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Abstract 

We report a surface treatment that systematically improves the quality factor of niobium radio 

frequency cavities beyond the expected limit for niobium. A combination of annealing in a partial 

pressure of nitrogen or argon gas and subsequent electropolishing of the niobium cavity surface leads 

to unprecedented low values of the microwave surface resistance, and an improvement in the 

efficiency of the accelerating structures up to a factor of 3, reducing the cryogenic load of 

superconducting cavities for both pulsed and continuous duty cycles. The field dependence of the 

surface resistance is reversed compared to standardly treated niobium. 

 

1. Introduction 

 

Superconducting Radio Frequency (SRF) is a key enabling technology for essentially all 

new high energy and high beam power accelerators envisioned worldwide. Applications 

of SRF particle accelerators range from particle and nuclear physics to medicine, defense, 

homeland security, and industry. The typically employed cavity surface processing for 

achieving the state-of-the-art RF performance includes a combination of chemical 

treatments like electropolishing (EP), buffered chemical polishing (BCP) and heat 

treatments [1]. Decades of SRF R&D in laboratories and universities have enabled SRF 

niobium cavities to perform reliably and systematically with large quality factors Q (ratio 

of cavity stored energy to dissipated power per RF cycle) typically determined by the 

adopted surface processing, up to accelerating gradients Eacc~40 MV/m corresponding to 

peak magnetic fields on the cavity surface of Bpk~160-180 mT. However, SRF niobium 

cavities still suffer from a decreased efficiency with the increasing RF accelerating 

voltage Eacc. The phenomenon, known as medium field Q-slope [1-5] (MFQS) consists of 

a degradation of the cavities quality factor up to 50% at peak magnetic fields ~ 60-80 

mT, which correspond to the operating field range of all the continuous wave present and 

future accelerators, like for example Project X [6], NGLS [7] and ERLs [8]. Eliminating 

this Q degradation would be very beneficial for continuous wave (CW) accelerators, 

since it would contribute to cut significantly capital and operating costs. The quality 

factor of a SRF cavity is inversely proportional to the niobium RF surface resistance, 

consisting of two components: the temperature dependent Bardeen Cooper Schrieffer 

(BCS) part, due to thermal excitation of quasi-particles at a finite temperature, and a 

temperature independent component defined as the residual resistance due to several 

factors like for example trapped magnetic flux, normal conducting precipitates etc. The 
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key to reduce the large costs associated with cryogenic losses in SRF accelerators is to 

find a surface treatment that can minimize the two surface resistance components and 

their field dependence. The origin and the nature of the field dependence of surface 

resistance in niobium cavities remain poorly understood, despite having been the subject 

of advanced investigations for many years [1, 9, 10, 11, 12]. Also, while an empirical 

cure for the high field losses – above 80 mT peak magnetic fields- has been identified in 

the ‘120°C bake’ [13, 14, 15], up to today there is no known surface processing, which 

reproducibly eliminates the medium field RF losses. Only two separate experimental 

results have been reported where the field dependence of the surface resistance is actually 

reversed [16, 17], but neither the origin of, nor the empirical process leading to the Q 

field dependence reversal for those two cases have been understood, and results have not 

been reproduced. In this letter we report the finding of a surface treatment that 

reproducibly reverses the field dependence of the surface resistance of niobium cavities, 

in particular of its temperature dependent component. The treatment produces also lower 

than typical residual resistances, leading overall to quality factors two to three times 

higher than those obtained with standard treatments. 

The studies presented began with the idea to lower the SRF niobium cavities surface 

resistance by realizing a RF layer of a superconducting compound with a higher critical 

temperature than niobium. For years a large R&D effort at several institutions and 

universities has been ongoing towards the realization of materials alternative to niobium, 

like Nb3Sn, NbN, NbTiN for SRF cavities via deposition of thin films or via bulk 

diffusion  [17, 18, 19, 20, 21, 22]. Several results have been reported where a cavity 

surface layer possessing higher critical temperature has been obtained [23, 24, 25, 26] 

leading to extremely low BCS surface resistance values. However, a typical issue limiting 

the performance of such coated cavities is the presence of large residual resistances of ~ 

hundreds of nΩ, possibly due to the co-formation of unwanted phases with very low 

critical temperatures. To date, only one result has been obtained on a Nb3Sn cavity made 

at University of Wuppertal with both extremely low BCS and residual resistances, but 

limited however to low accelerating gradients due to a strong Q degradation with field 

[27].  

 
Table 1. List of SRF niobium cavities used in the study and respective parameters and performance post 

nitrogen heat treatment, for different amount of material removal via EP. 

CAVITY ID Type Treatment  Subsequent cumulative 

material removal via 

EP for each RF test 

[µm] 

Highest Q measured at 

T=2K (correspondent 

to material removal in 

bold); max Q value 

located at ~ Bpk [mT] 

TE1AES016 Large grain EP 1000°C 1 hour with ~ 

2×10-2 Torr p.p. nitrogen 
80  (7.4±1.4)×1010, 40 mT 

TE1AES003 Fine grain BCP 1000°C 10 min with ~ 

2×10-2 Torr p.p. nitrogen 

10, 60 (4.1±0.6)×1010, 50 mT 

TE1AES005 Fine grain EP 1000°C 1 hour with ~ 

2×10-2 Torr p.p. nitrogen 

20, 40, 80 (4.2±0.13)×1010, 70 mT 

TE1NR005 Fine grain EP 800°C 3 hours in UHV, 

followed by 800°C 10 

min with ~ 2×10-2 Torr 

p.p. nitrogen 

5, 15 (5.3±0.85)×1010, 70 mT 
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2. Experimental details and results 

 

We decided to investigate the possibility of forming a niobium nitride layer by reacting 

bulk niobium cavities with nitrogen in a high temperature UHV furnace. Three single cell 

1.3 GHz TESLA shape fine grain cavities and one large grain cavity were baked in the 

high temperature furnace with nitrogen gas injection for a certain period of time, as 

summarized in Table 1. A description of the furnace used in these studies can be found in 

[29]. The cavities then received the typical preparation for RF testing, consisting of a 

high-pressure water rinse (HPR) [1]. The RF characterization of the cavities consists of 

measurements of the quality factor versus the accelerating gradient via standard phase 

lock techniques, as described in [30]. We used fixed input antennas which were trimmed 

to a length matching the cavity Q at T=2 K with the external quality factors Qext in the 

range 5×10
9
 < Qext < 8×10

10
. Corresponding case-by-case calculated errors on the Q 

values are reported in Table 1. Directly after nitrogen treatment, all cavities at T = 2 K 

showed quality factors in the range ~ 10
7
, very poor compared to the routinely achieved 

Q values for standardly treated niobium cavities at this frequency and temperature of ~ 

2×10
10

. These results seemed to indicate formation of unwanted poorly superconducting 

NbN phases. The cavities were then subject to different amounts of material removal of 

the niobium RF surface via EP, as shown in Table 1 respectively, after which they 

received again HPR and full RF measurements were repeated. Surprisingly, after a 

certain amount of material removal via EP post nitrogen treatment, the performance of all 

the nitrogen treated cavities were drastically improved rather than being back to the 

standard performance which are routinely obtained with an EP surface. Fig. 1 shows the 

results of the RF measurements, shown as the cavities Q as a function of the accelerating 

field in the cavity. The Q(Eacc) curves at T = 2 K for the four cavities treated with 

nitrogen plus some amount of EP are compared to a typical Q(Eacc) curve for an 

electropolished cavity.  

 

 
Figure 1. Comparison of quality factors versus accelerating field for nitrogen treated cavities and standardly 

adopted treatment (electropolishing). Improvements in quality factors up to a factor of 3.5 are found, in the 

region of accelerating gradients of interest for CW SCRF accelerators. 
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Two main things in these curves are striking: 1) the measured Q values at T = 2 K are 

significantly higher than typical values for standardly treated surfaces; 2) the field 

dependence of the quality factor is reversed, showing an extended anti-Q-slope, contrary 

to the standard medium Q-slope behavior of niobium cavities. The medium field Q-slope 

in Nb cavities after standard surface treatments is due to the increase in both residual 

resistance and BCS resistance with the amplitude of the RF field, as it has been recently 

shown in [31]. To gain a better understanding of the origin of the Q improvement in the 

nitrogen treated cavities, we adopted the same technique for decoupling residual 

resistance and BCS resistance as a function of field as described in [31]. The results are 

shown in Fig. 2 in comparison to the standard cavity surface treatments: EP, BCP, before 

and after the 120°C bake. Such an analysis reveals that the nitrogen treatment decreases 

the BCS resistance at low RF fields to values comparable to those obtained with the 

120°C bake. However, as the field increases, the BCS resistance increases dramatically 

for the 120°C case, whereas it actually decreases even further for the nitrogen treatment 

case. This strong difference leads to a BCS resistance ~2.5 times lower compared to the 

120°C treatment and ~3.5 times lower compared to standard EP or BCP. An unusual and 

extended anti Q-slope therefore stems from this inverted field dependence of the BCS 

resistance. All four cavities were also associated with lower than typical residual 

resistance values, as shown for example in Fig. 2.  

  
 

Figure 2. Temperature-dependent (BCS) and temperature independent (residual) components of the 

microwave surface resistance. A comparison is shown for the nitrogen treated cavities and those after 

standard treatments including EP, BCP and 120°C bake. 

 

Additional studies were performed on the microwave surface resistance evolution as a 

function of material removal post nitrogen treatment. In Fig. 3 we show the evolution of 

the Q(Eacc) curves of the three different fine grain cavities for different amount of 

material removal via EP. For TE1AES005 it is revealing to notice how the Q-curve 

changes: for 20 and 40 µm removal the low field Q is high compared to that of standard 

EP surfaces, but the medium field Q-slope still dominates the curve. However, with 

further 40 µm removal (80 µm total removal post nitrogen), an extended anti Q-slope 

appears, indicating that there is an optimal amount of material removal post nitrogen 

treatment, which gives the high Q performance up to the higher fields. For the cavity 

TE1NR005 the anti- Q-slope is already found with just 5 µm removal, and interestingly 
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further 10 µm EP ‘straightens’ the Q curve: the curve is now ‘in between’ the anti-Q-

slope and the standard medium field Q-slope behavior. Q(T=2 K) is still atypically high 

at ~ 3×10
10

, 17 MV/m, plus no medium field Q-slope and no high field Q-slope are 

observed up to the quench field of ~ 27 MV/m. Similar behavior is observed for 

TE1AES003, for which 10 µm removal gives the extended anti-slope, and 60 µm EP 

starts to show some mild MFQS, although performance is still somewhat in between 

those of regular EP surfaces and the anti-slope. The observations on the four different 

cavities are consistent: in all cases, the highest Q and anti Q-slope are found at about a 

quarter of the nitrogen diffusion length in niobium, calculated for each cavity bake cycle 

parameters (temperature and length of nitrogen exposure). The performances revert back 

to those of standard cavities towards the end of the nitrogen diffusion tail. Further studies 

of the performance post nitrogen treatment at finer EP steps are ongoing, along with 

investigations for cavities baked at different temperature, for different time length and for 

different partial pressures of nitrogen. 

 

 
 

Figure 3. Performance of the three fine grain nitrogen treated cavities for different amount of material 

removal post nitrogen treatment. 

 

3. Discussion 

 

The results presented seem to indicate the existence of an optimal nitrogen to niobium 

concentration ratio, which alters beneficially the cavity microwave surface resistance. 

There are two possible scenarios: 1) formation of niobium nitride phases with higher 

critical temperature than niobium; 2) nitrogen as an interstitial in the niobium lattice. A 

Tc measurement was performed for cavity TE1AES016 resulting in the standard niobium 

critical temperature of ~ 9.2 K. This rules out that a continuous layer of niobium nitride 

covers the cavity surface; however it does not exclude the possibility that islands of NbN 

could form only at some nucleation centers and coexist with the standard niobium 

surface. SEM images of NbN formed via bulk diffusion in [24] show how the high Tc 

phases (δ, γ) can form as the most internal layers, while the most external layers can be 

the poorly superconducting hexagonal phases. This could correlate with our findings 

where the cavity Q is poor right after the nitrogen treatment, and it becomes 

exceptionally high after a certain amount of material removal via EP. Samples studies are 

ongoing utilizing XRD, XPS and Auger spectroscopy to investigate the underlying 

processes. Preliminary XPS results indicate average surface concentrations of nitrogen in 

the range of 15-25 atomic %, decaying to ~ 6-10% at depths comparable to the amount of 

material removal via EP which leads to the high Q performance. Images collected via 

laser confocal microscopy confirm the formation of precipitates at the surface- forming 
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differently for different grains- and precipitates are still found after several microns of ion 

sputtering. However, while some NbN precipitates certainly form at the surface, we have 

found no evidence that they remain after the amount of material removal comparable to 

the EP done on the cavities. XPS and XRD measurements performed on a sample treated 

for 10 minutes at 800°C in the partial pressure of nitrogen ~ 10
-2

 Torr followed by 5 

micron EP, have not identified presence of nitride phases. Even though further studies are 

needed, this favors the hypothesis of performance improvement due to the presence of a 

certain concentration of nitrogen as an interstitial in the Nb lattice. In this case, a possible 

physical mechanism could be that nitrogen in niobium as interstitial can act as a trap for 

hydrogen. It has been shown that due to the trapping process the hydrogen-induced 

resistivity increase is reduced and the occurrence of precipitation is shifted to higher 

hydrogen concentrations [32]. This mechanism is consistent with findings in [33] and a 

recent RF losses model based on nanohydride precipitates [34]. Both possible scenarios 

have important consequences: if the performance improvement comes from the presence 

of NbN islands, then these results would demonstrate that a material with higher critical 

temperature than niobium can lead to higher quality factors at higher gradients than 

measured before for bulk Nb cavities, and that the lower critical field of the material does 

not represent a limit for the RF performance. If instead the improved performances stem 

from nitrogen as interstitial, which for example might neutralize hydrogen and prevent 

formation of lossy nano-hydrides, then the implications might be even more profound: it 

might mean that what for decades was believed to be the theoretical limit for niobium 

microwave surface resistance was not true. Some recent theoretical calculations predict 

inverse RF field dependence of the Mattis-Bardeen surface resistance [35], and 

preliminary fits based on this model are in good agreement with the presented results.  

 

4. An additional experiment: the cavity baked in argon 

 

We performed an additional experiment to investigate if the improvement in surface 

resistance could originate from the presence of interstitial nitrogen and not from a 

compound with higher critical temperature. We baked another fine grain 1.3 GHz cavity 

(TE1CAT003) in the same furnace used for the nitrogen treated cavities but this time 

diffusing an inert gas into niobium; the cavity was baked at 800°C in UHV for an hour, 

followed by injection of ~2×10
-2

 Torr partial pressure of argon for one hour at 800°C, 

then received high-pressure water rinse and RF testing. The resulting Q measured at 2 K 

was extremely poor, of the order of 10
8
. The cavity then received approximately 5 µm 

removal via electropolishing, HPR and again RF testing. Interestingly, results showed 

again an extended anti-Q-slope up to Bpeak ~ 90 mT, leading to an atypically high Q ~ 

3.5×10
10

 at 90 mT, T=2K. The comparison of the Q(Eacc) curves before and after the 

argon treatment in Fig. 4 clearly shows the effect of reversal of the medium field Q-slope. 

Deconvolution of the field dependence of residual and BCS resistance reveals again the 

atypical BCS component decreasing with field while the residual resistance remains 

constant up to the highest reached fields. Since argon is an inert gas, it can only be in the 

lattice as an interstitial without forming any compound. Therefore, these results seem to 

suggest that there is a crucial role of impurity doping in the surface resistance 

improvement of SRF niobium cavities that we have found. It is interesting to notice that 

in the single anti-Q-slope result reported in [17] argon was also injected in the furnace 
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during the cooldown from 1400°C to room temperature, and that witness samples 

analysis revealed significant concentration of other surface impurities like titanium and 

nitrogen. Therefore impurity doping (nitrogen, argon, titanium) could be the common 

reason of the anti-Q-slope cavity results. Our findings suggest that introducing a small 

amount of impurities at the surface might need to become a standard practice for cavity 

surface preparation to realize the niobium technology at the full potential. Ideally, 

impurity doping should be limited only to the RF layer to minimize its effect on thermal 

conductivity so that even higher gradients could be systematically achieved. 

 

 
Figure 4. Left: Quality factor versus accelerating field at 2 K for TE1CAT003, comparison for baseline 

treatment and after the high temperature bake in argon atmosphere. Right: deconvolution of TE1CAT003 

surface resistance in the BCS and residual part versus peak magnetic fields. 

 

5. Conclusions 

 

In summary, we have reported the experimental findings of a surface treatment for SRF 

niobium cavities: a combination of vacuum heat treatment in nitrogen or argon 

atmosphere and a subsequent material removal by electropolishing produces 

unprecedented low values of the microwave surface resistance. The described treatments 

reverse the medium field Q-slope due to the decreasing with field Mattis-Bardeen surface 

resistance and, unlike after all standard processing techniques, the cavity quality factor 

grows with the increasing amplitude of the RF field level in the cavity. These findings 

open the way for up to a factor of 3 cut in cryogenic losses in CW SRF accelerators, and 

offer a long sought solution to the medium field Q-slope problem in SRF cavities. 
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