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We apply Schrödinger functional methods to two gauge theories with fermions in two-index rep-
resentations: the SU(3) theory with Nf = 2 adjoint fermions, and the SU(4) theory with Nf = 6
fermions in the two-index antisymmetric representation. Each theory is believed to lie near the
bottom of the conformal window for its respective representation. In the SU(3) theory we find a
small beta function in strong coupling but we cannot confirm or rule out an infrared fixed point.
In the SU(4) theory we find a hint of walking—a beta function that approaches the axis and then
turns away from it. In both theories the mass anomalous dimension remains small even at the
strongest couplings, much like the theories with fermions in the two-index symmetric representation
investigated earlier.

PACS numbers: 11.15.Ha, 11.10.Hi, 12.60.Nz

I. INTRODUCTION

The extension of lattice gauge methods to theories be-
yond QCD has been largely aimed at determining the
infrared properties of these theories [1, 2]. For a given
gauge group, one varies the number Nf of fermion fla-
vors to try to find the conformal window, the range of
Nf where the theory is scale invariant at large distances.
Below this window the theory confines and breaks global
symmetries, much like QCD; the most interesting range
of Nf is the borderline area [3–5]. In a further departure
from QCD, one can put the fermions in a color represen-
tation other than the fundamental. This opens a large
arena for exploration [6–8].

In this paper we analyze two gauge theories: the SU(3)
gauge theory with Nf = 2 Dirac fermions in the adjoint
representation, and the SU(4) theory with Nf = 6 Dirac
fermions in the sextet, which is an antisymmetric tensor
with two indices. For the SU(3)/adjoint theory, Nf = 2 is
the only value that is interesting, in that the coefficients
b1, b2 of the one- and two-loop terms in the beta function,

β(g2) = −b1
g4

16π2
− b2

g6

(16π2)2
+ · · · , (1)

satisfy

b1 > 0, b2 < 0. (2)

The two-loop beta function thus possesses an infrared-
stable fixed point (IRFP) [9, 10], which invites non-
perturbative confirmation. As for the SU(4)/sextet the-
ory, the condition (2) offers a wider range of Nf for study
(see Table I). Approximate solutions of the Schwinger–

TABLE I: Coefficients of the two-loop beta function for the
SU(3)/adjoint and SU(4)/sextet theories, and location of its
zero g2∗. For comparison we list the quantities for borderline
theories with two-index symmetric representations.

Nf b1 b2 g2∗
SU(3)/adjoint 2 3 −90 5.26

SU(4)/sextet 6 6 2
3

−38 2
3

27.2

7 5 1
3

−75 1
3

11.2

8 4 −112 5.6

SU(2)/triplet 2 2 −40 7.9

SU(3)/sextet 2 4 1
3

−64 2
3

10.6

SU(4)/decuplet 2 6 2
3

−86 2
3

12.1

Dyson equations [11, 12] indicate that the Nf = 6, 7 the-
ories lie below the sill of the conformal window while
Nf = 8 lies just above (see Ref. [8]). Allowing that all
three theories invite study, we chose to start with Nf = 6
so as to approach the conformal window from below.1

We apply the method of the Schrödinger functional
(SF) to calculate the running coupling of the theories at
hand, and thus their beta functions. This method was
developed [13–18] to study small-Nf QCD, whose cou-

1 As is well known, choosing an even number for Nf allows a much
simpler and less expensive algorithm for simulation than an odd
number. The Nf = 5 theory also satisfies Eq. (2), but we have
omitted it from the table.
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pling runs fast in evolving from short to long distance
scales. While we use the same definition of the running
coupling, we analyze the results with methods that we
have found useful for conformal and near-conformal the-
ories, where the coupling runs very slowly. We developed
these methods in the course of our work on three gauge
theories that lie near the bottom of the conformal win-
dow: the SU(2) [19], SU(3) [20–22], and SU(4) [23] theo-
ries, all with Nf = 2 fermions in the respective two-index
symmetric representations (2ISR) of color.2

The present study takes us to new two-index
representations—the adjoint and the antisymmetric. Our
SF analysis, even before extrapolation to the continuum
limit, is inconclusive regarding the existence of an IRFP
in both theories we study. The extrapolation of our data
to the continuum is difficult. The resulting error bars are
on the same scale as the one-loop beta function, and so
we cannot tell whether the beta function for each theory
crosses zero. It is possible that it approaches zero and
then runs off to negative values, behavior known as walk-
ing. The SU(4)/sextet theory, in particular, shows a hint
of this behavior, but with large error bars.

As in our work on the 2ISR models, we are able to give
more precise results for γm, the anomalous dimension of
the fermion mass. This is calculated as a byproduct of
the SF calculation [27, 34–36]. We find, as in the other
theories, that as g2 is increased, γm deviates downwards
from the one-loop curve and levels off below 0.4 in both
the SU(3) and the SU(4) theories. This result is robust
under continuum extrapolation.

The SU(3) lattice gauge theory with two adjoint
fermions has attracted attention as an extension of QCD
in which the dynamical scales of confinement and of chi-
ral symmetry breaking might be separated. Following
early quenched [37] and unquenched [38] studies, Karsch
and Lütgemeier [39] carried out an extensive study of
the Nf = 2 theory with staggered fermions. They found
clear evidence for separate finite-temperature phase tran-
sitions. The nature of the chiral phase transition, which
should follow the scheme [40] SU(4)→ SO(4), was inves-
tigated in Refs. [41, 42]. The theory has also served as a
laboratory for studying monopole condensation [43] and
finite-size phase transitions [44, 45].

The finite-temperature transitions found in the above
work would seem to rule out IR conformality in the
SU(3)/adjoint theory. After all, an IR conformal the-
ory would have no scale from which one could construct
a zero-temperature chiral condensate, a string tension,
or a transition temperature. The evidence offered so far,
however, is inconclusive. The results cited above were ob-
tained in studies on finite-temperature lattices with only
one value of nτ , the number of sites in the Euclidean
time direction. When nτ = 4, say, the lattice spacing

2 For other applications of the SF method to near-conformal gauge
theories, see [24–33].

itself sets a scale for the temperature so that a transi-
tion occurs at some bare coupling g∗0 . A true test of
confinement vs. conformality requires varying nτ to see
the behavior of g∗0(nτ ). This will determine whether, in
the continuum limit, the transition temperature reaches
a finite limit or tends to zero. Such a program has been
attempted for the SU(3)/triplet theory with various Nf
[46–50] and for the SU(3)/sextet theory [51–54], and it is
fraught with difficulties.3

The SU(4)/sextet theory has not been studied on the
lattice before. It stands out in Table I. For Nf = 6, the
zero of the two-loop beta function occurs at g2∗ ' 27.2.
This is a much stronger coupling than in the other bor-
derline theories listed in the table. In the 2ISR theories
[19–23] as well as in the SU(3)/adjoint theory (see be-
low), we found that the nonperturbative beta function
follows the two-loop form fairly closely out to its zero.4

Clearly the two-loop beta function cannot be trusted out
to g2 = 27, and in fact we will show below that the cal-
culated beta function deviates and approaches zero at a
much weaker coupling.

We review the choice of lattice action and describe our
simulations in Sec. II. We present the analysis of the run-
ning coupling and the beta function in both theories in
Sec. III, and the mass anomalous dimension in Sec. IV.
We conclude with a summary of our results and a discus-
sion of the difficulties encountered.

II. LATTICE ACTION, PHASE DIAGRAM,
AND ENSEMBLES

Our fermion action ψ̄DFψ is the conventional Wilson
action, supplemented by a clover term [56] with coeffi-
cient cSW = 1 [57]. The gauge links in the fermion action
are fat link variables Vµ(x). The fat links are the nor-
malized hypercubic (nHYP) links of Refs. [58, 59] with
weighting parameters α1 = 0.75, α2 = 0.6, α3 = 0.3,
subsequently promoted to the fermions’ representation.

As we found in our previous work [22, 23], it is useful
to generalize the pure gauge part of the action beyond
the usual plaquette term to include a term built out of
fat links. Thus,

SG = − β

2N

∑
µ6=ν

Re TrUµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν (x)

− β′

2df

∑
µ6=ν

Re TrVµ(x)Vν(x+ µ̂)V †µ (x+ ν̂)V †ν (x).

(3)

3 These studies used the staggered prescription for the fermions;
the finite-temperature transition in the SU(3)/sextet theory was
observed with Wilson fermions in Ref. [55].

4 We were able to confirm the zero at high significance in the SU(2)
theory [19] but not in the other theories.
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FIG. 1: Presumed phase diagram for both the SU(3)/adjoint
and SU(4)/sextet theories, for |β′| not too large.

N = 3, 4 is the number of colors while df (= 8, 6, respec-
tively) is the dimension of the fermion representation.

The reason for adding the β′ term can be found in the
phase diagram sketched in Fig. 1 [60–62]. We verified
this phase diagram in the SU(3)/sextet theory [21, 55]
and in the SU(2)/triplet theory [19] (where part of the
phase boundary is a second-order transition).5 For the
two theories at hand, we discovered the same structure in
the course of determining the κc(β) curve. Our SF cal-
culations are, in principle, carried out on the κc(β) line,
where mq = 0, to the right of the point marked (β1, κ1).
Our goal is to reach as strong a running coupling as pos-
sible, by pushing to strong bare couplings. At strong cou-
pling, however, we encounter either the phase transition
shown or impossibly low acceptance due to roughness of
the typical gauge configuration. Adjusting β′ can help
push these limitations off towards stronger coupling. An
exploration of the (β, β′) plane similar to that described
in Ref. [23] led us to set β′ = 0.5 in the SU(4) theory. In
the SU(3) theory, on the other hand, we found no advan-
tage in adjusting β′ away from zero. Any other choice
decreased the range of accessible couplings.

We determine the critical hopping parameter κc =
κc(β) by setting to zero the quark mass mq, as defined
by the unimproved axial Ward identity. mq is of course
volume-dependent on small lattices. Ideally, we would
like to fix κc so that mq → 0 in the infinite-volume limit.
For clear practical reasons, we instead do the determina-
tion in relatively short runs on lattices of size L = 12a.
In our work on the SU(2)/adjoint theory [19], we ad-

5 For more discussion see Refs. [63, 64].

dressed the concern that an extrapolation of mq to infi-
nite volume might show that the L→∞ limit is far from
massless. The problem is potentially serious only at the
strongest couplings, and we showed that, even there, ad-
justment of κ to makemq acceptably small does not affect
the results for the β function or the anomalous dimension
γm.

In the SU(3)/adjoint theory, on the other hand, the
determination of κc runs into trouble at the strongest
couplings, β = 3.8 and 3.9, and this time the problem lies
in the smallest lattices. We refer again to Fig. 1. Both
the first-order phase boundary and the κc(β) curve shift
with volume. We show in Fig. 2 the data formq(κ) for the
various volumes at the two strongest bare couplings, β =
3.8 and 3.9. For each coupling we fix κc by demanding
mq = 0 for L = 12a. At β = 3.8, this fixes κc = 0.1369.
As can be seen in the figure, the values of mq at this κ
for L = 10a and L = 8a are nonzero and positive. This
would hold as well for L = 6a, except that for L = 6a
the phase boundary in Fig. 1 has moved up past κ =
0.1369 so that we find ourselves in the confining phase.It
is impossible to simulate for L = 6a at the κc determined
at L = 12a. It is worth noting that there is still a value
of κ at which mq crosses zero for L = 6a; like the phase
boundary, it has shifted upwards. The bottom line is
that we are prevented from simulating on the L = 6a
lattice at κc.

For β = 3.9 the situation is the same, except that for
L = 6a at κ = κc = 0.1360 we succeeded in simulating in
a short run in the metastable state that is non-confining.
(This is the origin of the bracketed point in the figure on
the right.) The lifetime of the metastable state, however,
was too short to make it useful for an SF measurement.
Going back to β = 3.8, we found in fact that for L =
8a as well, the non-confining state is metastable at κc.
In this case, however, we were able to run a very long
simulation and thus to make a useful determination of
the SF observables.

We stress that the metastability issue on the small vol-
umes at β = 3.8 and 3.9 is distinct from what happens to
the left of (β1, κ1) in Fig. 1. The strong-coupling part of
the phase boundary is a place where mq flips sign discon-
tinuously, and there is no equilibrium measurement that
will give mq = 0 for any volume [19]. At β = 3.8 and 3.9,
on the other hand, each lattice size allows a value of κ
where mq = 0. The fact that this κ shifts with L does not
pose a special problem; the shift in the phase boundary
does pose a practical problem in preventing simulation
at a given κ for small volumes. We overcame this in the
case of (β = 3.8, L = 8a), however, and so we make use
of the data here even though the state is metastable.6

6 In fact, we did not determine finally which is the stable state
for L = 8a and which is the metastable. It is possible that the
confined state will tunnel back to the nonconfined in short order,
but simulation of the confined state is very difficult due to poor
acceptance so we did not resolve this question.
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FIG. 2: mq(κ), determined from the axial Ward identity, for the strongest couplings studied in the SU(3)/adjoint theory. Left:
β = 3.8. Right: β = 3.9. The square brackets indicate measurements in a metastable state.

Our tables for the SU(3)/adjoint theory are thus miss-
ing entries for L = 6a at the two strongest couplings.
This problem did not appear in the SU(4)/sextet theory.
Moreover, we did not run simulations for L = 16a at the
weakest coupling in either theory.

As before, we employed the hybrid Monte Carlo
(HMC) algorithm in our simulations. The molecu-
lar dynamics integration was accelerated with an addi-
tional heavy pseudo-fermion field as suggested by Hasen-
busch [65], multiple time scales [66], and a second-order
Omelyan integrator [67]. The ensembles generated for
the two theories are listed in Tables II and III. For the
SU(3) theory, each ensemble for L ≥ 10a was divided
into four streams, with the requirement that the observ-
ables from the four streams be consistent to a low χ2.
For the SU(4) theory this was done for all the ensembles,
including L = 6a, 8a.

The SU(3) theory was particularly difficult to simulate
in its strong coupling region, requiring short trajectories
and producing long autocorrelation times, which in turn
resulted in slow convergence of the separate streams. For
several values of (β, L), we were unable to satisfy our con-
sistency test of χ2 < 6 for 3 degrees of freedom, in one
observable or another, among the four streams. In most
of these cases, however, we saw a steady improvement
with the length of the run. Moreover, we found that the
high χ2 was caused by one stream out of the four; drop-
ping this stream in favor of the majority resulted in a
change of the mean that was less than 1σ. We decided
therefore to deem these results statistically consistent.
The only exception arose at β = 3.8 for L = 16a, the
largest volume at the strongest coupling. Here an outly-
ing stream resulted in χ2 = 16/3 dof in the result for ZP ,

with no sign of improvement as the streams grew longer.
We were left with no choice but to omit this stream from
the final average, resulting in a shift by 2.5σ. This one
result for ZP is thus less reliable than the others and we
mark it so in the following.

The tables show that the SU(4) theory reached rea-
sonable error bars with much shorter simulations. There
were no special problems with χ2 among the streams once
they had become long enough.

III. THE RUNNING COUPLING AND THE
BETA FUNCTION

We compute the running coupling in the SF method
exactly as described in our previous papers. We impose
Dirichlet boundary conditions at the time slices t = 0, L,
and measure the response of the quantum effective ac-
tion. The coupling emerges from a measurement of the
derivative of the action with respect to a parameter η in
the boundary gauge field,

K

g2(L)
=

〈
∂SG
∂η
− tr

(
1

D†F

∂(D†FDF )

∂η

1

DF

)〉∣∣∣∣∣
η=0

.

(4)
The boundary conditions we use for each theory are
copied from other theories with the same gauge group.
For the SU(3)/adjoint model, see our paper on the
SU(3)/sextet theory [21]; for the SU(4)/sextet theory
see our paper on the SU(4)/decuplet theory [23]. The
constant K = 12π emerges directly from the classical
continuum action.



5

TABLE II: Ensembles generated at the bare couplings (β, κc),
on lattice sizes L, for the SU(3)/adjoint theory. For this the-
ory no fat-plaquette term was added to the action. Listed
are the total number of trajectories for all streams at given
(β, L), the trajectory length, and the HMC acceptance.

β κc L/a trajectories trajectory acceptance
(thousands) length

3.8 0.1369 8 21 1.0 0.46
10 62 0.5 0.65
12 80 0.5 0.64
16 88 0.4 0.43

3.9 0.136 8 37 1.0 0.68
10 76 0.5 0.77
12 133 0.5 0.72
16 100 0.4 0.57

4.1 0.13454 6 26 1.0 0.85
8 18 1.0 0.67

10 38 0.5 0.87
12 48 0.5 0.84
16 26 0.5 0.70

4.5 0.13172 6 16 1.0 0.99
8 9 1.0 0.97

10 13 1.0 0.94
12 19 1.0 0.88
16 10 1.0 0.81

5.0 0.1295 6 17 1.0 0.99
8 8 1.0 0.99

10 13 1.0 0.99
12 32 1.0 0.97

We list the calculated running couplings for the SU(3)
theory in Table IV and for the SU(4) theory in Table V;
they are plotted in Figs. 3 and 4, respectively.

We define the beta function β̃(u) for u ≡ 1/g2 as

β̃(u) ≡ d(1/g2)

d logL
= 2β(g2)/g4 = 2u2β(1/u). (5)

As discussed in Ref. [19], the slow running of the coupling
suggests extracting the beta function at each (β, κc) from
a linear fit of the inverse coupling

u(L) = c0 + c1 log
L

8a
. (6)

With this parametrization, c0 gives the inverse coupling
u(L = 8a), while c1 is an estimate for the beta function

β̃ at this coupling.
For a first look, we fit the data points for all L to ex-

tract the slopes at the given bare parameters, ignoring
discretization errors that must be inherent in the small-
est lattices. These fits are shown in Figs. 3 and 4. Values
of the beta function β̃(u) obtained from these fits are
plotted as a function of u(L = 8a) in Fig. 5. Also shown
are the one- and two-loop approximations from the ex-
pansion (see Table I)

β̃(u) = − 2b1
16π2

− 2b2
(16π2)2

1

u
+ · · · . (7)

TABLE III: Ensembles generated at the bare couplings
(β, κc), on lattice sizes L, for the SU(4)/sextet theory. For
this theory a fat-plaquette term was added to the action with
coefficient β′ = 0.5. Columns as in Table II.

β κc L/a trajectories trajectory acceptance
(thousands) length

5.5 0.13398 6 8 1.0 0.74
8 8 0.5 0.79

10 16 0.5 0.77
12 48 0.5 0.57
16 17 0.5 0.38

6.0 0.13315 6 8 1.0 0.64
8 8 1.0 0.48

10 8 0.5 0.45
12 10 0.5 0.73
16 16 0.5 0.57

7.0 0.13120 6 8 1.0 0.92
8 8 1.0 0.84

10 8 1.0 0.67
12 16 1.0 0.47
16 11 0.5 0.82

8.0 0.12933 6 8 1.0 0.98
8 8 1.0 0.96

10 8 1.0 0.93
12 16 1.0 0.65
16 16 0.5 0.86

10.0 0.12702 6 8 1.0 0.99
8 8 1.0 0.99

10 8 1.0 0.99
12 8 1.0 0.97

0.05 0.150.1 0.2

a/L

0.1

0.2

0.3

0.4

g
−

2
(L

)

FIG. 3: Running coupling 1/g2 vs. a/L in the SU(3)/adjoint
theory (Table IV). Top to bottom: β = 5.0, 4.5, 4.1, 3.9, 3.8.
The straight lines are linear fits [Eq. (6)] to each set of points
at given β; the slope gives the beta function. The dotted line
shows the expected slope from one-loop running.
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TABLE IV: Running coupling measured in the SU(3)/adjoint theory.

β 1/g2

L = 6a L = 8a L = 10a L = 12a L = 16a
3.8 – 0.1343(32) 0.1387(29) 0.1438(31) 0.1387(55)
3.9 – 0.1561(26) 0.1576(28) 0.1558(27) 0.1568(45)
4.1 0.2059(22) 0.2031(40) 0.2106(40) 0.2000(43) 0.1989(67)
4.5 0.2954(26) 0.2959(40) 0.2838(45) 0.2765(43) 0.2826(69)
5.0 0.4016(27) 0.3993(54) 0.3953(44) 0.3900(34) –

TABLE V: Running coupling measured in the SU(4)/sextet theory.

β 1/g2

L = 6a L = 8a L = 10a L = 12a L = 16a
5.5 0.1244(21) 0.1225(40) 0.1297(32) 0.1213(22) 0.1120(60)
6.0 0.1675(26) 0.1676(38) 0.1626(42) 0.1659(45) 0.1592(54)
7.0 0.2849(27) 0.2692(32) 0.2642(45) 0.2448(45) 0.2581(66)
8.0 0.4193(27) 0.3947(42) 0.3905(27) 0.3777(40) 0.3628(69)
10.0 0.7214(32) 0.7000(42) 0.6729(53) 0.6621(58) –

0.05 0.150.1 0.2

a/L

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

g
−

2
(L

)

FIG. 4: Same as Fig. 3, but for the SU(4)/sextet theory (Table
V). Top to bottom: β = 10.0, 8.0, 7.0, 6.0, 5.5.

The plotted points for the SU(3) theory follow the two-
loop curve closely, including its zero crossing. This would
imply an IRFP, but at low significance since the left-
most point is but 1.5σ above zero. (We will see also that
continuum extrapolation drives the point negative.) In
the case of the SU(4) theory, we see a large deviation
from the two-loop curve in strong coupling, even tend-
ing towards a zero crossing but not quite getting there.
In both cases, one might be tempted to draw a smooth

curve that crosses zero, but one could also draw a curve
that approaches zero and then falls away, which is just
the conjectured behavior for walking.

In Ref. [22] we introduced a method for extrapolat-
ing lattice results to the continuum limit when a theory
runs slowly. The key observation is that when a the-
ory is almost conformal, the finite lattice corrections will
not depend separately on a and on L but only on the
ratio (a/L). Then successive elimination of the lattices
with coarsest lattice spacing a is equivalent to dropping
the smallest lattice sizes L. We calculated β̃(u) above
by linear fits [Eq. (6)] to 1/g2 measured on lattices of
size L1 < L2 < . . . < LN . The results for this first fit

are the coefficients c0 ≡ c
(1)
0 and c1 ≡ c

(1)
1 . We can ob-

tain results closer to the continuum limit by dropping the
smallest lattice L1 from consideration, whereupon a lin-

ear fit gives c
(2)
0 , c

(2)
1 . Dropping the two smallest lattices

gives c
(3)
0 , c

(3)
1 , and so forth. Each c

(n)
1 is an approximant

to β̃(u) associated with L = Ln, the smallest lattice kept.
We can then extrapolate to (a/L) = 0 either linearly,

c
(n)
1 = β̃(u) + C

a

L
, (8)

or quadratically,

c
(n)
1 = β̃(u) + C

( a
L

)2
. (9)

Each extrapolation formula should be considered a
model, since perturbative estimates of lattice error are in-
applicable in the strong-coupling regime where we work.
The extrapolations take into account the fact that the

results c
(n)
1 of the successive fits are correlated [22].

To illustrate the method, we show the detailed extrap-
olations for the SU(4) theory in Figs. 6 and 7. The
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FIG. 5: Beta function β̃(u) of the SU(3)/adjoint theory (left) and the SU(4)/sextet theory (right), plotted as a function of
u(L = 8a). Results are extracted from the linear fits (6), as shown in Figs. 3 and 4, respectively. Plotted curves are the one-loop
(dotted line) and two-loop (dashed line) beta functions. No correction has been made for discretization errors.
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FIG. 6: Successive fits c
(n)
1 to the beta function of the SU(4)/sextet theory, as a function of a/Ln, where Ln is the smallest

lattice size used in the fit. The linear extrapolations to a/L = 0 are shown.
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FIG. 7: Same as Fig. 6, but showing the quadratic extrapolations to a/L = 0.
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figures show the origin of the error bars in the extrap-
olated values at L → ∞. The quadratic extrapolations
result in smaller error bars because they have a longer
lever arm between the smallest and largest lattices. We
plot the results of the continuum extrapolations for both
the SU(3) and the SU(4) theories in Fig. 8. Compared to
Fig. 5, the linear extrapolations increase the error bars
by a factor of 5, the quadratic extrapolations by only
a factor of 3. The linear and quadratic extrapolations
are mutually consistent for each data point; one can con-
sider them separately as distinct models, or take their
error bars together as a combination of statistical with
systematic errors.7

We note that the simple linear fits (6) typically give a
large χ2 precisely because they neglect finite-lattice cor-
rections. The extrapolations (8) and (9), on the other
hand, are models aimed at removing the discretization
error and indeed they result in acceptable χ2.

In the SU(3) theory, we can no longer tell whether the
beta function crosses zero, and indeed the very shape of
the function is not well determined. In the SU(4) theory,
the extrapolations indicate a function that approaches
zero and then veers off downwards.

IV. MASS ANOMALOUS DIMENSION

Following still the methods used in our previous work,
we calculate the mass anomalous dimension from the
scaling with L of the pseudoscalar renormalization factor
ZP . The latter comes from the ratio

ZP =
c
√
f1

fP (L/2)
. (10)

fP is the propagator from a wall source at the t = 0
boundary to a point pseudoscalar operator at time L/2.
The normalization of the wall source is removed by the√
f1 factor, which comes from a boundary-to-boundary

correlator. The constant c, which is an arbitrary normal-
ization, is 1/

√
2 in our convention.

We present in Tables VI and VII the values of ZP we
find in the SU(3) and SU(4) theories, respectively; we
plot them in Figs. 9 and 10.

As in the calculation of β̃, we begin with the simple
fits, based on the slowness of the running of 1/g2 [19].
Following the approximate scaling formula

ZP (L) = ZP (L0)

(
L0

L

)γm
, (11)

we fit the ZP data at each value of β to

logZP (L) = c0 + c1 log
8a

L
, (12)

7 For both theories we do not extrapolate the beta function at the
weakest coupling; the absence of data for L = 16a leads to very
large error in the extrapolation.

giving the straight lines plotted in the figures; the slope
c1 gives an estimate of γm. For an analysis of finite-
volume effects, we drop successive volumes starting from

the smallest, giving the sequence of c
(n)
1 as above. Again

we extrapolate c
(n)
1 either linearly or quadratically to

a/L = 0. All these results are plotted in Fig. 11.
In both theories, the simple linear fits produce values

of γm that depart from the one-loop line and level off.
In the SU(3) theory, the extrapolations drive the result
downward. Overall, we have a bound γm <∼ 0.4. In the
SU(4) theory, the extrapolations are remarkably consis-
tent with each other and with the original linear fit. γm
again agrees well with the one-loop line in weak coupling,
and then deviates downward to level off below 0.3 for the
linear fits, stretching to 0.35 for the extrapolations.

The behavior of γm in both theories is remarkably sim-
ilar to our what we found in the three 2ISR theories:
SU(2)/triplet, SU(3)/sextet, and SU(4)/decuplet.

V. CONCLUSIONS

Our calculations reveal that the beta functions associ-
ated with the SF coupling in the two theories studied are
small, everywhere smaller than the one-loop values. In
the SU(4) theory, the running is even slower than what is
expected in two loops. Our inability to disentangle pos-
sible lattice artifacts from real running prevents a more
definite statement.

In all cases we have studied, the two in this paper
and the 2ISR theories in our previous work, the mass
anomalous dimension varies linearly with the SF gauge
coupling when the coupling is small, and then levels off
to a plateau at large gauge coupling. All the plateaus are
at a level below 0.5.

Imagine now performing a lattice simulation for any of
these systems at any value of the bare lattice coupling in
which the system is in the same phase as at weak cou-
pling. One will have access to physical scales ranging
from the lattice spacing a to the system size L, where (in
the near future) L/a will be smaller than about 100. The
running coupling will scarcely evolve over this change of
scale. Whether or not the system is actually at a fixed
point, the slow evolution of the coupling implies that lat-
tice spectroscopy will display systematics of scaling, bro-
ken by a nonzero fermion mass, by irrelevant operators,
and by the effect of finite system volume. Given the size
of the one-loop coefficient of the beta function, plus the
observation that the running coupling in these theories
always runs more slowly than one-loop expectations, this
behavior is completely natural.

In all these lattice systems, typically one will encounter
a confining phase with broken chiral symmetry when the
bare coupling exceeds a certain value. Whether or not
this describes continuum physics can in principle be de-
cided by calculating the beta function as we have at-
tempted, and determining whether an IRFP is encoun-
tered before chiral symmetry breaks. In the two systems
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FIG. 8: Beta function β̃(u) of the SU(3)/adjoint theory (left) and the SU(4)/sextet theory (right), extrapolated to the continuum
limit. Black squares and curves are the same as in Fig. 5. The points for the extrapolations have been displaced slightly for
clarity.

TABLE VI: Pseudoscalar renormalization constant ZP measured in the SU(3)/adjoint theory.

β ZP

L = 6a L = 8a L = 10a L = 12a L = 16a
3.8 – 0.1333(4) 0.1243(5) 0.1169(3) 0.1070(7)a

3.9 – 0.1418(4) 0.1306(4) 0.1222(3) 0.1119(6)
4.1 0.1760(4) 0.1550(5) 0.1426(4) 0.1352(6) 0.1225(8)
4.5 0.1990(4) 0.1775(6) 0.1656(5) 0.1546(3) 0.1427(8)
5.0 0.2193(4) 0.1998(8) 0.1881(7) 0.1788(5) –

aAverage of three streams out of four; see Sec. II.

studied in this paper, we were unable to resolve this ques-
tion.

The great advantage of lattice QCD is that the bare
coupling can be adjusted such that perturbation theory
is valid at the lattice scale a, while at the same time the
volume is big enough to accommodate even the lightest of
the hadrons. The same is not true for nearly conformal
theories. Whether the infrared physics is conformal or
not, in order to probe it the bare coupling must be strong.
One consequence is that the Symanzik effective action,
defined around the gaussian fixed point, offers no guid-
ance to the scaling dimensions of irrelevant operators. In
a nearly conformal theory, where finite-lattice corrections
are essentially functions of a/L, this also leaves us igno-
rant regarding the behavior of finite-volume corrections.
Our extrapolations to infinite volume are then only mod-
els.

A comparison to the SF analysis of ordinary QCD
(with small Nf and triplet quarks) invites the question

of why it is so difficult to produce good quality results
for borderline-conformal theories. We believe that the
answer lies in the fact that what is interesting is not the
absolute uncertainty ∆β̃ in the value of the beta func-
tion β̃(g2); rather, it is the relative error, for which we
take the ratio of the uncertainty to the one-loop constant
value. The latter is proportional to the lowest order co-
efficient b1. In QCD with three flavors, b1 = 9; for the
near-conformal theories, Table I lists values that are a
good deal smaller. The QCD beta function is also in-
creased by a positive b2, whereas b2 < 0 is a necessary
feature of the borderline theories. Indeed, Table I shows
that the SU(3)/adjoint theory studied here is a particu-
larly difficult case to begin with.

The uncertainty ∆β̃ scales with the ensemble size as
1/
√
N , where N is the number of uncorrelated measure-

ments. The observable giving the SF coupling is essen-
tially a surface quantity. It also includes data generated
by a noisy estimator. Thus it has large inherent fluctu-
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TABLE VII: Pseudoscalar renormalization constant ZP measured in the SU(4)/sextet theory.

β ZP

L = 6a L = 8a L = 10a L = 12a L = 16a
5.5 0.2149(10) 0.2022(11) 0.1906(12) 0.1801(7) 0.1681(14)
6.0 0.2311(9) 0.2150(9) 0.1995(8) 0.1918(12) 0.1747(13)
7.0 0.2558(6) 0.2376(6) 0.2243(6) 0.2123(8) 0.1981(11)
8.0 0.2820(4) 0.2616(6) 0.2496(5) 0.2374(5) 0.2242(8)
10.0 0.3201(3) 0.3037(4) 0.2929(4) 0.2844(4) –

0.150.1 0.20.05

a/L

0.1

0.2

Z
P

FIG. 9: The pseudoscalar renormalization constant ZP

vs. L/a in the SU(3)/adjoint theory (Table VI). Top to bot-
tom: β = 5.0, 4.5, 4.1, 3.9, 3.8. The straight lines are linear
fits to each set of points at given β; the slope gives γm. The
hypothetical dotted line corresponds to γm = 1.

ations as well as long-time autocorrelations underlying
these fluctuations. While this is true for all theories,
we found the SU(3)/adjoint model to be particularly in-
tractable. New methods of computing running couplings
will compete successfully with the SF if they can over-
come these problems.
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percubic smearing was adapted from a program written by A. Hasenfratz, R. Hoffmann and S. Schaefer [59].
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