(δA)ij|, while in the case of the µ → e transitions

the scaling is approximately ∝ |(δA)ij|1/2. The dependence on the gaugino and the higgsino

masses is discussed in detail below, in Secs. III, IV, and V. The blue region preferred by

a Higgs mass of mh = (125.5 ± 1.0) GeV is obtained using 2-loop renormalization group

running and 1-loop threshold corrections given in [38] and includes uncertainties from the

top pole mass mt = 173.2 ± 0.7 GeV [39] and the strong coupling constant αs(mZ) =

0.1184 ± 0.0007 [40]. Note that for the higgs mass band we have taken the squarks to be

universal. This assumption is obviously not satified in our framework. However, we have

checked that the leading effects of flavor violation correspond to taking mq̃ to be the weighted

average of all squark mass eigenstates. Generically this will shift the blue band horizontally

by an order one factor, which is a small effect on a log plot.

Currently, CP violation in kaon mixing, given by εK , is the only observable that is sensitive

to squarks with PeV masses. Current constraints on CP violation in charm mixing and

hadronic EDMs can probe squarks with 100 TeV masses. Constraints on the slepton masses

are still relatively modest in comparison, reaching tens of TeV. In the future, EDMs of

hadronic systems, such as the neutron and proton EDMs are also projected to be able to

probe CP violation induced by the PeV scale squarks. Projected improvements of the results

on the electron EDM and µ→ e conversion in nuclei will be sensitive to sleptons at around

100 TeV and above.

The phenomenology of PeV sfermions has recently been considered also in Refs. [41–44]

(see also [45] for LHC implications and [46, 47] for implications of proton decay bounds).

Our work adds several new observables and aims for a comprehensive study. In particular,

in the calculation of (C)EDMs we resum factors of log(|mg̃|2/m2
q̃), as required because there

is a large hierarchy between the gluino and squark mass scales. The details of the resum-

mation are given in Appendix A. We also consider simultaneously both one-loop and two

loop contributions to EDMs. In our discussion we pay special attention to the scenario in

which the up-quark mass is generated radiatively and the role that the neutron EDM plays

in constraining this framework. Our work includes a study of meson mixing observables,
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including the promising prospects for D − D̄ mixing. We also consider the impact of low

energy constraints on models of fermion masses.

III. ELECTRIC DIPOLE MOMENTS

Electric dipole moments (EDMs) of quarks and leptons, dq,`, and chromo-electric dipole

moments (CEDMs) of quarks, d̃q, are described by dimension 5 operators in the effective

Lagrangian,

Leff = −id`
2

(¯̀σµνγ5`)Fµν − i
dq
2

(q̄σµνγ5q)Fµν − i
d̃q
2
gs(q̄T

Aσµνγ5q)G
A
µν . (3)

Note that we do not need to consider the CP violating dimension 6 operators – the Weinberg

3 gluon operator [48], and CP violating 4 fermion operators [49] – since these are negligible

in mini-split SUSY.

Currently, there are strong experimental bounds on the neutron (dn), mercury (dHg), and

electron (de) EDMs, as listed in Tab. I. All these bound are expected to improve significantly

in the future [28, 50]. For instance by three (two) orders of magnitude for the electron

(neutron) EDM, while experiments with radon and radium may reach sensitivities that

correspond to an improvement of at least two orders of magnitude over the current mercury

EDM bounds. All these improvements offer excellent opportunities to probe SUSY at the

PeV scale.

The bounds on the neutron and mercury EDMs imply bounds on the quark EDMs and

CEDMs through the following relations [51, 52]

dHg ' 7 · 10−3e
[
d̃u(µ̂h)− d̃d(µ̂h)

]
+ 10−2de, (4)

dn ' (1.4± 0.6) [dd(µ̂h)− 0.25du(µ̂h)] + (1.1± 0.5)e
[
d̃d(µ̂h) + 0.5d̃u(µ̂h)

]
, (5)

where the quark (C)EDMs are evaluated at the hadronic scale µ̂h ' 1 GeV, and we quote

directly the numerical values of the hadronic matrix elements. The uncertainties in the

numerical coefficients of dHg are relatively large, and can even be a factor of a few (see, e.g.,

the discussion in [53]). Keeping this in mind, we show in the plots below the exclusions for

the central values of hadronic matrix elements in Eqs. (4), (5).
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FIG. 2: An example of a flavor violating contribution to the up quark (C)EDM which dominates

in mini-split SUSY for a µ term not much smaller than the squark masses. The electron EDM is

dominated by an analogous contribution with a gluino replaced by a bino. In the diagram, the

photon (gluon) line can attach to any (color-)charged internal line.

A. EDMs at One Loop – Large µ

When the µ parameter is large, |µ| ∼ mq̃,˜̀, the most important contributions to the

(C)EDMs of light quarks and leptons come from the flavor violating diagrams, such as the

one given in Fig. 2 [41, 54–56]. In the flavor conserving case, the (C)EDMs of quarks and

leptons are proportional to the masses of the corresponding quarks or leptons. With generic

flavor mixing, however, the chirality flip can occur on the third generation sfermion line,

enhancing the quark (C)EDMs by mt/mu or mb/md and the electron EDM by mτ/me.
2

Assuming a common soft mass for the squarks mq̃ and sleptons m˜̀ one arrives at

de
e

=
α1

4π

mτ

m2
˜̀

|µmB̃|
m2

˜̀

tβ |δLeτδRτe|
1

2
sinφe , (6){

du(mq̃)

e
, d̃u(mq̃)

}
=

αs
4π

mt

m2
q̃

|µmg̃|
m2
q̃

1

tβ
|δLutδRtu| sinφu

{
−8

9
,−59

6
− 3 log x

}
, (7){

dd(mq̃)

e
, d̃d(mq̃)

}
=

αs
4π

mb

m2
q̃

|µmg̃|
m2
q̃

tβ |δLdbδRbd| sinφd

{
4

9
,−59

6
− 3 log x

}
, (8)

where x = |mg̃|2/m2
q̃ � 1, while φe = arg(µmB̃δ

L
eτδ

R
τe), φd = arg(µmg̃δ

L
dbδ

R
bd), and φu =

arg(µmg̃δ
L
utδ

R
tu) are the rephasing invariant CP violating phases. The results are of leading

order in the mass insertion approximation and of leading order in |mB̃|2/m2
˜̀ and |mg̃|2/m2

q̃

(expressions that hold also beyond the limit of large sfermion masses can be found in [54]).

2 The anomalous magnetic moment of the electron, ∆ae, is similarly mτ/me enhanced. However, for the

current experimental bounds and the precision of the SM prediction [57], ∆ae typically gives much weaker

constraints than EDMs.
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FIG. 3: The dark (light) shaded regions show 95% (90%) C.L. exclusions from the current electron

EDM experiments. In the left and right plot, tanβ = 10 and |mB̃| = 5 TeV are held fixed,

respectively. The relevant mass insertions are set to (δA)ij = 0.3, and the CP violating phase to

sinφe = 1. The solid lines show the predicted electron EDM values.

Note that for the electron EDM, de, only the bino contribution is enhanced by mτ/me.

The wino does not couple to the right-handed electron so that its contribution remains

proportional to the electron mass, and is negligible.

The quark CEDMs contain a logarithmically enhanced term, log(|mg̃|2/m̃2), which is

large because |mg̃| � mq̃. The large logarithm arises from a diagram in Fig. 2 where the

gluon attaches to the internal gluino line. We resum the large log by performing a two

step matching procedure: first integrating out squarks at the scale µ̂ = mq̃, calculating

one-loop renormalization group (RG) running from µ̂ = mq̃ down to µ̂ = |mg̃|, and finally

integrating out the gluino at the the scale µ̂ = |mg̃|, thus matching onto the usual (C)EDM

effective Lagrangian (3). The details of the resummation are relegated to Appendix A.

The resummed versions of (7) and (8) for quark (C)EDMs, du,d(|mg̃|), d̃u,d(|mg̃|), are given

in (A15) and hold at the scale µ̂ = |mg̃|, where the gluino is integrated out. These are then

evolved down to the hadronic scale µ̂h ' 1 GeV using standard RG equations [58]. Note that

bino contributions to the quark CEDMs are suppressed by the small U(1) gauge coupling

and also do not contain the above log enhancement, and are therefore safely neglected.

We next turn to the numerical evaluation of the above expressions and the impact current

10



10-29 10-30

10-31

30 102 3´102 103 3´103
1

3

10

30

mq
� = ÈΜÈ HTeVL

Èm g� ÈHT
eV

L
dHg HecmL

ta
n

Β
=

2

10-29 10-30

10-31

de
st

ru
ct

iv
e

in
t.

30 102 3´102 103
1

3

10

30

100

mq
� = ÈΜÈ HTeVL

ta
n

Β

dHg HecmL

Èm g� È=
10

T
eV

10-26 10-27 10-28

10-29

30 102 3´102 103 3´103
1

3

10

30

mq
� = ÈΜÈ HTeVL

Èm g� ÈHT
eV

L

dn HecmL
ta

n
Β

=
2

10-26 10-27 10-28

10-29

de
st

ru
ct

iv
e

in
t.

30 102 3´102 103
1

3

10

30

100

mq
� = ÈΜÈ HTeVL

ta
n

Β

dn HecmL

Èm g� È=
10

T
eV

FIG. 4: The dark (light) shaded regions show 95% (90%) C.L. exclusions from current neutron and

mercury EDM experiments assuming constructive interference of up and down quark contributions

(dotted white lines denote 95% C.L. limits for destructive interference). In the left and right

columns, tanβ = 2 and |mg̃| = 10 TeV are held fixed for mercury and neutron EDM, from top

to bottom. The relevant mass insertions are set to (δA)ij = 0.3, and the CP violating phases to

sinφq = 1. The solid lines show the predicted EDM values.
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and future limits on EDMs have on the mini-split SUSY parameter space. We are first

interested in the case where the µ parameter is of order the sfermion masses, which means

that the one loop flavor violation enhanced contributions (6), (7), (8) dominate. Up to

resummation effects, the bounds are stronger, if the gluino is heavier (or bino for electron

EDM). The bounds are also linear in the µ parameter. The constraints, on the other hand,

become irrelevant, if either the flavor violating mass insertions (δA)ij or the CP violating

phases φA are small. For the numerical examples in Figs. 3 and 4, we keep the µ parameter

equal to the squark mass, |µ| = mq̃, for mercury and neutron EDMs (or slepton mass

|µ| = m˜̀ for the electron EDM). All relevant mass insertion parameters are taken to be

|δLij| = |δRij | = 0.3 and CP violating phases of sinφi = 1 are assumed in all cases. The

dark (light) shaded regions are excluded at the 95% (90%) C.L. by current measurements,

assuming constructive interference between up and down quark contributions to the neutron

and mercury EDM. The dotted white lines show the 95% C.L. limits in the case of destructive

interference. The left columns of plots in Figs. 3 and 4 illustrate the increased relevance

of EDM bounds for larger gaugino masses. The right columns on the other hand illustrate

the tan β (tan β−1) behavior of d̃d (d̃u), which dominate in the bounds from mercury and

neutron EDM for large (small) tan β. The dependence of the electron EDM on tan β, on

the other hand, is always linear. Note also, that the exclusions become more stringent with

growing mg̃, as long as mg̃ � mq̃. This increase saturates for mg̃ ∼ mq̃, as illustrated in

bottom left panel of Fig. 4 (incidentally in this region also the expanded expressions (7),

(8) are no longer valid).

From Fig. 3 we also see that the current limit on the electron EDM probes slepton masses

of O(10 TeV) (small tan β ' 1) to O(50 TeV) (large tan β ' 30). Future sensitivities for the

electron EDM at the level of 10−30 e cm will allow to probe slepton masses of several 100’s of

TeV (small tan β) and even beyond 1000 TeV (large tan β). Current limits on the neutron

and mercury EDM can already test squark masses above 100 TeV both for small and large

tan β. Improving sensitivities by 2 orders of magnitude will allow to probe squarks at the

PeV scale and above.
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FIG. 5: Example of a 2-loop Barr-Zee contribution to fermion EDMs which dominates in mini-split

SUSY for small values of the µ term.

B. EDMs at Two Loops - Small µ

Next, let us consider the case of mini-split SUSY where the µ parameter is small, |µ| �
mq̃,˜̀. In this case, 2-loop Barr-Zee type diagrams containing light charginos can give the

dominant contributions to the EDMs [59]. An example diagram is shown in Fig. 5. These

2-loop contributions, can be important only if the µ term is small, of the order of the

wino mass, such that the charginos have a non-negligible higgsino component. For higher

µ values the chargino-higgsino mixing angle scales as ∼ mW/µ, so that the Barr-Zee type

2-loop contributions quickly decouple as µ−1. This has to be contrasted with the 1-loop

flavor violation enhanced contributions to EDMs discussed above, that grow linearly with

the µ parameter. Combining both types of contributions, EDMs can probe complementary

regions of parameter space.

This is illustrated in Fig. 6, which shows the electron EDM (left plot) and the neutron

EDM predictions (right plot) as a function of the µ parameter, for several values of the

slepton masses m˜̀ and squark masses mq̃ and choosing a small tan β = 2, as indicated.

In both plots, the gaugino masses are fixed to exemplary values |mB̃| = |mW̃ | = 2 TeV,

|mg̃| = 10 TeV, mass insertion parameters are taken to be |δLij| = |δRij | = 0.3 and CP violating

phases of sinφi = 1 are assumed. The solid (dashed) lines assume constructive (destructive)

interference between the 1-loop and 2-loop contributions to the EDMs. For |µ| ∼ O(1TeV)

the predicted EDMs are within reach of future sensitivities, and are independent of sfermion

masses, because the 2-loop contribution dominates. The EDM predictions do depend on
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FIG. 6: The electron EDM (left plot) and neutron EDM (right plot) as function of the higgsino

mass |µ| for various values of the slepton masses m˜̀ and squark masses mq̃, as indicated. We set

tanβ = 2 and fix gaugino masses to |mB̃| = |mW̃ | = 2 TeV and |mg̃| = 10 TeV. All mass insertion

parameters are taken to be |δLij | = |δRij | = 0.3 and CP violating phases of sinφi = 1 are assumed.

The solid (dashed) lines correspond to constructive (destructive) interference between 1-loop and

2-loop contributions to the EDMs.

the sfermion masses for large values of |µ|. For |µ| = O(103 TeV) and the chosen small

tan β = 2, slepton masses of m˜̀ = O(100 TeV) and squark masses of mq̃ = O(103 TeV) are

within reach of future EDM experiments. We have verified that the addition of A-terms

with a size expected from anomaly mediation (loop suppressed) does not change Fig. 6

significantly.

IV. MESON OSCILLATIONS

Meson oscillations, especially kaon mixing, are known to be highly sensitive probes of new

sources of quark flavor violation. New physics with generic flavor structure that contributes

to kaon mixing at tree level is constrained up to scales of ∼ 105 TeV [60]. In our setup,

contributions to meson oscillations arise only at the loop level. Nonetheless, very high SUSY

scales of ∼ 103 TeV can be probed.
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Short distance contributions to meson oscillations are described by an effective Hamilto-

nian

Heff =
5∑
i=1

CiQi +
3∑
i=1

C̃iQ̃i + h.c. , (9)

where the dimension 6 operators most relevant for the case of mini-split SUSY are

Q1 = (ūαγµPLc
α)(ūβγµPLc

β), Q̃1 = (ūαγµPRc
α)(ūβγµPRc

β),

Q4 = (ūαPLc
α)(ūβPRc

β), Q5 = (ūαPLc
β)(ūβPRc

α), (10)

with PR,L = 1
2
(1± γ5) and α, β are color indices, and we chose the quark flavors relevant for

D0− D̄0 mixing. The corresponding operators for kaon, Bd, and Bs mixing are obtained by

obvious replacements of the quark fields.

The dominant SUSY contributions to the Wilson coefficients Ci come from box diagrams

with gluino–squark loops. At the scale µ̂ = mq̃ where squarks are integrated out, we have

to leading order in |mg̃|2/m2
q̃ and at leading order in the mass insertions3

C1(mq̃) = − α
2
s

m2
q̃

(δLcu)
2 11

108
, C̃1(mq̃) = − α

2
s

m2
q̃

(δRcu)
2 11

108
, (11)

C4(mq̃) =
α2
s

m2
q̃

(δRcuδ
L
cu)

1

9
, C5(mq̃) = − α

2
s

m2
q̃

(δLcuδ
R
cu)

5

27
. (12)

Note that in the considered limit of |mg̃|2 � m2
q̃ the Wilson coefficients are to an excellent

approximation independent of the gluino mass and only depend on the mass scale of the

squarks. Using renormalization group equations, the Wilson coefficients can be evolved

down to hadronic scales, where lattice evaluations of the matrix elements of the operators

in (9) are given [63–66]. The presence of a dynamical gluino below mq̃ does not change the

anomalous dimensions of the operators at leading order (LO) [67–70]. Therefore, the only

effect of the gluino on the running of the Wilson coefficients at LO comes from the slightly

modified running of αs that is given in the Appendix in (A14).

We derive bounds on the squark scale by combining available experimental information

on CP conserving and CP violating observables in meson mixing. In particular, for kaon

mixing we consider the mass difference ∆MK [22] and the CP violating observable εK [22].

In the case of D0 mixing we use the combined experimental information on the normalized

3 Mass insertion approximation expressions valid for |mg̃| ∼ mq̃ can be found, e.g., in [55, 61]. The full set

of MSSM 1-loop contributions in the mass eigenstate basis are collected in [62].

15



mass and width differences (x and y) as well as the CP violating parameters |q/p| and

φ. We assume the absence of direct CP violation in charm decays and take into account

the full error correlation matrix provided by [23]. In the case of Bd and Bs mixing we

consider the mass differences ∆Md [23] and ∆Ms [71, 72] as well as the information on the

Bd and Bs mixing phases extracted from Bd → J/ψK0 [23] as well as Bs → J/ψK+K− and

Bs → J/ψπ+π− [26]. For the SM predictions, we use CKM inputs from [73].

The resulting bounds on the squark mass scale are shown in Fig. 7 as function of the

phase of the NP contribution to the mixing amplitudes φi = arg(MNP
12,i), i = K,D,Bd, Bs.

The dark (light) shaded regions are excluded at 95% (90%) C.L.. In the plots we fix the

mass insertions to moderate values of δLij = δRij = 0.3 × eiφi/2. The gluino mass is fixed to

|mg̃| = 3 TeV. As already discussed above, the results are to a very good approximation

independent of the gluino mass as long as |mg̃| � mq̃. In regions of parameter space that are

probed by the current and future data, the NP effects in meson oscillations are dominated by

contributions to the Wilson coefficients C4 and C5. At leading order in the mass insertions,

these coefficients depend on the same combinations (δLijδ
R
ij) and therefore the derived bounds

are to a very good approximation independent of the relative phase between the (δLij) and

(δRij). The derived bounds do depend strongly on the overall phase of (δLijδ
R
ij), especially in

the case of kaon and D0 mixing, where the constraints on CP violating NP contributions

are considerably stronger than constraints on the CP conserving ones.

Squark masses up to almost 1000 TeV can be probed with kaon mixing, if the correspond-

ing NP phase is O(1). The NP reach of kaon mixing is limited by the uncertainty on the

SM predictions that are not expected to improve significantly in the foreseeable future. The

current constraints from D0 mixing reach up to mq̃ & 70 TeV as long as the NP phase is

not accidentally suppressed. Future experimental bounds on CP violation in D0 mixing at

LHCb [24] and Belle II [25] are expected to improve by at least one order of magnitude and

can potentially probe scales of ∼ 200 TeV as indicated by the dashed line in the upper right

plot. The scales that are currently probed by Bd and Bs mixing are much lower. Also with

the expected improved measurements of the mixing phases at LHCb [24] and Belle II [25],

only squark masses of 20− 30 TeV can be reached.
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FIG. 7: Squark masses mq̃ probed by meson oscillations as a function of the phase of the NP

contribution φi. The gluino mass is fixed to |mg̃| = 3 TeV. The dark (light) shaded regions are

excluded at 95% (90%) C.L.. The dashed lines show the expected 95% C.L. constraints with future

experimental improvements on CP violation in meson mixing (factor ∼ 10 in D0 mixing, factor

∼ 2 in Bd mixing, and factor ∼ 10 in Bs mixing).
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V. LEPTON FLAVOR VIOLATION

Another important set of constraints that is very sensitive to new particles and interac-

tions beyond the SM are the charged lepton flavor violating (LFV) processes. We focus on

µ → e transitions which give by far the strongest constraint in the case of generic lepton

flavor violation. Current bounds on the µ → eγ decay, the µ → 3e decay, and µ → e

conversion in nuclei probe NP up to masses of 1000 TeV, if NP is contributing at tree-

level and has generic flavor violation [74, 75]. Future sensitivities, with especially large

improvement expected in µ → e conversion sensitivity, may extend the reach above 10,000

TeV [28, 50, 74, 75]. In SUSY frameworks the above LFV processes are loop induced, so

that slepton masses up to the PeV scale may be probed in the future. We focus on the most

important contributions in mini-split SUSY, while the complete set of 1-loop contributions

in the mass eigenstate basis for the LFV processes discussed in this section can be found

in [76, 77]. We will find that in split supersymmetry the dipole operator tends to dominate

the rate for the two decay modes, but µ→ e conversion can be dominated by photon and Z

penguins. This should be contrasted with TeV SUSY, where the dipole tends to dominate

for all three processes.

A. The µ → eγ Decay

The current bound on the branching ratio of the radiative µ→ eγ decay from the MEG

experiment is [32]

BR(µ→ eγ) < 5.7× 10−13 @ 90% C.L. . (13)

A MEG upgrade can improve this limit by another order of magnitude down to BR(µ →
eγ) . 6× 10−14 [33].

The µ→ eγ branching ratio can be written as

BR(µ→ eγ) ' BR(µ→ eγ)

BR(µ→ eνν̄)
=

48π3αem

G2
F

(
|ALµe|2 + |ARµe|2

)
, (14)

where the amplitudes Aiµe are the coefficients of higher dimensional operators in an effective

theory description of the decay

Heff = e
mµ

2

(
ALµe ēσ

µνPLµ+ ARµe ēσ
µνPRµ

)
Fµν . (15)
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FIG. 8: Example contributions to the µ→ eγ amplitude. Left: flavor enhanced bino contribution.

Middle and right: wino-higgsino contributions.

In mini-split SUSY, the most important contributions to the µ → eγ amplitude arise

from bino and wino loops [76–78]. Higgs mediated contributions to µ → eγ can be very

important in TeV scale SUSY with large tan β [79], but are negligible in mini-split SUSY.

The dominant bino contribution arises at second order in mass insertions, O(δRδL), and

involves mixing into the third generation which leads to an enhancement factor of mτ/mµ

over the contributions linear in the mass insertions. The relevant Feynman diagram is shown

in Fig. 8 (left-most diagram) and gives

AL,B̃µe =
α1

4π

(
mτ

mµ

)
µmB̃

m4
˜̀

tβ
1

2
(δRµτδ

L
τe) , (16)

AR,B̃µe =
α1

4π

(
mτ

mµ

)
µmB̃

m4
˜̀

tβ
1

2
(δLµτδ

R
τe) . (17)

The expressions hold in the limit |mB̃| � m˜̀. The bino contributions (16), (17) grow

linearly with |µ| tan β and are thus important for large values of |µ| tan β. They are also

proportional to the bino mass |mB̃|, which in mini-split SUSY is much smaller than the

slepton mass, roughly by a loop factor. Effectively, the above contribution is thus of two

loop size, compared to the case where all mass parameters are at the same scale (as in TeV

scale SUSY).

Wino loops can only contribute to AL and are necessarily proportional to the muon mass.

Compared to the bino contributions (16), (17) they arise at linear order in mass insertion,

O(δL), are not suppressed by a small gaugino mass and are typically dominant for small

|µ|. The general form of the wino contributions to leading order in the mass insertion

approximation reads

AL,W̃µe =
α2

4π

1

m2
˜̀

(δLµe)

[
−1

8
g1(xW ) + g2(xW , xµ) +

µmW̃

m2
˜̀

tβ g3(xW , xµ)

]
, (18)
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with the mass ratios xW = |mW̃ |2/m2
˜̀ and xµ = |µ|2/m2

˜̀. Explicit expressions for the

loop functions gi can be found in Appendix B. The first term in the parenthesis comes

from a pure wino loop. The second and third term involve wino-higgsino mixing and the

corresponding diagrams are shown in the middle and right panels of Fig 8. For |mW̃ | � m˜̀,

the loop function g1 in the first term reduces to g1(x)
x→0−−→ 1. The loop functions g2 and

g3 depend both on the wino and the higgsino mass. For heavy higgsinos, i.e. in the limit

|mW̃ | � |µ| ' m˜̀, we find to leading order

g2(x, y)
x→0−−→ −11− 7y

4(1− y)3
− (2 + 6y + y2)

2(1− y)4
log y , g3(x, y)

x→0−−→ 1

y
log x . (19)

For light higgsinos instead, i.e. in the limit |mW̃ | ' |µ| � m˜̀, we get

g2(x, y)
x,y→0−−−→ x log x

y − x +
y log y

x− y , g3(x, y)
x,y→0−−−→ log x

y − x +
log y

x− y . (20)

Large logs appear in these expressions, that can enhance the wino loops compared to the

bino loops. For small values of |µ| ∼ |mB̃|, |mW̃ |, the wino loops generically dominate. For

large values of |µ| ∼ m˜̀, bino and wino loops are typically comparable.

The plots in Fig. 9 show the regions of parameter space that are probed by current

and future measurements of the µ → eγ branching ratio. Bounds are shown in the m˜̀ vs.

|mB̃| = |mW̃ | plane with a fixed tan β = 5 (top row) and the m˜̀ vs. tan β plane with fixed

gaugino masses |mB̃| = |mW̃ | = 5 TeV (bottom row). The Higgsino mass is at the scale of

the slepton masses (left column) or at the scale of the gaugino masses (right column). All

relevant mass insertions are set to |δLij| = |δRij | = 0.3. The dark (light) shaded regions are

excluded at the 95% (90%) C.L. by the current measurement. We choose the signs of µmB̃

and µmW̃ such that the different contributions in (16) and (18) interfere constructively. The

white dotted lines show the case of destructive interference between the dominant terms in

each case. The dashed lines show the sensitivity of the proposed MEG upgrade.

As expected, the bounds become stronger for larger tan β. Current bounds on the slepton

masses reach roughly from O(10) TeV (small tan β) up to O(100) TeV (large tan β). The

proposed MEG upgrade can improve the bounds by another factor of ∼ 2. As indicated

by the white dotted lines, such bounds are to some extent model dependent. There exist

fine-tuned regions of parameter space where cancellations among the various contributions

occur and the bounds can be relaxed considerably.
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FIG. 9: Bounds from µ → eγ in the m˜̀ vs. |mB̃| = |mW̃ | plane (top row) and the m˜̀ vs. tanβ

plane (bottom row). The higgsino mass is at the scale of the slepton masses (left column) or at the

scale of the gaugino masses (right column). All relevant mass insertions are set to |δLij | = |δRij | = 0.3.

The dark (light) shaded regions are excluded at the 95% (90%) C.L. by the current measurement

assuming constructive interference between the respective dominant NP amplitudes. The white

dotted lines show the case of destructive interference. The dashed lines show the sensitivity of the

proposed MEG upgrade.
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B. µ → e Conversion in Nuclei

The current most stringent experimental bound on the µ → e conversion rate was ob-

tained by the SINDRUM II collaboration using gold nuclei [36],

BRAu
µ→e < 7× 10−13 @ 90% C.L. . (21)

Proposed experiments aim at sensitivities of BRAl
µ→e < 10−16 using Al [28, 37]. In the long

term, sensitivities down to BRAl
µ→e < 10−18 might be possible. This corresponds to an

improvement by almost 4 to 6 orders of magnitude compared to the result in (21).

The branching ratio of µ→ e conversion in nuclei can be written as [80]

BRN
µ→e × ωNcap. =

∣∣∣1
4
ALµeD + 2(2Cu

LV + Cd
LV )V (p) + 2(Cu

LV + 2Cd
LV )V (n)

∣∣∣2
+
∣∣∣1
4
ARµeD + 2(2Cu

RV + Cd
RV )V (p) + 2(Cu

RV + 2Cd
RV )V (n)

∣∣∣2 . (22)

Here, ωNcap. is the muon capture rate of the nucleus N , and D, V (p), and V (n) are nucleus

dependent overlap integrals [80]. The coefficients AL,Rµe were already introduced in the dis-

cussion of the µ→ eγ decay, Eq. (15). The remaining coefficients are the Wilson coefficients

multiplying the dimension six operators in the effective Hamiltonian

Heff = Cq
LV (ēγνPLµ)(q̄γνq) + Cq

RV (ēγνPRµ)(q̄γνq) , (23)

which describes the effective interaction of µ and e with a vector quark current. Interactions

with axial-vector, pseudo-scalar and tensor quark currents do not contribute to a coher-

ent conversion process and can be neglected. Interactions with scalar quark currents are

suppressed by small lepton and quark masses in the mini-split SUSY framework and are

therefore also negligible.

There are various SUSY contributions to µ → e conversion. We already discussed the

contributions to the AL,Rµe in Sec. V A. These dipole contributions are by far the dominant

terms in µ → e conversion for the frequently studied framework of TeV scale SUSY with

sizable tan β. In mini-split SUSY, on the other hand, the 4 fermion operators cannot be

neglected. Contributions to the 4 fermion operators can come from boxes, photon penguins,

and Z penguins. Example diagrams are shown in Fig. 10.

The largest contribution to the box diagrams comes from wino loops, shown in Fig. 10

(left). Since winos only interact with the left handed (s)fermions, the wino box diagrams do
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FIG. 10: Example contributions to the amplitude of µ → e transition in nuclei. Left: wino box

contribution. Middle: Z penguin contribution. Right: photon penguin contribution.

not contribute to Cq
RV . For the contributions to Cq

LV we find in the limit |mW̃ | � m˜̀,mq̃

and to first order in the mass insertions

Cu,box
LV = Cd,box

LV =
α2

2

m2
q̃

(δLµe)
5

4
f
(
m2

˜̀/m
2
q̃

)
, (24)

with the loop function

f(x) =
1

8(1− x)
+

x log x

8(1− x)2
, so that f(1) =

1

16
, f(0) =

1

8
. (25)

The wino boxes decouple if either the squark mass mq̃ or slepton mass m˜̀ become large.

They do not contain large logs, are largely independent of the gaugino masses and also

independent of the µ parameter.

The photon penguins are also dominated by wino loops, see Fig. 10 (right), which generate

only the left-handed coefficients Cq
LV ,

− 1

2
Cu,γ
LV = Cd,γ

LV =
αemα2

m2
˜̀

(δLµe)

[
1

4
+

1

9
log

(
|mW̃ |2
m2

˜̀

)]
. (26)

The ratio between the photon penguin contributions to Cu
LV and Cd

LV is set by the quark

charges. Note that the photon penguin is enhanced by a large logarithm, log(|mW̃ |2/m2
˜̀),

which arises from diagrams where the photon couples to the light charged wino (as in the

right diagram of Fig. 10).

Finally, Z penguins arise dominantly from diagrams that involve higgsino-wino mixing.

The general form of the Z penguin contributions to Cq
LV reads

Cd,Z
LV =

α2
2

m2
˜̀

(δLµe)
1

16

(
1− 4

3
s2
W

)[
c2
βf1(xW , xµ) + s2

βf2(xW , xµ) +
µmW̃

m2
˜̀

sβcβf3(xW , xµ)

]
,
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Cu,Z
LV

(
1− 4

3
s2
W

)
= −

(
1− 8

3
s2
W

)
Cd,Z
LV . (27)

As before, xW = |mW̃ |2/m2
˜̀ and xµ = |µ|2/m2

˜̀. The full form of the loop functions fi is

given in Appendix B. In the limit of light winos and heavy higgsinos, we find for the loop

functions

f1(x, y), 3f2(x, y)
x→0−−→ 3y − 9

2(1− y)2
− 3 log y

(1− y)3
, f3(x, y)

x→0−−→ −12(1 + y)

y(1− y)2
− 24 log y

(1− y)3
. (28)

In the other relevant limit, namely light winos and light higgsinos we find

f1(x, y), 3f2(x, y)
x,y→0−−−→ −3 log y , f3(x, y)

x,y→0−−−→ −24 log y . (29)

Note the appearance of large logs in the case of a small higgsino mass.

For large values of tan β, the contributions from the dipoles are typically dominant.

For moderate tan β, however, the other contributions can become important as well. For

small Higgsino mass |µ| ∼ |mB̃|, |mW̃ | and moderate tan β, both Z penguins and photon

penguins usually give the largest contributions due to the log(|µ|2/m2
˜̀) and log(|mW̃ |2/m2

˜̀)

enhancement. For a large µ parameter (and moderate tan β), only the photon penguins are

enhanced and generically give the dominant SUSY contributions to the µ → e conversion.

Box contributions are typically only relevant in the regime where |mW̃ | ∼ m˜̀,mq̃ which is

contrary to the spirit of the mini-split SUSY setup.

Current and expected bounds on the mini-split SUSY parameter space from µ → e

conversion are shown in Fig. 11. The dark (light) shaded regions are excluded at the 95%

(90%) C.L. by the current limits on the µ→ e conversion rate in Au. The black solid lines

show the predicted rates for the µ→ e conversion rate in Al, with the expected sensitivity

of the Mu2e experiment indicated by a dashed line. The bounds are either shown in the

m˜̀ vs. |mB̃| = |mW̃ | plane with a fixed tan β = 5 (top row) or in the m˜̀ vs. tan β plane,

where gaugino masses are fixed to |mB̃| = |mW̃ | = 5 TeV (bottom row). We also show a

two-fold choice for the value of the µ parameter. It is either set to be equal to the slepton

masses (left column) or to the gaugino masses (right column). In all panels the signs of the

gaugino masses and the mass insertions (taken to be |δLij| = |δRij | = 0.3) are chosen such that

the dominant contributions interfere constructively for large slepton masses.

From Fig. 11 one sees that for large tan β the constraints become stronger with increasing

tan β due to dipole dominance. For small tan β, however, Z or photon penguins dominate
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FIG. 11: Predicted µ→ e conversion rates in Al in the m˜̀ vs. |mB̃| = |mW̃ | plane (top row) and

the m˜̀ vs. tanβ plane (bottom row). The higgsino mass is set either equal to the slepton masses

(left column) or to the gaugino masses (right column). All relevant mass insertions are fixed to

|δLij | = |δRij | = 0.3. The dark (light) shaded regions show 95% (90%) C.L. exclusions by the current

limits on µ → e conversion in Au, while the sensitivity of the planned Mu2e experiment is given

by the dashed lines.
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and the bounds become approximately independent of tan β. For moderate tan β, current

bounds on the slepton masses are around O(10 TeV) for large |µ| and around O(30 TeV)

for small |µ|. The sensitivity of the Mu2e experiment will allow to improve these bounds by

at least one order of magnitude and to probe slepton masses generically at a scale of O(300

TeV) and above, barring accidental cancellations.

C. The µ → 3e Decay

In the frequently studied case of TeV scale SUSY, it is well known that even for mod-

erate and low tan β the µ → 3e decay rate is dominated by the contributions from the

µ → eγ dipole operator [76, 77]. The dipole dominance is due to the appearance of a

large log(m2
µ/m

2
e) in the corresponding phase space integration. In the mini-split SUSY

framework, thus dipole dominance typically remains a good approximation. It gives

BR(µ→ 3e)

BR(µ→ eγ)
' αem

3π

(
log

(
m2
µ

m2
e

)
− 11

4

)
' 6× 10−3. (30)

The current bound on the branching ratio of the µ→ 3e decay [34]

BR(µ→ 3e) < 1.0× 10−12 @ 90% C.L. , (31)

leads to much weaker constraints than the direct constraint from the µ → eγ branching

ratio (13). The proposed Mu3e experiment [35] aims at an ultimate sensitivity of BR(µ→
3e) . 10−16. Assuming dipole dominance, this would lead to constraints slightly better than

to those obtained from the MEG update [33].

The bounds on the mini split SUSY parameter space implied by µ → 3e are shown in

the plots in Fig. 12, in complete analogy to the µ → eγ plots in Fig. 9. We explicitly

checked that contributions from boxes, photon penguins, and Z penguins are generically

small. Nonetheless, we include them in our numerics using the general expressions for

the branching ratio given in [76, 77]. As anticipated, current bounds from µ → 3e are

significantly weaker compared to the µ → eγ bounds. Only for very large values of tan β

can µ → 3e probe slepton masses beyond 10 TeV. The sensitivity of the proposed Mu3e

experiment, on the other hand, will allow to probe scales of 100 TeV and beyond even for

moderate tan β ∼ 5.
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FIG. 12: Bounds from the µ → 3e decay in the m˜̀ vs. |mB̃| = |mW̃ | plane (top row) and the m˜̀

vs. tanβ plane (bottom row). The higgsino mass is either equal to slepton masses (left column)

or to the gaugino masses (right column). All relevant mass insertions are set to |δLij | = |δRij | = 0.3.

The dark (light) shaded regions are excluded at the 95% (90%) C.L. by the current measurement

assuming constructive interference between the respective dominant NP amplitudes. The white

dotted lines show the case of destructive interference. The dashed lines show the sensitivity of the

proposed Mu3e experiment.
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VI. IMPLICATIONS FOR MODELS OF FERMION MASSES

So far we considered mini-split SUSY in a “generic” setting, i.e., largeO(1) flavor violation

at a universal squark and slepton mass scale. It is interesting though to put our results also

in context of models that explain the SM flavor structure. We consider two possibilities

– models with horizontal symmetries and models with radiative mass generation. In the

models with horizontal symmetries the SM fermion masses and mixings suggest textures for

flavor violating entries in the squark and slepton mass matrices. In models with radiative

fermion mass generation, on the other hand, the creation of first generation fermion masses

through scalar loops requires a minimal amount of flavor violation, which can then be tested

with low energy probes.

A. Textures: Anarchy versus Hierarchy.

One of the most popular ways to explain the flavor structure of the SM is to invoke a

flavor texture for the Yukawa matrices. The simplest such models include a set of flavor

dependent spurions εA associated with the breaking of chiral symmetry

yiju ∼ εiQε
j
U , yijd ∼ εiQε

j
D , yijl ∼ εiLε

j
E . (32)

Such textures arise in many models, including models with horizontal symmetries [81, 82],

Froggatt-Nielsen models [83], models with extra dimensions, either flat [85] or warped [86–

88], Nelson-Strassler models [89] (generation of hierarchy by large anomalous dimensions),

etc. It is useful to review here a choice for εA that produces qualitative agreement with the

known fermion masses and mixings. As a concrete and well motivated benchmark we also

impose SU(5) relations which gives (see e.g. [89])

ε10 ≡ εQ = εU = εE ∼


0.003

0.04

1

 and ε5̄ ≡ εD = εL ∼


0.004

0.025

0.025

 . (33)

The hierarchy in spurions for fields that are in the 10 representation of SU(5) (Q, U , and

E) is more pronounced than for fields in the 5̄ representation (D and L), to account for

the larger hierarchy among up-type quarks. For simplicity, we took tan β of order one,

though this choice will not affect the discussion here. Small variations around the numbers
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in Eq. (33) are certainly possible, since O(1) numbers can always compensate for a mild

change in the εA’s.

Given a texture for the fermion mass matrix, it is a model dependent question what the

texture of the superpartner masses may be. In order to demonstrate this model dependence,

we consider a few possible textures for sfermion mass matrices and give an example of a UV

model for each. We also keep track of how the various low energy probes are affected by our

choice of the sfermion texture.

a. Anarchic sfermion masses - This is the ansatz we have been considering thus far.

The texture for scalar masses is

m̃2
ij ∼


1 1 1

1 1 1

1 1 1

 , (34)

for all scalars. Beyond being phenomenologically convenient and interesting, this ansatz

can easily come from simple UV models of flavor. This is precisely the type of scenario

generations of model builders have worked to avoid within TeV scale SUSY. It will generally

arise in a situation where SUSY breaking and the generation of Yukawa matrices happen

at very different scales or different locations in an extra dimension. For example, if SUSY

breaking is mediated at a scale far above a Frogatt-Nielsen scale, the scalar masses will be

maximally mis-aligned with the flavor basis.

In order to have a concrete example, consider a supersymmetric Kaplan-Tait [85] model

with a flat extra dimension (the scale of the extra dimension is not of importance here) and

the Higgs fields confined to an orbifold fixed point at x5 = 0. Matter fields live in the bulk

of the extra dimension and have flavor dependent bulk masses which are not particularly

hierarchical. The profiles of the fermion wave functions in the extra dimension are to a good

approximation exponentials ∼ eM
(f)
i x5 , where M

(f)
i is the bulk mass for i-th generation of the

fermion f . The fermion mass matrix in the 4D theory will be affected by the exponentially

small overlaps between the fermion profiles and the Higgs brane. After normalizing the field

profiles on the interval 0 to R, we find that the spurion εf in Eq. (32) for the fermion f is

εif ∼ e−M
(f)
i R . (35)

Fermion hierarchies are thus easy to achieve. A mild hierarchy of less than an order of

magnitude, between the smallest and largest bulk mass is needed to produce the numbers
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in Eq. (33).

In contrast to the Higgs, the hidden sector field which breaks SUSY may live in the bulk

of the extra dimension. Let us assume for simplicity that it has flat profile. The scalar

soft masses are then proportional to overlap integrals of the various flavors. One quickly

finds (we suppress the representation index f)

δij ∼
2
√
MiMj

Mi +Mj

, (36)

which is anarchical for the choices of Mi’s we require. For TeV scale SUSY, such simple

models have been dismissed by models builders in favor of models where SUSY breaking

is localized away from the fermions (in [85] this was done by adding yet another extra

dimension and employing gaugino mediation [90, 91]). The motivation was precisely to

avoid the dangerous flavor constraints which are the topic of our work. In the context of

PeV scale SUSY we are free to consider the simplest possibility.

b. Flavorful sfermion masses - Here the ansatz for the scalar mass texture is

(m2
f̃
)ij ∼ εi∗f ε

j
f . (37)

This class of models includes Nelson-Strassler [89] or flavorful supersymmetry [92], as well

as models with warped or flat extra dimensions [93]. The fermion mass hierarchy can be

achieved, for example, by large anomalous dimension or in the dual picture by bulk fermion

masses in a warped extra dimension. Since we already presented a flat extra dimensional

model for the anarchical case, we will continue along this theme also here (similar to [93]).

Similarly to the anarchic case, the fermion mass hierarchy is produced naturally using ex-

ponential profiles and a Higgs on a brane. However, this time the SUSY breaking field X is

localized on the same brane as the Higgs. The operator X†XQ†Q in the 4D theory will be

proportional to the values of the wave functions at the brane, namely the ε’s.

Throughout our analysis we have taken a common scale for all sfermions. In this case the

assumption is violated for most scalars. Note, however that the left handed sleptons as well

as the right handed down squarks retain an anarchical texture even in this “hierarchical”

case, cf. Eq. (33). We thus expect the LFV observables to remain sensitive to high slepton

masses. Furthermore, K−K̄ mixing will also be highly constraining, though its sensitivity is

somewhat reduced compared to the fully anarchical case because the enhanced LR hadronic

matrix element will be replaced by the moderate RR one.
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c. Horizontal symmetries and Frogatt-Nielsen - In this setup [81–83] every fermion f

in the SM is assigned a charge xf under a flavor U(1) symmetry. The symmetry is violated

by a spurion which carries a charge of -1 and whose size is set to be λ ∼ 0.2, of order

the Cabibbo angle. The spurion is presumably generated by the vev of a field, but we will

not specify its dynamics here. Our analysis will also not depend on whether the horizontal

symmetry is a continuous global symmetry, or a discrete remnant of a U(1).

After introducing the spurion every interaction in the SM formally respect the horizontal

symmetry. In the Yukawa interactions every fermion f is thus accompanied by the symmetry

violating spurion raised to the power xf . This leads to a texture of the form of Eq. (32). For

concreteness we will adopt the Seiberg-Nir “master model” [82] as an example of a viable

choice for the charges (the model was extended to accommodate leptons in [94]). This model

by itself is ruled out in the context of natural SUSY because of excessive FCNC’s, and was

used as a useful starting point to build more elaborate models such as models with two or

more U(1)’s. For PeV SUSY the flavor problem is automatically alleviated and we are free

to consider the simplest model imaginable. The U(1) charge assignments, xif are

ferm./gen. 1 2 3

Q 3 2 0

U 3 1 0

D 3 2 2

L 3 3 3

E 5 2 0

where the spurion λ carries a charge of -1. This choice gives εif = λx
i
f which are within a

factor of a few of the values in Eq. (33) for each entry (here xif is the U(1) charge of the

field in question with i the generation index). It is also perfectly reasonable to consider

variations around this model, as “order one” couplings can easily compensate for a single

power of λ here and there. For example, it is easy to pick charges in which the fields Q, U

and E have similar charges across generations, as do D and L in order to respect SU(5) (as

Eq. (33) does). For concreteness, however, we will stay with the master model.

The squark and slepton soft masses come from operators of the form Q†Q, L†L, etc.

Flavor diagonal terms are automatically invariant under the U(1), while off diagonal terms
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are suppressed by

δij ∝ λ|x
i
f−x

j
f |. (38)

For the master model choice of charges the squark mass matrices have the following textures

m2
q̃ ∼


1 λ λ3

λ 1 λ2

λ3 λ2 1

 , m2
ũ ∼


1 λ2 λ3

λ2 1 λ

λ3 λ 1

 , m2
d̃
∼


1 λ λ

λ 1 1

λ 1 1

 , (39)

while the slepton mass textures are

m2
l̃
∼


1 1 1

1 1 1

1 1 1

 , m2
ẽ ∼


1 λ2 λ5

λ2 1 λ3

λ5 λ3 1

 . (40)

In Tab. II, we show which mass insertions control the dominant contribution to the various

observables and the power of λ by which this contribution is suppressed. Note that in

the plots in Sections II-V we took the same benchmark value for all the mass insertion,

(δA)ij = 0.3 which is already somewhat suppressed and is of order O(λ). Therefore, the

cases where a factor of δ2 is replaced by λ2 should be considered as unsuppressed. In cases

where there are several dominant contributions in our benchmark studies, we show the one

that is the least λ-suppressed. In cases where there is a strong sensitivity to µ, we show the

λ scaling both for large and small µ (of order PeV or TeV, respectively).

Though some probes loose significant ground within this framework compared to the an-

archical ansatz, others retain their sensitivity. In particular, K-K̄ mixing is still robust, and

D-D̄ mixing is only slightly suppressed compared to our benchmark. Also LFV observables

remain sensitive, thanks to the non-hierarchical structure of the εL spurions (numerically

they are even O(1/λ2) more sensitive compared to our benchmark scenario in Sections II-V).

The strongest loss is suffered by EDM limits in the case of large µ, because these diagrams

require a transition from the first to the third generation and back, both in the left and right

handed fermion side. However, we can deduce that many of the probes we have considered

are still quite promising.

In summary, having assumed a simple texture for fermion masses, we showed several

possibilities for how sfermion masses are affected. Many of the low energy probes remain

sensitive, and information from a multitude of channels could begin to distinguish among

different flavor models.
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Observable
Suppression

large-µ small-µ

u-EDM (small tβ) δ13
qLδ

13
uR → λ6 unaffected

d-EDM (large tβ) δ13
qLδ

13
dR → λ4 unaffected

e-EDM δ13
lLδ

13
eR → λ5 unaffected

K-K̄ δ12
qLδ

12
dR → λ2

D-D̄ δ12
qLδ

12
uR → λ3

B-B̄ δ23
qLδ

23
dR + . . .→ λ4 + . . .

Bs-B̄s δ13
qLδ

13
dR + . . .→ λ2 + . . .

µ→ eγ |δ12
lL |2 → 1

µ→ e conv. |δ12
lL |2 → 1

µ→ 3e |δ12
lL |2 → 1

TABLE II: The effect of a simple horizontal symmetry framework (39), (40), on observables con-

sidered in this work, compared to the benchmark (δA)ij = 0.3 ∼ O(λ) anarchical scenario of

Sections II-V. For each observable we show which combination of mass insertions controls it and

the corresponding λ scaling. Compared to the benchmark scenario an observable’s sensitivity

should be considered “suppressed” in horizontal symmetry framework only for λ3 suppression or

higher.

B. Radiative Fermion Masses

Mini-split SUSY and the possibility of large flavor violation at the PeV scale introduces

a new opportunity for generating fermion masses. One can imagine a scenario in which only

the third generation gets masses at tree level and loops of superpartners induce suppressed

masses for the first two generations. In the context of TeV scale SUSY this does not work [17],

because it requires large flavor violation for squarks and sleptons which in turn generates too

large FCNC’s. In the context of PeV scale SUSY this opportunity is re-opened, particularly

for the first generation [12]. It is interesting to connect this scenario to low energy probes.

This is especially interesting because the mediation of mass, say, from top to up, implies a

lower bound on required flavor violation. In this section, we first briefly review the 1-loop

33



uR uL
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FIG. 13: Flavor violation enhanced 1-loop contributions to the 1st generation fermion masses: up

quark (left), down quark (middle), and electron (right).

SUSY corrections to the SM fermion masses and then show that they are directly related to

the sizes of (chromo)EDMs. We start by focusing on the up quark mass which is very easy

to generate in the mini-split SUSY framework. We will then also discuss the possibility of

generating the down quark and electron masses, and where in parameter space this attempt

pushes us.

1. Radiative Up Mass and the EDM

A generic flavor structure in the sfermion soft masses can lead to large radiative correc-

tions to the SM quark and lepton masses. For instance, the correction to the up quark mass,

shown in Fig. 13 (left), is

∆mg̃
u =

αs
4π

8

9

mg̃µ

m2
q̃

mt
1

tβ
(δLutδ

R
tu) . (41)

For a gluino mass that is a loop factor smaller than the squark mass, |mg̃| ∼ 10−2mq̃ and a

sizable µ ∼ mq̃, the correction to the up quark mass can be as large as the up quark mass

itself, ∆mg̃
u ∼ mu,

∆mu ∼ 1 MeV×
(

102mg̃

mq̃

)(
µ

mq̃

)(
1

tan β

)(
δLutδ

R
tu

0.32

)
. (42)

This means that in mini-split SUSY it is potentially possible to explain the small up quark

mass by arguing that it is entirely radiatively generated [12, 17]. Numerically, taking a loop

factor suppression between squark and gluino masses, tan β can be at most of order a few

to get the full up quark mass. Note that an important ingredient is large flavor violation,

(δA)ij ∼ O(1), needed to transmit the enhanced chiral symmetry breaking from the top

quark to the up. Hence, in this subsection we will always assume anarchical mass insertions.
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FIG. 14: Bounds from the neutron EDM in the squark mass mq̃ vs. gluino mass |mg̃| plane in the

case of radiative up quark mass generation for tanβ = 1 (left) and tanβ = 10 (right). Throughout

the plots, the higgsino mass parameter µ is adjusted such that loop effects can account for the

observed up quark mass, as indicated by the gray dotted contours. The dark blue (light blue)

shaded regions in the lower left are excluded at the 95% (90%) C.L. by current EDM measurements.

The gray region in the lower right is excluded by bounds from charge and color breaking.

The diagram in Fig. 13 for the up quark mass is very similar to the leading contribution

to the up quark (C)EDM in Fig. 2. The only difference is that an extra photon or gluon gets

emitted from the loop. Assuming that the up quark mass comes entirely from SUSY loops

naively leads to a tight correlation between the up quark mass and the up quark (C)EDM.

However, to make this connection precise one needs to go beyond the diagrams shown in

Fig. 13 and Fig. 2, because they have the same phase. To show this consider the limit in

which the diagrams in Fig. 13 and Fig. 2 are the only contributions to the up quark mass

and (C)EDMs. Then, if we go to the quark mass eigenbasis in which the up quark mass

is real, the dipole diagrams will also be real. This means that the phase φu in Eq. (7) is

zero and (C)EDMs vanish. As we show next there are, however, other contributions beyond

Figs. 2, 13 which generate a nonzero phase φu and thus nonzero (C)EDMs.

As an example, consider a model in which the top and charm masses are generated at

tree level, and the up mass is generated entirely from SUSY loops. In this case the first row

35



and column of the quark mass and (C)EDM matrices are zero at tree level. The 11, 12,

13, 21, and 31 entries of the mass matrix are populated at one loop by entries of O(mu).

The lightest quark mass eigenvalue is then dominated by the 11 entry, and we can neglect

the rest of the first row and column. In addition to Figs. 13 and 2, the one-one elements of

the up quark mass and (C)EDM matrices receive contributions from O(δ3) mass insertion

diagrams. Since O(δ2) and O(δ3) diagrams are governed by different loop integrals, this

generates nonzero (C)EDMs, with{
du(mq̃)

e
, d̃u(mq̃)

}
= −mu

m2
q̃

Im

[
δLucδ

L
ct

δLut
+
δRucδ

R
ct

δRut

]
×
{

1

4
,
231

64
+

27

32
log x

}
, (43)

where x = |m2
g̃|/m2

q̃ (for an early study of connections between (C)EDM and quark mass

generation see [84]). For mass insertions δ not much smaller than 1, the suppression of

(C)EDM is not significant.

Note that the loop factor and other factors in (7) are now absorbed in the up quark mass

mu. The up quark EDM therefore effectively depends only on two parameters, the ratio

of mass insertions and on the squark mass. The up quark CEDM is also logarithmically

sensitive to the gluino mass. Imposing that mu is entirely due to SUSY loops reduces the

SUSY parameter space by one d.o.f.. Holding all the other parameters fixed, Eq. (41) can

for instance be used to fix the value of µ from mu. We illustrate the remaining dependence

of neutron EDM, dn, on gluino mass, squark mass and tan β in Fig. 14. In it we set all

mass insertions to |(δA)ij| = 0.3, and also assume generic phases, so that Im[...] = 0.6 in

Eq. (43). To calculate dn we also need the sizes of the down quark (C)EDMs. Here, we are

considering a simplified model of radiative quark mass generation with only MSSM fields

at the high scale. A relation analogous to Eq. (43) therefore does not apply for the down

quark. The down quark (C)EDM then depends on tan β and µ explicitly, see Eq. (8).

In Fig. 14 we show two cases, for tan β = 1 and tan β = 10, always setting |(δA)ij| = 0.3.

The parameter µ is fixed from (41) setting mu = 2.5 MeV, with the resulting values for |µ|
indicated by the dotted gray contours. Expected sensitivities to the neutron EDM of the

order of 10−28ecm can probe this scenario for squark masses near 1000 TeV. Note that for

large values of µ a charge and color breaking (CCB) minimum in the MSSM scalar potential

can arise where stops acquire a vev. In the gray region in the lower right part of the plots

denoted by “CCB bound”, the tunneling rate from our vacuum into the CCB vacuum is

faster than the age of the universe [95]. Note, however, that this bound can be evaded by
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lowering µ and increasing the contribution to the up mass, say, by increasing the flavor

violating mass insertion beyond 0.3.

As we shall see, the case of tan β = 10, can be interesting because it allows to generate

simultaneously the up and down quark mass radiatively with comparable mass insertions

in the up and down sectors. In this case, the EDM bound is coming dominantly from the

down quark CEDM (as opposed to the tan β = 1 case in which it was the up CEDM which

dominated). We discuss this region in parameter space and some of the difficulties that

arrise there in greater detail in the next subsection.

2. The Down and Electron Masses

We will now be more ambitious and try to radiatively generate also the down and electron

masses. As we shall see, this will lead us to regions of parameter space that are not typically

discussed in the mini-split SUSY framework. The corrections to the down quark mass from

gluino loop and to the electron masses from bino loop, shown in Fig. 13 (middle) and in

Fig. 13 (right) respectively, are given by

∆mg̃
d =

αs
4π

8

9

mg̃µ

m2
q̃

mb tβ(δLdbδ
R
bd) , ∆mB̃

e =
α1

4π

1

3

mB̃µ

m2
˜̀

mτ tβ(δLeτδ
R
τe) , (44)

where mB̃ is the bino mass and m˜̀ the slepton mass. The correction to the down mass is

closely related to that of the up mass

∆md

∆mu

=
mb

mt

(
δRbd
δRtu

)
t2β , (45)

where we have used the fact that left handed mass insertions are equal for up and down. The

up to down mass ratio thus sets tan β ∼ 10 for anarchical mass insertions. From Eq. (42)

we see that for tan β ' 10, getting the overall quark masses correctly requires either that

µ is an order of magnitude above the squark masses, or that the gluino to squark mass

ratio is 0.1 rather than 10−2. Taking a very large µ is not compatible with the choice of

tan β = 10, unless the Higgs soft masses are also a factor of ten bigger than the squark

masses. At the same time, very large values of µ also lead to dangerous CCB minima in

the MSSM scalar potential (see CCB bound in the right plot of Fig. 14). On the other

hand, splitting the squark and gluino masses by just a single order of magnitude may be

a more attractive possibility, since tan β = 10 requires lighter squark masses for the Higgs
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mass, as seen in Fig. 1. However, this spectrum is not preferred by anomaly mediated

SUSY breaking (AMSB) in its minimal form (adding vector-like matter could help in this

respect [12]). Furthermore, as is also evident from Fig. 1, such light squarks are generically

constrained by meson oscillation limits.

How about the electron mass? The ratio of down to electron masses in this framework is

∆md

∆me

=
8

3

αs
α1

mb

mτ

(
mg̃

m1

)(
m2
l̃

m2
q̃

)(
δLdbδ

R
bd

δLeτδ
R
τe

)
. (46)

Taking the AMSB value for the gluino-to-bino ratio and taking similar masses for sleptons

and squarks gives a down-to-electron ratio that is about a factor of 30 too big. One is

then pushed towards a region where the sleptons are a factor of 5-6 below the squark mass.

Given that the squark masses at tan β ∼ 10 need to be around 30-50 TeV, this brings the

slepton masses below the 10 TeV scale. As a result this scenario is in strong tension also

with µ→ eγ.

We thus conclude that generating the up mass radiatively fits nicely within a flavor

anarchic mini-split SUSY framework. This idea will be tested by upcoming searches for

hadronic EDMs. Even if we are willing to deviate from the AMSB scenario, accommodating

the down and electron masses pushes us toward regions with lighter squarks and sleptons

which is in conflict with low energy probes such as meson mixing and LFV. Explaining the

masses of the first generation radiatively thus requires additional model building.

C. Minimal Flavor Violation

Minimal flavor violation (MFV) assumes that the Yukawa matrices are the only spurions

which break the SM flavor group [96]. MFV assumption effectively suppresses all flavor

violating effects in the quark sector to phenomenologically acceptable levels even for elec-

troweak scale squark masses. The precise value of flavor violation is ambiguous in the lepton

sector due to additional mass or Yukawa terms in the neutrino sector [97]. For example, the

dimension five operator that leads to a Majorana neutrino mass is a spurion that breaks

U(3)L and can have an anarchic flavor structure. Large lepton flavor violation can also arise

in the case where the neutrino is Dirac.

We conclude that in mini-split SUSY scenarios which adhere to the MFV ansatz, flavor

violating effects are possibly observable in the lepton sector, but not in the quark sector.
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Note, however, that neutron EDM in the case of small µ can be mediated by purely flavor

conserving interactions (see Sec. III B).

VII. DISCUSSION

In this work we explored the potential of low energy probes of a mini-split supersymmetry

scenario, where sfermions live at around 0.1−1 PeV. The observables we considered include

quark and lepton flavor violating processes as well as electron and neutron electric dipole

moments. In some cases this leads to notable difference between flavor constraints familiar

from studies of natural SUSY. For example, in lepton flavor violating processes the penguin

contributions are log enhanced. This leads to a deviation from “dipole-dominance” in µ→ e

conversion which is commonplace in TeV scale SUSY. The ratio of µ→ eγ and µ→ 3e still

respects the dipole dominance relation in mini-split SUSY. In addition, in mini-split SUSY

the limits from meson mixing are essentially independent of the gluino mass and constrain

only the squarks, which is obviously not the case for more traditional SUSY spectra.

Making a flavor anarchic ansatz for squark and slepton mass matrices we found that cur-

rently only CP violation in kaon mixing can be sensitive to PeV sfermions. Other probes are

not far behind, however, with D-D̄ mixing and neutron EDM limits constraining sfermions

at 100 TeV. Even within a flavor anarchical assumption we cannot predict which flavor and

CP violating elements of the sfermion mass matrix will be large and which would be acci-

dentally suppressed. It is thus important to probe the 0.1−1 PeV scale with as many probes

as possible. In this context, the projections for the sensitivity of planned experiments are

very exciting. The neutron EDM will become sensitive to squarks at a PeV. The electron

EDM and charm mixing will respectively probe sleptons and squarks with masses of around

300 TeV. The upcoming µ2e experiment will improve current limits for muon to electron

conversion by four orders of magnitude and will probe sleptons at the 100 TeV scale, with

further improvements possible with Project X [50].

Our results apply beyond the flavor anarchical ansatz for scalar mass matrices. We have

for instance also considered the impact of low energy bounds on a a broad variety of models

that address the fermion mass hierarchies. For these many low energy precision experiments

and rare process searches are still sensitive to the 0.1− 1 PeV scales. As such our results as

well as the motivation for low energy experiments become even more robust.
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uR uLũR ũLt̃R t̃L

〈Hd〉

g̃ g̃

⇒
uR uL

g̃ g̃

FIG. 15: An example of a tree level matching that generates the Oqg̃, O
′
qg̃, O

′′
qg̃ operators (right

diagram) when the squarks are integrated out (left diagram) at the scale µ̂ ∼ mq̃.
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Appendix A: Log Resummation for Quark CEDMs in Mini-Split SUSY

A large hierarchy between gluino and squark masses leads to a large logarithm,

log(|mg̃|2/m2
q̃), in the expressions for the quark CEDMs, cf. Eqs. (7), (8). We resum

logs of this type by performing a two step matching procedure. In the first step, we inte-

grate out the heavy squarks at the scale µ̂ ∼ mq̃. This gives us an effective field theory valid

for scales |mg̃| . µ̂ . mq̃ where the gluino is still kept as a dynamical degree of freedom.

The higher dimensional operators that are generated in the first matching are then evolved

down to the low scale µ̂ ∼ |mg̃| using renormalization group. Finally, at the low scale,

µ̂ ∼ |mg̃|, also the gluino is then integrated out from the theory, matching onto the usual

CEDM effective Lagrangian (3).

We start by integrating out the squarks at the scale µ̂ ∼ mq̃, which gives an effective
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ũR ũL
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Õu
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g
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Oqg̃

g̃

g

FIG. 16: An example of 1-loop level matching that generates the Õu operator at the scale µ̂ ∼ mq̃.

theory with SM fields and gauginos. The relevant terms in the effective Lagrangian are

Leff,g̃ =
dq
Qqe

Oq + d̃qÕq + Cqg̃Oqg̃ + C ′qg̃O
′
qg̃ + C ′′qg̃O

′′
qg̃. (A1)

The first two terms are the usual dimension 5 (C)EDM operators

Oq = − i
2
eQq (q̄ασ

µνγ5qβ) Fµν δαβ , (A2)

Õq = − i
2
gs (q̄ασ

µνγ5qβ) Ga
µν T

a
αβ . (A3)

The remaining three operators in (A1) are of dimension 6 and contain two quarks and two

gluino fields. In (A1) we only keep the CP violating operators, since they are the ones that

are potentially important for the running of the CEDM operators. The notation that we

use is

Oqg̃ = g2
s

1

mg̃

[
(q̄αg̃a)(¯̃gbγ5qβ) + (q̄αγ5g̃a)(¯̃gbqβ)

]
fabcT

c
αβ , (A4)

O′qg̃ = ig2
s

1

mg̃

[
(q̄αg̃a)(¯̃gbγ5qβ) + (q̄αγ5g̃a)(¯̃gbqβ)

]
dabcT

c
αβ , (A5)

O′′qg̃ = ig2
s

1

mg̃

[
(q̄αg̃a)(¯̃gbγ5qβ) + (q̄αγ5g̃a)(¯̃gbqβ)

]
δabδαβ , (A6)

where α, β = 1 . . . 3 and a, b, c = 1 . . . 8 are color indices and fabc (dabc) are the totally anti-

symmetric (symmetric) SU(3) structure constants. The normalization factor of g2
s/mg̃ is

introduced for later convenience.

The Wilson coefficients of the quark-gluino operators at the high scale µ̂ ' mq̃ are

obtained by integrating out the squarks in the tree level diagrams such as shown in Fig. 15,

giving {
Cug̃, C

′
ug̃, C

′′
ug̃

}
=
|µmg̃|
m4
q̃

mt
1

tβ
|δLutδRtu| sinφu

{
−1

2
,
1

2
,
1

6

}
, (A7)
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{
Cdg̃, C

′
dg̃, C

′′
dg̃

}
=
|µmg̃|
m4
q̃

mb tβ |δLdbδRbd| sinφd

{
−1

2
,
1

2
,
1

6

}
. (A8)

The (C)EDM Wilson coefficients at µ̂ ' mq̃ are then obtained by performing the matching

at 1-loop with representative diagrams shown in Fig. 16, giving for the case of the up quark{
3du
2e

, d̃u

}
=

αs
4π

|µmg̃|
m4
q̃

mt
1

tβ
|δLutδRtu| sinφu

{
−4

3
,−59

6

}
, (A9)

while for the case of down quark one obtains{
−3dd

e
, d̃d

}
=

αs
4π

|µmg̃|
m4
q̃

mb tβ |δLdbδRbd| sinφd

{
−4

3
,−59

6

}
. (A10)

Note that no large logs appear in these Wilson coefficients.

The operators in (A2)–(A6) mix under renormalization. In particular Oqg̃ mixes at 1-

loop into the CEDM operator Õq with the relevant diagram shown in Fig. 16 (right-most

diagram). The other four fermion operators, O′qg̃ and O′′qg̃, on the other hand, cannot mix at

1-loop into Õq due to their symmetric color structure. The running and mixing of the four

fermion operators is determined by the diagrams shown in Fig. 17. For the 1-loop anomalous

dimension matrix γ̂ that determines the running and mixing of the dipole operators Oq and

Õq with the operators Oqg̃, O
′
qg̃, and O′′qg̃, we find

γ̂ =
αs
4π
γ̂0 =

αs
4π



8/3 0 0 0 0

32/3 4/3 0 0 0

0 12 −52/3 18 12

0 0 10/3 −16 0

0 0 8 0 −34


. (A11)

The results recently presented in [98] are consistent with this anomalous dimension matrix.4

The Wilson coefficients then evolve according to(
dq(|mg̃|)
eQq

, d̃q(|mg̃|), Cqg̃(|mg̃|), C ′qg̃(|mg̃|), C ′′qg̃(|mg̃|)
)T

= η
γ̂T0
2β0

(
dq(mq̃)

eQq

, d̃q(mq̃), Cqg̃(mq̃), C
′
qg̃(mq̃), C

′′
qg̃(mq̃)

)T

, (A12)

with η given by

η =
αs(mq̃)

αs(|mg̃|)
=

1

1− β0
αs(|mg̃ |)

4π
log(|mg̃|2/m2

q̃)
. (A13)

4 We thank the authors of [98] for pointing out an error in the first version or this work.
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FIG. 17: The diagrams that determine the running and mixing of the operators Oqg̃, O
′
qg̃, and O′′qg̃

at the 1-loop level.

In the above expressions, β0 is the 1-loop coefficient of the QCD beta function. Taking into

account that there is still a contribution of a gluino to αs running, one has [99]

βs = −αs
4π
β0 = −αs

4π
(11− 2

3
nf − 2ng̃), (A14)

where nf and ng̃ are the numbers of active quarks and gluinos, i.e. ng̃ = 1(0) above (below)

the gluino threshold.

Explicitly, for the quark CEDMs at the gluino scale, µ̂ ' |mg̃|, we get from (A12)

d̃q(|mg̃|) = η
2
15 d̃q(mq̃) + Cqg̃(mq̃)

4∑
i=1

hiη
ai + C ′qg̃(mq̃)

4∑
i=1

h′iη
ai + C ′′qg̃(mq̃)

4∑
i=1

h′′i η
ai , (A15)

with the “magic numbers”

a1 = 2/15 , a2 = −0.706 , a3 = −2.125 , , a4 = −3.903 ,

h1 = 0.961 , h2 = −0.759 , h3 = −0.141 , h4 = −0.061 ,

h′1 = 0.185 , h′2 = −0.283 , h′3 = 0.090 , h′4 = 0.009 ,

h′′1 = 0.218 , h′′2 = −0.226 , h′′3 = −0.088 , h′′4 = 0.096 .

(A16)

Since we are working at leading log approximation, integrating out the gluino at the scale

µ̂ ' |mg̃| does not give further threshold corrections to the CEDM. In (A15) the large log is

resummed by the renormalization group evolution. Expanding this result to leading order

in αs, we recover the fixed order results in (7) and (8). Numerically, the correction from the
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RG running can be significant. For instance, for |mg̃| = 3 TeV and mq̃ ' 103 TeV it is a

∼ 85% correction to the unresummed result.

Note that all quantities entering the initial conditions of the Wilson coefficients at the

squark scale, µ̂ = mq̃, also need to be evaluated at the same scale mq̃. This is in particular

true for αs, the top and bottom masses and also the gluino mass. The 1-loop running of αs

in the presence of a dynamical gluino is in (A14). The anomalous dimension of the quark

masses does not get altered at 1-loop by the presence of a gluino, and thus

mq(mq̃)

mq(|mg̃|)
= η

γmq
2β0 = η

4
5 . (A17)

For the 1-loop running of the gluino mass we find

mg̃(mq̃)

mg̃(|mg̃|)
= η

γmg̃
2β0 = η

9
5 . (A18)

In all the plots we show, the gluino mass refers to mg̃(|mg̃|). Below the gluino threshold,

µ̂ . |mg̃|, the evolution of αs, mq, as well as the quark (C)EDMs is governed by the respective

SM RGEs.

Appendix B: Loop Functions

The loop functions that enter the wino contributions to µ→ eγ read

g1(x) =
1 + 16x+ 7x2

(1− x)4
+

2x(4 + 7x+ x2)

(1− x)5
log x , (B1)

g2(x, y) = −11 + 7(x+ y)− 54xy + 11(x2y + y2x) + 7x2y2

4(1− x)3(1− y)3

+
x(2 + 6x+ x2)

2(1− x)4(y − x)
log x+

y(2 + 6y + y2)

2(1− y)4(x− y)
log y , (B2)

g3(x, y) = −40− 33(x+ y) + 11(x2 + y2) + 7(x2y + y2x)− 10xy

4(1− x)3(1− y)3

+
2 + 6x+ x2

2(1− x)4(y − x)
log x+

2 + 6y + y2

2(1− y)4(x− y)
log y . (B3)

The loop functions that enter the Z penguin contributions to µ→ e conversion read

f1(x, y) =
x3(3− 9y) + (y − 3)y2 + x2(3y − 1)(1 + 4y) + xy(y(13− 11y)− 4)

2(1− x)2(1− y)2(x− y)2
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+
x(2x3 + 2y2 + 3xy(1 + y)− x2(1 + 9y))

(1− x)3(x− y)3
log x

+
y2(y + x(7y − 5)− 3x2)

(1− y)3(x− y)3
log y , (B4)

f2(x, y) =
x3(1− 3y) + 3(y − 3)y2 − x(y − 3)y(y + 4) + x2(y(13− 4y)− 11)

2(1− x)2(1− y)2(x− y)2

+
x(2x3 + 2y2 + 3x2(1 + y)− xy(9 + y))

(1− x)3(y − x)3
log x

+
y2(x2 + x(7− 5y)− 3y)

(1− y)3(y − x)3
log y , (B5)

f3(x, y) = −12(x+ y + x2 + y2 + x2y + y2x− 6xy)

(1− x)2(1− y)2(x− y)2

+
24x(x2 − y)

(1− x)3(y − x)3
log x+

24y(y2 − x)

(1− y)3(x− y)3
log y . (B6)
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