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ABSTRACT

We describe redMaPPer, a new red-sequence cluster finder specifically designed to make optimal
use of ongoing and near-future large photometric surveys. The algorithm has multiple attractive
features: (1) It can iteratively self-train the red-sequence model based on minimal spectroscopic
training sample, an important feature for high redshift surveys. (2) It can handle complex masks
with varying depth. (3) It produces cluster-appropriate random points to enable large-scale structure
studies. (4) All clusters are assigned a full redshift probability distribution P (z). (5) Similarly,
clusters can have multiple candidate central galaxies, each with corresponding centering probabilities.
(6) The algorithm is parallel and numerically efficient: it can run a Dark Energy Survey-like catalog in
∼ 500 CPU hours. (7) The algorithm exhibits excellent photometric redshift performance, the richness
estimates are tightly correlated with external mass proxies, and the completeness and purity of the
corresponding catalogs is superb. We apply the redMaPPer algorithm to ∼ 10,000 deg2 of SDSS DR8
data, and present the resulting catalog of ∼ 25,000 clusters over the redshift range z ∈ [0.08,0.55].
The redMaPPer photometric redshifts are nearly Gaussian, with a scatter σz ≈ 0.006 at low redshift,
increasing to σz ≈ 0.02 at z ≈ 0.5 due to increased photometric noise near the survey limit. The
incidence of projection effects is low (≤ 5%). Detailed performance comparisons of the redMaPPer
DR8 cluster catalog to X-ray and SZ catalogs are presented in a companion paper.
Keywords: galaxies: clusters

1. INTRODUCTION

Over the past several years, galaxy clusters have been
recognized as powerful cosmological probes (e.g., Henry
et al. 2009; Vikhlinin et al. 2009; Mantz et al. 2010; Rozo
et al. 2010; Clerc et al. 2012; Benson et al. 2013; Has-
selfield et al. 2013). Galaxy clusters are one of the key
probes of Dark Energy for ongoing and upcoming photo-
metric surveys such as the Dark Energy Survey (DES:
The DES Collaboration 2005), Pan-STARRS (Kaiser
et al. 2002), the Hyper-Suprime Camera (HSC)12, and
the Large Synoptic Survey Telescope (LSST: LSST Dark
Energy Science Collaboration 2012).

Because galaxies are obviously clustered on the sky,
rich galaxy clusters have been detected as far back as
the 1800’s (Biviano 2000), with the first large catalogs
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created 50 years ago (e.g., Abell 1958; Zwicky et al.
1968; Abell et al. 1989). More recently, the advent of
multi-band data has led to a proliferation of optical clus-
ter finding algorithms. These algorithms use various
techniques for measuring clustering in both spatial and
color/redshift space, ranging from simple matched-filters
to more complicated Voronoi tesselations. These clus-
ter finders can be divided into roughly two classes, those
based on photometric redshifts (e.g., Kepner et al. 1999;
van Breukelen & Clewley 2009; Milkeraitis et al. 2010;
Durret et al. 2011; Szabo et al. 2011; Soares-Santos et al.
2011; Wen et al. 2012), and those utilizing the cluster
red-sequence (e.g., Annis et al. 1999; Gladders & Yee
2000; Koester et al. 2007a; Gladders et al. 2007; Gal et al.
2009; Thanjavur et al. 2009; Hao et al. 2010b; Murphy
et al. 2012). However, relatively few of these optical cat-
alogs have been utilized for cosmological parameter con-
straints (e.g., Rozo et al. 2007, 2010; Mana et al. 2013).

Given the above landscape, it is a fair question to ask
whether the world really needs yet another photometric
cluster finding algorithm. As we describe below, we be-
lieve that the answer to this question is yes. In particular,
there are a variety of important features that any reason-
able optical cluster finder must have in order to properly
exploit the photometric data that will become available
with ongoing or near-future photometric surveys such as
the DES or LSST.

What must we require of current photometric cluster
finders? The key features are as follows.

1. The algorithm must be able to smoothly detect
galaxy clusters in a consistent way across a braod
redshift range. This can be a challenge for photo-
metric redshift (“photo-z”) and red-sequence based
algorithms alike. For photometric redshift based
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algorithms, one must be cautious because biases
and scatter in reported photo-zs increase at fainter
magnitudes where spectroscopic training and vali-
dation samples can be highly incomplete. For red-
sequence based cluster finders, one must confront
the fact that the 4000 Å break characteristic of
the early-type galaxy spectra moves across filters.
While g − r is an ideal color for cluster detection
at low redshift, one should rely primarily on r − i
at itermediate redshifts, and i − z at higher red-
shifts (and we note that this will also affect photo-
z-based finders). By z ≈ 1, near-infrared (NIR)
photometry is required. Being able to smoothly
transition from one color to the next — or better
yet, to always use all available photometric data —
is paramount.

2. To the extent possible, the algorithm should self-
train to the available data. For instance, algo-
rithms reliant on a priori parameterizations of the
red sequence could easily result in systematic biases
if the a priori parameterization differs from reality.
Note that this also impacts photo-z-based cluster
finders, since there can be unknown and difficult
to calibrate biases in the photometric redshifts of
cluster galaxies.

3. The algorithm should be numerically efficient, ca-
pable of running on extremely arge data sets within
reasonable timeframes with modest computational
resources.

4. The algorithm must be able to properly account for
complex survey masks, including varying depth.

5. The algorithm must allow the construction of
proper cluster-random points that adequately char-
acterize the effective survey volume for cluster de-
tection in order to enable large scale structure stud-
ies. In particular, it is worth emphasizing that be-
cause galaxy clusters are extended objects on the
sky, the galaxy mask used to construct the cluster
catalog is not the appropriate mask characterizing
the angular and redshift selection of galaxy clusters
for any particular cluster finder.

6. The algorithm should produce a full P (z) distri-
bution for every cluster. Similarly, given that the
center of a galaxy cluster can be observationally
uncertain, there should be a corresponding center-
ing distribution in the plane of the sky P (n̂). Note
that if one adopts the prior that a galaxy resides at
the center of a galaxy cluster, then the probability
P (n̂) collapses to the probability that any given
cluster galaxy is the correct cluster center. Our
expectation is that just as P (z) allows one to ade-
quately recover the redshift distribution of galaxy
clusters in a statistical sense, so too will centering
probabilities for cluster galaxies allow one to statis-
tically recover the angular distribution of clusters
in the sky, a point that is of critical importance for
large-scale structure studies.

7. In order to maximize the cosmological utility of
the derived cluster samples, the richness estima-
tors should be fully optimized for the purpose of

minimizing the scatter in the richness–mass rela-
tion.

The red-sequence Matched-filter Probabilistic
Percolation (redMaPPer) cluster finding algorithm is
our solution to the above list of must-haves. Concerning
the last point in particular, over the past several years
we have empirically explored what works and what does
not work in estimating cluster richness (Rozo et al. 2009,
2011; Rykoff et al. 2012, henceforth R12). For instance,
we have demonstrated that estimating membership
probabilities for every galaxy is very effective, while
using hard color cuts to derive cluster membership can
lead to large biases. We have fully optimized the optical
detection radii, as well as the luminosity cuts employed
when counting galaxies. We have also investigated
whether total galaxy counts or total cluster luminosity
is a better mass proxy, and whether or not trying to
add blue galaxies into richness estimates results in
improvements. All of these lessons have gone into the
creation of the redMaPPer cluster finder.

There, is however, one feature of redMaPPer that rep-
resents more of a personal bias as opposed to an em-
pirically driven choice, namely, the fact that redMaPPer
is a red-sequence cluster finder. Indeed, operationally,
redMaPPer can be easily adapted to work in photo-z-
space rather than working directly in color-space. How-
ever, we are wary of reliance on photometric redshifts,
which become increasingly difficult to characterize for
faint galaxies due to a lack of spectroscopic training and
validation samples. Furthermore, cluster galaxies are a
very particular population, and photo-z estimates tai-
lored for clusters should be derived separately from the
total galaxy population. Combined with the fact that we
have not seen any evidence for photo-z-based algorithms
outperforming red-sequence methods, we have opted to
rely on a red-sequence method when developing redMaP-
Per. Note that while it is true that redMaPPer also
relies on spectroscopic training samples, our novel red-
sequence modeling algorithm, an important advantage
of our algorithm is that we do not require a locally rep-
resentative training sample: our spectroscopic training
galaxies can be the brightest cluster galaxies at all red-
shifts, with no degradation in the performance of our
photometric redshift estimates.

The redMaPPer algorithm is designed to handle an
arbitrary photometric galaxy catalog, with an arbitrary
number of photometric bands (≥ 3), and will perform
well provided the photometric bands span the 4000 Å
break over the redshift range of interest. It is thus well
suited to current surveys such as the Sloan Digital Sky
Survey (SDSS: York et al. 2000) for low and moderate
redshift clusters (z ∈ [0.05,0.55]), as well as upcoming
surveys such as DES for low and high redshift clusters
(z < 1). As a case study, in this paper we present the
redMaPPer catalog as run on 10,400 deg2 of photometric
data from the Eighth Data Release (DR8: Aihara et al.
2011) of the SDSS. We will make the full DR8 redMaPPer
catalog available after this paper is accepted for publica-
tion.

The layout of this paper is as follows. In Section 2, we
describe the SDSS data used for this work, followed in
Section 3 with an overall outline of the redMaPPer clus-
ter finder. In Section 4 we describe the multi-color rich-
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ness estimator λ, which is an update of the single-color
richness estimator used in R12. In Section 5 we describe
our strategy for dealing with stellar masks and regions
of limited depth in the survey. In Section 6, we describe
the self-training of the red sequence parametrization used
to detect clusters, as well as measure their photometric
redshifts, which is described in Section 7. In Section 8
we describe our new probabilistic cluster centering al-
gorithm. Finally, in Section 9 we put all these pieces
together into the redMaPPer cluster finder. The result-
ing SDSS DR8 redMaPPer cluster catalog is described
in Section 10. Next, in Section 11, we describe a new,
more accurate method of using the survey data to esti-
mate the purity and completeness of the cluster catalog,
and in Section 12 we describe how these methods can be
applied to generate a cluster detection mask over the full
sky. A summary is presented in Section 13. In the ap-
pendices we present several systematic checks, including
Appendix C which contains an estimate of the minimum
number of training spectra required for an accurate red-
sequence calibration. A full detailed comparison of the
redMaPPer DR8 catalog to X-ray cluster catalogs and
other large photometric survey catalogs is presented in a
companion paper (Paper II: Rozo & Rykoff 2013). When
necessary, distances are estimated assuming a flat ΛCDM
model with Ωm = 0.27, and h = 1.0 Mpc, i.e. all quoted
distances are in h−1 Mpc.

2. DATA

As discussed above, the redMaPPer algorithm is de-
signed to handle an arbitrary photometric galaxy cat-
alog, with an arbitrary number of photometric bands
(≥ 3). Of course, the quality of the output depends on
the quality of the photometry. As a case study, in this
paper we run redMaPPer on SDSS DR8 data, due to its
large area and uniform coverage.

2.1. SDSS DR8 Photometry

The input galaxy catalog for this work is derived from
SDSS DR8 data (Aihara et al. 2011). This data release
includes more than 14,000 deg2 of drift-scan imaging in
the Northern and Southern Galactic caps. The survey
edge used is the same as that used for Baryon Acous-
tic Oscillation Survey (BOSS) target selection (Daw-
son et al. 2013), which reduces the total area to ≈
10,500 deg2 with high-quality observations and a well-
defined contiguous footprint. Similarly, bad field and
bright star masks are based on those used for BOSS.

The BOSS bright star mask is based on the Tycho
catalog (Høg et al. 2000). However, this catalog is in-
complete at the bright end. Cross-matching Tycho to
the Yale Bright Star Catalog (Hoffleit & Jaschek 1991),
covering 9000 of the brightest stars in the sky (mostly
visible to the naked eye), we have found an extra 70
stars — including very bright stars such as Arcturus and
Regulus — that obviously impatced galaxy photometry
and detection. We have also found that very large, bright
galaxies such as M33 cause significant problems for pho-
tometry in the area, including many spurious sources
marked as galaxies. To handle these issues, we have visu-
ally inspected and masked obviously bad regions around
63 objects brighter than V < 10 from the New Gen-
eral Catalogue (NGC: Sinnott 1988) that are in the DR8

footprint, as well as the bright stars mentioned above. In
total, an additional 36 deg2 (∼ 0.3% of the total area) is
removed by our combined bright star and galaxy mask.
After accounting for all the masked regions, the input
galaxy catalog covers 10,400 deg2.

As discussed in R12, the careful selection of a clean
input galaxy catalog is required for proper cluster find-
ing and richness estimation. Our input catalog cuts
are similar to those from Sheldon et al. (2012) used for
BOSS target selection, with some modifications. First,
we select objects based on the default SDSS star/galaxy
separator that have i < 21.0. We then filter all ob-
jects with any of the following flags set in the g, r, or
i bands: SATUR CENTER, BRIGHT, TOO MANY PEAKS, and
(NOT BLENDED OR NODEBLEND). Unlike the BOSS target
selection, we have chosen to keep objects flagged with
SATURATED, NOTCHECKED, and PEAKCENTER.

Particular care has to be made in avoiding over-
aggressive flag cuts because of the way that the SDSS
photo pipeline handles dense regions such as cluster
cores. In these cases, the central galaxy and many satel-
lites may be originally blended into one object and then
deblended. However, if there is a problem with one part
of the parent object — such as a cosmic ray hit that is not
properly interpolated — then this bad flag is propagated
to all the children. We have found that removing objects
marked with SATURATED, NOTCHECKED, and PEAKCENTER
often mask out cluster centers, while truly saturated ob-
jects such as improperly classified stars are also rejected
via the SATUR CENTER flag cut. Overall, by including
these objects we increase the number of galaxies in the
input catalog by less than 2%, and our tests have shown
no significant effect on the richness measurements except
for a few clusters for which the cores were inadvertently
masked out when galaxies with the above flags were re-
moved. In total, there are 56.5 million galaxies in the
input catalog.

In this work, we use CMODEL MAG as our total magni-
tude in the i band, and MODEL MAG for u, g, r, i, and
z when computing colors. We limit our input catalog
to galaxies that have mi < 21.0, approximately the 10σ
limit for galaxy detection such that the characteristic
magnitude error for our faintest objects is ∼ 0.1. The
DR8 übercalibration procedure yields magnitude unifor-
mity on the order of 1% in griz and 2% in u. The
resulting color scatter introduced by the photometry is
significantly narrower than the width of the cluster red
sequence. All magnitudes and colors are corrected for
Galactic extinction using the dust maps and reddening
law of Schlegel et al. (SFD: 1998).

2.2. Spectroscopic Catalog

Although our cluster finder uses only photometric
data, we require spectroscopic data to calibrate the red
sequence and to validate our photometric redshifts. For
this purpose we use the SDSS DR9 spectroscopic cata-
log (Ahn et al. 2012). This spectroscopic catalog has over
1.3 million galaxy spectra, including over 500,000 Lumi-
nous Red Galaxies (LRGs) at z ∼ 0.5 from the CMASS
sample. As detailed below, we only use ≈ 20% of the
available data in our training, and use the remaining data
set to validate our photometric redshifts.

3. OUTLINE OF THE CLUSTER FINDER
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The redMaPPer algorithm finds optical clusters via
the red sequence technique. More specifically, it is built
around the optimized richness estimator λ developed in
R09 and R12. The algorithm is divided into two stages:
a calibration stage, where we empirically calibrate the
properties of the red sequence as a function of redshift;
and a cluster-finding stage, where we utilize our cali-
brated model to identify galaxy clusters and measure
their richness. The algorithm is iterative. First, an ini-
tial rough color calibration is used to identify clusters.
These clusters are then used to better calibrate the red
sequence, which enables a new cluster finding run (see
also Blackburne & Kochanek 2012, for a similar approach
within the context of cluster finding with spectroscopic
data sets). These two calibration/cluster finding stages
are iterated several times before a final cluster finding
run is made.

The calibration itself is also an iterative procedure de-
scribed in detail in Section 6. We start with a set of
“training clusters” that have a central galaxy with a spec-
troscopic redshift to calibrate the red sequence model.
As we show in Appendix C, our minimal training re-
quirements for unbiased cluster richness and photomet-
ric redshift estimation are ≈ 40 clusters per redshift bin
of width ±0.025. In the case of SDSS DR8, the spectro-
scopic availability greatly surpasses this requirement by
many orders of magnitude. However, for upcoming sur-
veys such as DES probing much higher redshifts, this will
no longer be the case, and we have developed redMaPPer
with these limitations in mind.

For the present work on DR8, we base our training
clusters on red spectrscopic galaxies. These red galaxies
are used as “seeds” to look for significant overdensities of
galaxies of the same color. The significant overdensities
thus become our training clusters that are used to fit a
full linear red-sequence model (including zero-point, tilt,
and scatter) to the sample of all high-probability cluster
members with a luminosity L ≥ 0.2L∗. This luminosity
threshold is optimal for richness measurements (R12).
In this way we effectively transfer the “seed” spectro-
scopic redshift to all high probability cluster members,
which enables a much more accurate measurement of the
red sequence. This is especially true for fainter magni-
tudes where there is very limited spectroscopic coverage.
Note that because the algorithm utilizes all colors simul-
taneously, the “scatter” is characterized not by a single
number but by a covariance matrix.

Given a red-sequence model, the cluster finding pro-
ceeds as follows (see Section 9 for details). First, we con-
sider all photometric galaxies as candidate cluster centers
(thereby assuming the center of a cluster is located at a
galaxy position). We use our red-sequence model to cal-
culate a photometric redshift for each galaxy (zred; see
Section 7.1), and evaluate the goodness of fit of our red
galaxy template. Galaxies that are not a reasonable fit
to the red galaxy template at any redshift are not consid-
ered as possible central galaxies for the purpose of cluster
ranking. We note that as long as a cluster has at least
one galaxy that is a reasonable fit to the template, that
cluster will be considered in the first step of the cluster-
finding stage. We then use the zred value of the candidate
central as an initial guess for the cluster redshift. Based
on this redshift, we compute the cluster richness λ and
its corresponding likelihood using a multi-color general-

ization of the method of R12 (see Section 4). When a
significant number of red-sequence galaxies (≥ 3) is de-
tected within a 500h−1 kpc aperture, we re-estimate the
cluster redshift by performing a simultaneous fit of all
the high probability cluster members to the red sequence
model. This procedure is iterated until convergence is
achieved between member selection and cluster photo-
metric redshift (zλ; see Section 7.2). The resulting list of
candidate cluster centers is then rank-ordered according
to likelihood. Starting with the highest ranked cluster
we measure the richness and membership probabilities.
These probabilities are then used to mask out member
galaxies for lower-ranked clusters in a process we term
“percolation” (see Section 9.3). In this way we prevent
double-counting of galaxy clusters.

4. RICHNESS ESTIMATOR λ

The redMaPPer richness estimator, λ, is a multi-color
extension of the richness estimator developed in R09 and
R12, which we now denote λcol to indicate that it is a
single-color richness. Here we review how we calculate λ
and highlight the differences relative to R12.

Let x be a vector describing the observable properties
of a galaxy (e.g., multiple galaxy colors, i-band magni-
tude, and position). We model the projected distribution
around clusters as a sum S(x) = λu(x|λ) + b(x) where
λ is the number of cluster galaxies, u(x|λ) is the density
profile of the cluster normalized to unity, and b(x) is the
density of background (i.e., non-member) galaxies. The
probability that a galaxy found near a cluster is actually
a cluster member is simply

pmem = p(x) =
λu(x|λ)

λu(x|λ) + b(x)
. (1)

We note that in Section 9.3, the definition of the mem-
bership probability will be modified to allow for proper
percolation of the cluster finder. This modification will
only impact clusters that are close to each other along
the line of sight and at comparable redshifts. Regardless,
the total number of cluster galaxies λ must satisfy the
constraint equation

λ =
∑

p(x|λ) =
∑

R<Rc(λ)

λu(x|λ)

λu(x|λ) + b(x)
. (2)

The corresponding statistical uncertainty in λ is given by

Var(λ) =
∑

p(x|λ) [1− p(x|λ)] . (3)

In principle, these sums should extend over all galaxies.
In practice, one needs to define a cutoff radius Rc and a
luminosity cut Lcut. In R12 and Rozo et al. (2011) we
showed that the scatter in the mass–richness relation is
expected to be minimized when Lcut = 0.2L∗, while the
optical radial cut scales with richness via

Rc(λ) = R0(λ/100.0)β . (4)

where R0 = 1.0h−1 Mpc and β = 0.2. We adopt these
parameters in redMaPPer.

To determine the cluster richness of a galaxy cluster,
note that λ is the only unknown in Eqns. 2 and 4. There-
fore, we can numerically solve Eqn. 2 for λ using a zero-
finding algorithm. The solution to Eqn. 2 defines λ,
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and naturally produces a cluster radius estimate Rc via
Eqn. 4. We emphasize this cluster radius is not a proxy
for any sort of standard overdensity radius such as R500c

or R200m.
As in R12, we consider three observable properties

of galaxies for our filter function u(x): R, the pro-
jected distance from the cluster center; mi, the galaxy
i-band magnitude, and a color variable. Ideally, our
color variable would be the full color vector (e.g., c =
{u− g,g− r, r− i,i− z} in the case of SDSS data). How-
ever, practical considerations forced us to reduce this in-
formation to a single χ2 value which gives the goodness
of fit of our red-sequence template. In doing so, we effec-
tively compress the information contained in the multi-
dimensional color vector into a single number that mea-
sures the “distance” in color space between the galaxy of
interest and our red sequence model. This is described
in more detail below.

We adopt a separable filter function

u(x) = [2πRΣ(R)]φ(mi)ρν(χ2), (5)

where Σ(R) is the two dimensional cluster galaxy density
profile, φ(m) is the cluster luminosity function (expressed
in apparent magnitudes), and ρν(χ2) is the χ2 distribu-
tion with ν degrees of freedom. The pre-factor 2πR in
front of Σ(R) accounts for the fact that given Σ(R), the
radial probability density distribution is 2πRΣ(R). We
summarize below the filters used in redMaPPer.

4.1. The χ2 Filter

Assume we have a multicolor red sequence model for
which we have 〈c|z,mi〉, the mean color of the red se-
quence galaxies for any given redshift z and i-band mag-
nitude mi. Furthermore, assume we have a correspond-
ing covariance matrix Cint(z) to describe the intrinsic
scatter and correlations of galaxy colors about the mean.

When comparing a given galaxy with color vector c to
the model color, we can define

χ2(z) = (c− 〈c|z,mi〉) (Cint(z) + Cerr)
−1

(c− 〈c|z,mi〉)
(6)

where c is the color vector of the galaxy under consider-
ation, mi is the observed galaxy magnitude, 〈c|z,mi〉 is
the model color, and Cint(z) is the corresponding covari-
ance matrix, which itself depends on redshift. The ma-
trix Cerr describes the photometric error of the galaxy
under consideration.

For red sequence cluster members, χ2 will be dis-
tributed according to the χ2 distribution with ν degrees
of freedom,

ρν(χ2) =
(χ2)(ν/2−1)e−χ

2/2

2ν/2Γ(ν/2)
, (7)

where ν is the number of colors employed when estimat-
ing χ2. Note that for ν = 1 the χ2 filter does not reduce
to the single color filter of R12. This is because our
distance measurement χ2 does not distinguish between
galaxies that are too red from galaxies that are too blue,
so there is some loss of information when moving from
color-space to χ2. While a full ν-dimensional Gaussian
color filter would work better than our χ2 filter — and
would exactly reduce to the single color λcol from R12
when ν = 1 — the problem of background estimation for

such a filter is much more difficult. In particular, in the
case of DR8, it requires one to estimate the galaxy den-
sity in a five dimensional space: {mi,u−g,g−r,r−i,i−z}.
We found these background estimates to be very noisy, so
we compressed the color information to a single variable
χ2. In this way, at any given redshift the background
depends only on mi and χ2.

4.2. The Radial and Luminosity Filters

For the radial filter, we follow R09 and R12 and adopt
a projected NFW profile (Navarro et al. 1995), which
is a good description of the dark matter profile in N-
body simulations. In addition, it has been found to be
a good description of the radial distribution of cluster
galaxies (Lin & Mohr 2004; Hansen et al. 2005; Popesso
et al. 2007). In R12 it was shown that in order to mini-
mize the scatter in the mass–richness relation the NFW
filter works as well or better than other possible radial
profiles. Therefore, we refer readers to Section 3.1 of R12
for details on the form of the radial filter.

For the luminosity filter, we similarly follow R09 and
R12 and adopt a Schechter function (e.g., Hansen et al.
2009), written as

φ(mi) ∝ 10−0.4(mi−m∗)(α+1) exp
(
−10−0.4(mi−m∗)

)
.

(8)
In an update from R12, we have set α = 1.0 indepen-
dent of redshift, which provides a better description of
the data. The characteristic magnitude, m∗, is the same
as used in R12, calculated for a k-corrected passively
evolving stellar population (Koester et al. 2007b). In
the redshift range 0.05 < z < 0.7, appropriate for DR8,
m∗(z) is well approximated (δ < 0.02 mag) by the fol-
lowing polynomials:

m∗(z) =


22.44 + 3.36 ln(z) + 0.273 ln(z)2 if z ≤ 0.5,

−0.0618 ln(z)3 − 0.0227 ln(z)4

22.94 + 3.08 ln(z)− 11.22 ln(z)2 if z > 0.5.

−27.11 ln(z)3 − 18.02 ln(z)4

For each cluster, m∗ is taken at the appropriate redshift
and the luminosity filter is normalized to unity at the ap-
propriate magnitude cutoff. As with R12, this is taken to
be 0.2L∗, or m∗+1.75 mag. Although in the current ver-
sion of redMaPPer both α and m∗ are fixed as described
above, in future releases we will replace these parame-
ters with those directly measured from calibration clus-
ters. We emphasize, however, that modest changes to
the shape of the luminosity filter result in insignificant
changes to the recovered richness. Of course, changes
to the magnitude limit above which one counts galaxies
has an obvious systematic impact on the richness as one
moves up and down the luminosity function, although we
have found these modest shifts no not signifcantly impact
the mass–richness scatter (see R12).

4.3. Background Estimation

As in R12, we assume that the background density
is uniform, such that b(x|z) = 2πRΣ̄g(mi,χ

2|z) where
Σ̄g(mi,χ

2|z) is the galaxy density as a function of galaxy
i-band magnitude and χ2, where χ2 is evaluated using
the red sequence model at redshift z. In this way, the
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effective background for every cluster is different and de-
pends on the cluster redshift.

To calculate the mean galaxy density, we first calculate
the χ2 value for all galaxies in a grid of redshifts with
spacing 0.02. For computation purposes, we only calcu-
late the χ2 for galaxies that are brighter than 0.1L∗ at a
given redshift bin. At each redshift we bin the full galaxy
catalog in χ2 and magnitude using a cloud-in-cells (CIC)
algorithm (e.g., Hockney & Eastwood 1981), and divide
by the survey area. For our cells, we use χ2 ∈ [0,20] with
a bin size of 0.5, and i ∈ [12,mlim] with a bin size of 0.2.
The χ2 < 20 cut can be justified by the fact that the sum
total of cluster membership probability in the redMaP-
Per catalog for galaxies with χ2 ∈ [15,20] is only 0.7%.
That is, our χ2 < 20 cut impacts our results at well
below the 1% level. The final galaxy number density is
normalized by the width of each color and magnitude bin.
To evaluate the background at an arbitrary redshift, we
linearly interpolate between the backgrounds computed
along our redshift grid. As noted in R12, because the
background is measured per square degree, the average
number of background galaxies as a function of χ2, mag-
nitude, and redshift is automatically accounted for as the
angular size of the clusters changes with redshift.

5. HANDLING MASKED REGIONS AND LIMITED
DEPTH

In an ideal world, our survey would have uniform
depth, be deep enough to reach 0.2L∗ at all redshifts of
interest, and there would be no missing and/or masked
regions, e.g., due to bright stars. Most previous optical
cluster finders make this simple assumption13. Here, we
describe how we can properly correct for these effects.
Our approach is conceptually straightforward. Given a
cluster model and a geometric and magnitude mask, we
can effectively calculate the fraction of cluster galaxies
that we expect to be masked out. This correction factor
is then applied to the “raw” richness to compensate for
the masked region. In practice, this correction can be
self-consistently incorporated into the richness estima-
tion, as described below. Our method is simple to im-
plement with any geometric mask, including those that
describe variations in depth. However, we do not take
into account masks that contain one or more missing
bands.

5.1. The Correction Term

Looking back at Eqn. 2, we have:

1 =
∑
i

u(xi)

λu(xi) + b(xi)
, (9)

where xi describes the radial position, color (via χ2),
and luminosity (via mi) of each galaxy. This formula-
tion works if we can see all galaxies, but in reality we
cannot. Let us then pixelize all observable space x into
infinitesimal pixels, and let Ni be the number of galax-
ies in pixel i. Most pixels have Ni = 0, but a few have
Ni = 1. Thus, the sum over all galaxies can be re-written

13 An exception is 3DMF (Milkeraitis et al. 2010), for which they
calculate the fractional area masked for each cluster

in terms of a sum over all pixels via:

1 =
∑
i

Ni
u(xi)

λu(xi) + b(xi)
. (10)

In the case of masking, we can only observe the galaxies
that are inside the mask, so we can split this sum into:

1 =
∑
in

Ni
u(xi)

λu(xi) + b(xi)
+
∑
out

Ni
u(xi)

λu(xi) + b(xi)
. (11)

The “in” term is the raw λ that we usually compute,
and can be replaced by the standard sum over all ob-
served galaxies. The “out” term is now a correction to
the standard expression, call it C,

C =
∑
out

Ni
u(xi)

λu(xi) + b(xi)
. (12)

In terms of C, Eqn. 2 can be rewritten as

1− C =
∑
gals

u(x)

λu(x) + b(x)
. (13)

Now, while C is unknown (we cannot see the masked
region), we can compute its expected value for a cluster
of richness λ. Using the fact that

〈Ni〉 = [λu(xi) + b(xi)]∆xi, (14)

we see that the expectation value of C is given by

〈C|λ〉 =

∫
out

dx u(x). (15)

In the above equation, we have made explicit the fact
that C depends on λ, both via the cutoff radius used
in the sum over galaxies, and because the radial filter
depends on λ. Thus, in the presence of missing data, our
richness estimate is given by the solution to

1− 〈C|λ〉 =
∑
gals

u(x)

λu(x) + b(x)
. (16)

Note, however, that because C is a unknown, there
must also be additional measurement error associated
with this unknown correction. To calculate the vari-
ance of C, we note that Var(Ni) = 〈Ni〉. To com-
pute Cov(Ni,Nj) = 〈NiNj〉 − 〈Ni〉 〈Nj〉, we first com-
pute 〈NiNj〉. For infinitesimal pixels, NiNj = 1 implies
that either both pixels i and j contain cluster galaxies, or
that one pixel contains a cluster galaxy while the other
pixel contains a background galaxy, or that both pixels
contain a background galaxy. Consequently,

P (NiNj = 1) = ∆x2[λ(λ−1)uiuj+λ(uibj+ujbi)+bibj ].
(17)

Since 〈NiNj〉 = P (NiNj = 1), subtracting off 〈Ni〉 〈Nj〉
we arrive at

Cov(Ni,Nj) = −∆x2uiuj (18)

for i 6= j. Putting it all together, we arrive at

Var(C) =
∑
i

〈Ni〉 pi −
∑
i

∑
j 6=i

Cov(Ni,Nj)pipj (19)

=

∫
out

dx u(x)p(x)−
[∫

out

dx u(x)p(x)

]2
.(20)
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To propagate the error in C into the error in λ, we set

σλ =
dλ

dC

∣∣∣∣
λ(〈C〉)

σC , (21)

where σC = [Var(C)]1/2. The derivative of λ with re-
spect to C is evaluated numerically about the expecta-
tion value of 〈C|λ〉, where λ is the solution to Eqn. 16.

For future reference, it will be useful to define the
“scale factor”

S(z) =
1

1− 〈C|z〉
(22)

for the case in which the only source of masking is due to
limited depth. With this definition, a cluster with rich-
ness λ has a total of λ/S(z) galaxies above the limiting
magnitude of the survey.

In addition, it is useful to calculate the fraction of the
effective cluster area that is masked solely by geometrical
factors such as bright stars, bad fields, and survey edges.
This is complementary to S(z) defined above in that it
contains all the masking except the magnitude limit. The
cluster mask fraction is then

fmask =

∫
out

dx u(x)∫
dx u(x)

. (23)

This quantity is very useful because clusters that are
strongly affected by edges are more likely to be catas-
trophically miscentered, and to have poor richness esti-
mates. Consequently, when defining our cluster catalog
we will apply a cut in fmask.

5.2. Evaluating the Mask Correction

Evaluation of the mask correction and its associated
error on λ can be difficult. Fortunately, this problem is
well suited to Monte Carlo integration. First, define the
selection function S(x), so that S(x) = 1 if the galaxy
is in a region where it is detected, and S(x) = 0 if the
position x is masked out. Then, for any function f(x),∫

out

dx f(x) =

∫
cluster

[1− S(x)]f(x)dx, (24)

where the integral on the right hand side is over the full
cluster region, i.e., R ∈ [0,R(λ)], L ≥ Lmin, and over all
colors.

Applying this to Eqn. 15 we find

〈C〉 =

∫
cluster

[1− S(x)]u(x)dx. (25)

Since u(x) is the probability distribution for x, we can
evaluate the above integral using Monte Carlo integra-
tion by randomly sampling N sets of model galaxy pa-
rameters from the u(x) filter function, and then comput-
ing the sample mean of the function 1 − S(x). That is,
〈C〉 is simply the fraction of random draws that fall in the
masked region. Similarly, we can evaluate the integrals
defining Var(C) via

Var(C) =
1

λ

1

N

∑
out

p(xi)−

[
1

λ

1

N

∑
out

p(xi)

]2
, (26)

where N is again the total number of random draws.
For simplicity, we have replaced the 1−S(x) terms with

a summation over all galaxies that are outside the de-
tectable region due to the mask, as these are the only
galaxies that contribute to the summand.

One of the slowest part of this process is drawing ran-
dom realizations of xi. However, these random draws
do not need to be independent from cluster to cluster.
In practice, we generate a template distribution of 5000
galaxies, and scale the radius and magnitude to the ap-
propriate values for each galaxy cluster. We find that
this number of galaxies gives accurate results for the re-
covered richnesses and richness errors, except for galaxy
clusters that are largely masked out. Consequently, our
final cluster selection criteria includes the requirement
that the cluster mask fraction, fmask, is less than 20%.
In Appendix F we demonstrate with DR8 data that given
our filter function this formalism accurately corrects for
masked regions and limited depth.

6. CALIBRATION OF THE RED SEQUENCE

6.1. Outline

Suppose we have a complete sample of red galaxies
with spectroscopic redshifts down to the limiting mag-
nitude of the survey. One can then directly fit a red-
sequence model to these galaxies to calibrate the color
as a function of redshift for these galaxies. The question
then becomes: how does one get a sample of red spectro-
scopic galaxies? Note that in order to calibrate the tilt
of the red sequence, it is important to include a signif-
icant number of less luminous galaxies, which are more
difficult to come by.

Our solution is to simply use the cluster members
themselves. If we know the spectroscopic redshift of a
cluster, then all the cluster members can be tagged with
the spectroscopic redshift of their central galaxy, lever-
aging one spectroscopic redshift into many. Of course,
from photometric data one can only identify likely clus-
ter members, so the fit of the red-sequence model must
account for contamination by non-cluster members.

In order to fit the red-sequence model, all that is re-
quired is a sample of galaxy clusters with known spec-
troscopic redshifts. As discussed in Section 3, we only
require a limited set of these training clusters. These
training clusters can be derived from external X-ray and
SZ catalogs, or from spectroscopic follow-up of likely cen-
trals in dense regions by running redMaPPer with an
ad-hoc red-sequence model.

In the specific case of SDSS DR8, we construct this
training cluster sample based on existing spectroscopic
galaxy samples. Each spectroscopic galaxy is used as
a “seed” around which we look for galaxy clusters by
identifying nearby overdensities of galaxies with the same
color as the seed galaxy. The details of these steps are
described below. We emphasize that our calibration is
performed using only 2,000 deg2 of SDSS data. As we
show in Appendix C, we show that while we have the
full wealth of SDSS spectroscopic data at our disposal,
an equivalent red-sequence model may be derived from
only 400 central galaxies from z ∈ [0.05,0.6].

6.2. Selecting Seed Galaxies and the Initial Color
Model

The initial calibration of the red sequence relies on
spectroscopic “seed” galaxies. This may simply be a set
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of training clusters with spectroscopy (see Appendix C),
or in the case of DR8, a broad spectroscopic sample that
contains a sufficient number of red galaxies in galaxy
clusters. For SDSS spectroscopy, the first step is to iden-
tify the subsample of spectroscopic galaxies that are red.
This is achieved by using a single color that samples the
4000Å break for early type galaxies. With SDSS data, we
use g− r for z < 0.35, and r− i for z > 0.35. Because we
wish to have a relatively clean selection of red-sequence
galaxies as our seeds, we approach the problem of select-
ing these galaxies in several steps. We emphasize that
some of these steps are only necessary for cutting the
full list of SDSS spectra to an appropriate red galaxy
sample.

Step 1: Perform an approximate red galaxy selection.
To make this selection, we bin the galaxies in redshift
bins of width ±0.025. We then use the error-corrected
Gaussian Mixture Method (Hao et al. 2009) to estimate
the mean and intrinsic width σint(z) of the red-sequence
galaxies. Those galaxies within 2σ of the expected mean
for red galaxies are considered approximately red.

Step 2: Use this approximate red galaxy selection to
measure the mean color of the red galaxies as a function
of redshift. Given our approximate red galaxy sample,
we refine our initial estimate of the mean color–redshift
relation by minimizing the function

s =
∑
i

|ci − c̃(zi)| (27)

where c̃(z) is our model for the color as a function of
redshift. The function c̃(z) is defined via spline interpo-
lation, and the value of the spline nodes are the param-
eters with respect to which s is minimized. The spline
nodes are placed on a redshift grid with spacing of 0.1.
Our use of c̃(z) indicates that this is our early calibration
model, which is distinct from the full model color 〈c|z〉
that is derived at the end of the calibration procedure.
In defining the function s, we rely on the sum of abso-
lute values rather than the sum of the squares to make
the resulting minimization more robust to gross outliers.
The function s is minimized using the downhill-simplex
method of Nelder & Mead (1965) as implemented in the
IDL AMOEBA function.

Step 3: Use the mean color–redshift relation to esti-
mate the width of the color–redshift relation. We can
now improve upon our initial estimate of the width of
the color–redshift relation by minimizing the function

s =
∑
i

||ci − c̃(zi)| −MAD| , (28)

where σ̃int(z) = 1.4826×MAD, where MAD is the me-
dian absolute deviation of the sample about the median,
and the factor of 1.4826 relates the MAD to the stan-
dard deviation for a Gaussian distribution. The value
MAD is again defined via spline interpolation, with the
free parameters being the values of the function at the
nodes.

Step 4: Generate a final sample of seed galaxies. Fi-
nally, with the full red spectroscopic galaxy model in
hand (c̃(z), σ̃int(z)), we can cleanly select our seed sam-
ple. We select all galaxies within 2σ̃int(z) of the model
color at the spectroscopic redshift of the galaxy, using
g − r at z < 0.35 and r − i at z > 0.35.
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Figure 1. Sample of red spectroscopic galaxies selected for train-
ing in 2000 deg2 of DR8. Top panel shows g− r color and bottom
panel r − i color. The red galaxy selection is done in g − r (r − i)
at z < 0.35 (z > 0.35), selecting all galaxies within 2σ̃int(z) of the
spectroscopic redshift of the galaxy. Note that this selection leaves
a small number of outliers in the complementary color.

In Figure 1 we show the final seed spectroscopic galaxy
selection for the g − r and r − i colors. The large red
points show the median colors at the node positions, and
the dashed red lines show the cubic spline interpolation.
Note that the single-color selection leaves a small number
of outliers in the complementary color. In addition to the
seed galaxies, we will make use of our red spectroscopic
galaxy color model in the following section.

6.3. Single Color Member Selection

Having selected our seed galaxies and calibrated a
rough initial color–redshift relation, we now proceed to
find likely cluster members around each of our seed galax-
ies. For this first iteration we rely on single-color based
membership. Specifically, in R12 we demonstrated that
for moderately rich (λ & 20) clusters, one can reliably es-
timate the red sequence directly from the data as follows.
First, we select all galaxies within a color window around
the seed galaxy. Next, we fit for the amplitude and tilt
of the red-sequence of that galaxy cluster directly from
the galaxy data. However, in extending this algorithm
to high redshift, we found that large photometric errors
can introduce an unacceptable amount of noise in the
initial color-box selection of galaxies. Therefore, rather
than drawing a color box around the color of the central
galaxy for the initial fit, we draw the color box around
the model color c̃(z) calibrated in the previous section.
In detail, we:

1. Take a red galaxy of known spectroscopic redshift
(the “seed”).

2. Select all galaxies within 500h−1 kpc of the spec-
troscopic galaxy, as well as 2σ of the model color
determined in Section 6.2. For the model color, we
use g − r at z ≤ 0.35 and r − i at z ≥ 0.35. The
width σ of the color box is set to 0.05 and 0.03 re-
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Figure 2. Magnitude distribution of the red spectroscopic seed
galaxies (black histogram) and photometrically selected cluster
galaxies (red dashed histogram) in the redshift slice z ∈ [0.24,0.26].
The “cluster member” histogram weights each galaxy by its mem-
bership probability. The gain in the training sample of faint red-
sequence galaxies through our photometric selection is of critical
importance for an accurate calibration of the red-sequence as a
function of redshift, particularly at the faint end.

spectively, which we expect to be the approximate
red sequence width (e.g., R12).

3. Fit the red sequence (slope and intercept) of these
galaxies.

4. Measure the single-color λcol using the method of
R12 and a fixed aperture of 500h−1 kpc.

5. For all overdensities with λcol > 10, take the galax-
ies with pmem > 0.3 and assign them the spectro-
scopic redshift of the initial seed galaxy.

At this point, we have leveraged the spectroscopic seed
galaxies to generate a set of red galaxies as faint as 0.2L∗
over the redshift range of interest. Although not all of
these galaxies are true cluster members, we have an es-
timate pmem of the probability that each such galaxy
is indeed a red sequence cluster member, as in Eqn. 1.
Consequently, we can model the contamination of non-
red-sequence galaxies in our sample, as shown below.

We emphasize that it is essential that we leverage our
spectroscopic redshifts to fainter magnitudes to properly
model the red sequence. In the case of DR8, our ini-
tial seed galaxy sample is comprised of 42,000 galax-
ies associated with λ > 5 clusters, almost all of which
are preferentially bright. By contrast, our final calibra-
tion sample (see Section 6.5) is comprised of over 600,000
red-sequence galaxies that extend to much fainter mag-
nitudes. This is illustrated in Figure 2. The magni-
tude distribution of our seed galaxies in the redshift
slice z ∈ [0.24,0.26] (solid black histogram) is contrasted
with the membership-weighted magnitude distribution of
our final photometrically selected training sample (red
dashed histogram). We see that the gain in the effective
number of red sequence training galaxies is enormous,
allowing for an accurate calibration of the red-sequence
(amplitude, tilt, and scatter) as a function of redshift.
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Figure 3. Composite red sequence at 0.25 < z < 0.26 for color-
selected galaxies with pmem > 0.9. A linear model (red dashed line)
with roughly constant intrinsic scatter is a good representation of
the red sequence in both g − r and r − i.

We note that we have explicitly verified that our likeli-
hood treatment of this color cut results in unbiased esti-
mates of the total scatter.

6.4. Modeling The Red Sequence

Given a list of galaxies with multidimensional color
(c), redshift (z, taken to be the cluster redshift), and
membership probability (pmem), we can now proceed to
calibrate the full red sequence model. Our model is well
motivated by observations of galaxy clusters, in that the
red sequence at any given redshift in a given color can
be described by a simple linear relation between color
and i-band magnitude mi with intrinsic scatter σint. For
example, Figure 3 shows the composite red sequence at
z = 0.25 for both g − r and r − i colors, for all galaxies
selected in the final calibration iteration with pmem > 0.9.

Our red-sequence model we is defined in terms of
smoothly evolving functions of redshift characterizing the
amplitude and slope of the mean color–redshift relation,
and the corresponding covariance matrices. We have
opted to use a cubic spline interpolation to parameterize
these functions. Given the large number of colors (four
for SDSS), and broad redshift range, our model neces-
sarily contains a large number of free parameters. For
instance, in our SDSS DR8 implementation, we required
a total of 118 parameters to fully characterize the red-
sequence model. In principle, we would like to fit the full
red sequence model simultaneously. However, to make
the problem more tractable we fit the red sequence pa-
rameters governing the mean relation and the diagonal
elements of the covariance matrix one color at a time.
Once these terms are in place, we fit the off-diagonal
terms of the covariance matrix. We are also cautious
that our model does not have too many free parameters
given the training data such that over-fitting becomes
possible. As shown in Appendix C, this can be a prob-
lem in the case of very sparse training data.

An additional complication comes from the fact that
our selection of red sequence galaxies is not entirely clean.
Our fit of the red sequence must take into account the



10 Rykoff et al.

background density of non-member galaxies, as described
below. In addition, we also have to contend with blue
cluster galaxies that are not taken into account by a
global background term. These blue galaxies will tend
to have two effects. First, as the blue fraction increases
at lower luminosities, they will tend to steepen the ap-
parent red sequence tilt. Second, the blend of red and
blue galaxies will tend to broaden the apparent intrinsic
width of the red sequence.

In order to deal with both of these effects of blue cluster
galaxies, we have taken a pragmatic approach. When
fitting the red sequence for a given color, we first perform
a sharp color cut to concentrate on the core of the red
galaxy distribution. Naively, this cut would introduce
biases in the recovered red-sequence model, leading to
under-estimates of the scatter. We avoid this difficulty
by explicitly modeling such a color cut into our likelihood
function. All that remains is to specify the color cut.
Here, we apply a color cut of 1.5σ about the median
color of the high probability member galaxies, where σ
is the median absolute deviation of the color about the
median.

6.4.1. Measuring the Model Mean and Color Scatter

As noted above, we begin by measuring the model color
〈c|mi,z〉 as a function of galaxy magnitudemi and cluster
redshift z for each color, one at a time. The first step
in this process is to define the pivot point m̃i(z) used to
calibrate the amplitude and tilt of the mean red sequence
relation at redshift z. We write

〈c|z,mi〉 = c̄(z) + s̄(z)[mi − m̃i(z)], (29)

We wish to select a pivot point that is characteristic
of most cluster members. To do so, starting from our
pmem > 0.3 members list, we apply a pmem > 0.7 cut.
Using this sub-sample, we minimize the cost function E
where

E =
∑
|mi − m̃i(z)| (30)

where m̃i(z) is defined via spline interpolation, and the
model parameters are the value of m̃i(z) at the nodes.

Having defined our pivot point as a function of red-
shift, we turn to calibrating the amplitude and slope of
the mean relation, i.e., c̄(z) and s̄(z) in Eqn. 29. As
a first step, we do a rough estimate of the amplitude
and scatter, which we will use to isolate the core of the
color distribution of member galaxies. These rough es-
timates for the amplitude and scatter are denoted c̃(z)
and σ̃(z), and are obtained by selecting galaxies with
pmem > 0.7, and then fitting for these functions as was
done in Section 6.2. Specifically, the functions are spline
interpolated, with model parameters being the value of
these functions at the nodes. The best fit parameters
are found by minimizing Eqn. 27, and σ̃(z) is defined
by minimizing Eqn. 28. The primary difference between
these new color estimates and scatter relative to those
derived in Section 6.2 is that these parameters are now
appropriate to the full red sequence rather than simply
the (brightest) spectroscopic galaxies.

We now turn to measuring the actual model parame-
ters defining the amplitude c̄(z), slope s̄(z), and scatter
C int
ii (z). As before, we use a cubic spline interpolation to

parameterize these smoothly evolving functions of red-
shift. For DR8, we have chosen to use a node spacing of

0.05 for c̄(z), 0.1 for s̄(z), and 0.15 for C int
jj (z). We have

found that a relatively tight spacing is required for c̄(z),
as this function can change relatively rapidly at filter
transitions. Fortunately, c̄(z) is the most robust param-
eter, and thus is amenable to smaller node spacings. The
slope and scatter are not expected to vary as rapidly, and
are also noisier to estimate, so we have chosen wider node
spacings. Overall, the calibration is not very sensitive to
the node spacings chosen provided there are sufficient
calibration galaxies (though see Appendix C).

Starting from the photometrically selected galaxy
training set from the previous section, we first apply a
color cut |c − c̃(z)| < 1.5σ̃(z), which ensures that the
red-sequence parameters are based on the core of the red
galaxy distribution, and are therefore less likely to be bi-
ased by blue galaxies. In our model, the probability that
a red-sequence cluster galaxy has a color c is given by a
truncated Gaussian distribution,

G(c) =

1√
2πσ

e−(c−〈c|z,mi〉)
2/2σ2

erf
(

1.5σ̃(z)√
2σ

) , (31)

where the expectation value 〈c|mi,z〉 is defined in terms
of our model functions c̄(z) and s̄(z) as per Eqn. 29, and
the scatter σ is the sum in quadrature of the intrinsic
scatter and the photometric error of the galaxy,

σ =
√
σ2 + σ2

int(z), (32)

where σint(z) =
√
C int
jj is the intrinsic scatter of the red

sequence. The ‘erf’ term in the denominator accounts for
the fact that G(c) is truncated at c̃(z)± σ̃(z), under the
approximation c̄(z) = c̃(z). This approximation is only
used in the overall normalization of the distribution.

The total probability distribution for all of our calibra-
tion galaxies must account for the fact that some of our
galaxies are in fact background galaxies, so the full color
distribution is given by

P (c) = pmemG(c) + (1− pmem)b(c,mi), (33)

where b(c,mi) is the distribution in color and magnitude
of galaxies about random points. The shape of the back-
ground function is obtained by binning all galaxies in
color and magnitude bins and using a CIC algorithm as
in Section 4.3.

In the end, our task is to calculate the set of c̄(z), s̄(z),
and C int

jj (z) values at the given cubic spline nodes that
maximizes the total likelihood given by

lnL =
∑
i

lnPi. (34)

As above, we accomplish this maximization by making
use of the downhill-simplex method. The maximum like-
lihood point defines the model functions c̄(z), s̄(z), and
C int
ii (z). We emphasize that the likelihood is explicitly

truncated as the data is, so that the recovered scatter is
unbiased relative to the full population of cluster mem-
ber galaxies, as we have confirmed with simple mock red
sequences and blue clouds.

In Figure 4 we show the color evolution of red sequence
galaxies with pmem > 0.9 for the g − r and r − i colors
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Figure 4. Color as a function of redshift for the sample of red-
sequence galaxies with pmem > 0.9. The red points indicate the
c̄(z) values at the spline node positions, and the long-dashed lines
are the spline interpolation. The short-dashed lines indicate the
3σint range. Note that the colors in the figure are not corrected
for red sequence tilt. We caution that the intrinsic width of the
red sequence can be wider than the pmem > 0.9 population of
galaxies suggests, since high probability membership requires the
galaxy to fall close to the expected average color. Conversely, the
larger number of outliers in g − r above reflects the fact that the
photometric errors in g − r at high redshift are larger than the
intrinsic width of the red sequence.

in DR8. The red points indicate the c̄(z) values at the
spline node positions, and the long-dashed lines are the
smooth interpolation. The short-dashed lines indicate
the 3σint range. Note that the colors in the figure are
not corrected for red sequence tilt. We caution that the
intrinsic width of the red sequence can be wider than
naively indicated by the pmem > 0.9 galaxies, since high
probability galaxies must reside closer to the average red-
sequence model.

6.4.2. Measuring C int
jk (z)

With the intercept and slope of the red sequence in
hand, as well as the diagonal elements of the covariance
matrix, we now estimate the off-diagonal elements of the
covariance matrix, C int

jk (z). Once again, we use a cubic
spline interpolation, with the same 0.15 node spacing as
used for C int

jj (z).
In order to make the calculation tractable, to constrain

the off-diagonal elements of the covariance matrix we
consider the problem piecewise, tackling two colors at
a time. Each individual piece of the covariance matrix
constrained in this way will be positive-definite and thus
a valid covariance matrix. Unfortunately, due to noise in
the estimation of the parameters, this method does not
guarantee that the total covariance matrix, Cint(z), will
also be positive-definite.

To ensure that Cint(z) is positive-definite, we constrain
the parameters for pairs of colors in a specific priority or-
der, ensuring that the best constrained colors have prece-
dence. In the case of DR8 data in the redshift range
z ∈ [0.05,0.6], these are g−r and r−i. Then, at each step
in the downhill-simplex estimation described below we do
not allow any terms in C int

jk (z) that result in a minimum

eigenvalue in the total covariance matrix Cint(z) that is

less than 0.012. In this way, the first color pair to be
constrained (g−r,r− i) is essentially free, while the final
(and noisiest) color pair to be constrained (u−g,i−z) will
not result in a non-invertable covariance matrix Cint(z).

To perform the pairwise constraints on the off-diagonal
elements, let us consider the residuals in two colors xj
and xk Eqn. 29,

x = c− 〈c|mi,z〉 = (c̄(z) + s̄(z)[mi − m̃i(z)]). (35)

The probability distribution function is again a Gaussian,
though this time we explicitly leave the covariance matrix
in the equation:

G(x) =
1√

2π|C|1/2
exp

[
−1

2
xC−1x

]
, (36)

where x = {xj ,xk} is the vector of residuals, and the
total covariance matrix C is

C = Cint(z) + Cerr(z). (37)

Here Cint(z) and Cerr(z) are the covariance matrices
characterizing the intrinsic scatter and photometric error
respectively. The intrinsic scatter is simply

Cint =

(
σ2
int,j rσint,jσint,k

rσint,jσint,k σ2
int,k

)
, (38)

where σj and σk are known from the previous section,
and r is the only unknown. The covariance matrix
Cerr(z) is derived from the photometric error in each
band. Given two colors cj = mα−mβ and ck = mγ−mδ,
the covariance matrix characterizing the photometric er-
ror is given by

Cerr(z) =

(
σ2
α + σ2

β η
η σ2

γ + σ2
δ

)
, (39)

and

η =

{
−σ2

β if γ = β

0 otherwise.
(40)

Here, we are assuming that neighboring colors are of the
form cαβ and cγδ, i.e., that the “shared” magnitude is
mβ = mγ . The covariance between photometric errors
arises precisely because, for example, the neighboring col-
ors g−r and r− i are both derived from the same r-band
magnitude.

The color distribution function of the full galaxy pop-
ulation is again given by Eqn. 33, noting that now the
background term b(cj ,ck,mi) is given by a three dimen-
sional binning in two colors and i-band magnitude. In
addition, we implement a prior on r with 0 mean and
width 0.45 for each of the nodes. We find that this prior
reduces the noise in the parameter constraints, which
is especially important at high redshift where the pho-
tometric errors dominate and the covariance matrix is
largely unconstrained. At the same time, this prior al-
lows high correlations (r ∼ 0.9) if strongly favored by the
data. Our total likelihood is now given by:

lnL =
∑
i

lnPi −
∑
n

(rn/0.45)2

2
, (41)

where
∑
n is a sum over all the nodes, and rn is the cor-

relation coefficient at that node. That is, the prior is
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placed at each of the nodes. Maximization of the likeli-
hood function defines the final values for the correlation
coefficients that characterize the intrinsic scatter covari-
ance matrix.

6.5. Iterating The Red-Sequence Model

We emphasize that the estimation of the red sequence
parameters in the previous section depends on the mem-
bership probabilities (pmem) of the red sequence galaxies.
Of course, the membership probabilities themselves de-
pend on the red sequence model. In order to obtain a red
sequence model that is consistent with the membership
probabilities, we take an iterative approach.

After we calibrate the red sequence parameters based
on single color membership probabilities, we run the clus-
ter finder on the training data, as described in Section 9.
During these calibration runs we restrict ourselves to
finding clusters associated with our seed galaxies so that
we can affirmatively associate a spectroscopic redshift
with each cluster. The resulting cluster catalog includes
cluster member lists and new membership probability es-
timates pmem based on the full color model. With these
in hand we can re-estimate the red sequence model as
described in Section 6.4.

As we iterate, the largest shifts in the model occur be-
tween the first and second iteration, reflecting the shift
from estimating membership probabilities based on a sin-
gle color, and estimating membership probabilities with
the full multi-color data. As detailed in Appendix A, for
DR8 data the color at the reference magnitude m̃i(z)
and slopes characterizing the average color of red se-
quence galaxies converge quickly, and is generally well
measured, except for u − g at high redshift, where the
large photometric errors in u make our model estimates
noisy. The scatter model, on the other hand, converges
slowly, particularly at high redshift, where the intrinsic
scatter is often sub-dominant to photometric errors. As
we now show, however, by the third iteration our model
is well converged.

We define convergence of the red sequence model in
terms of the relevant quantity for our purposes, i.e., the
cluster richness λ. That is, we require that cluster rich-
ness estimates be insensitive to further iterations. To this
end, we have run the calibration through ten iterations.
Given the red sequence model for each of these ten iter-
ations, we estimate the photometric redshift and cluster
richness of a standard set of galaxy clusters while fixing
the central galaxy of these systems. Let then λi and zi
denote the richness and redshift estimates from iteration
i. We bin the clusters in narrow redshift slices (±0.01),
and we calculate: 1- the median ratio λi/λ3, and 2- the
median offset (λi−λ3)/σ3, where σ3 is the error estimate
in the richness as estimated from iteration 3.

In Figure 5 we show the results of these iteration checks
for the first 6 iterations in the DR8 training region. Even
for the first iteration, for which pmem was estimated using
a single color, the bias is always < 10% (though at the
lowest redshift that shift is ∼ 1σ). However, after the
third iteration, the biases are always < 1% at low redshift
and < 5% at high redshift. The bottom panel shows that
after the third iteration the biases are < 0.1σ. Thus, we
rely on the output of our third iteration for our final
cluster catalog.

      
0.90

0.95

1.00

1.05

1.10

<
λ i

 / 
λ 3

>

λ1
λ2
λ4

λ5
λ6

0.1 0.2 0.3 0.4 0.5 0.6
z

-0.5

0.0

0.5

1.0

<
 (

λ i
 -

 λ
3 

) 
/ σ

3 
>

Figure 5. Top: Average richness bias as a function of redshift
for the first six iterations of the red-sequence model for the DR8
training region, as compared to λ3, the richness computed in the
third iteration. Even for the first iteration, the bias is < 10% at all
redshifts. After the third iteration, the biases are always < 1% at
low redshift and < 5% at high redshift. Bottom: Error normalized
average deviation relative to the baseline. After the third iteration
the bias is always < 0.1σ.

7. PHOTOMETRIC REDSHIFT ESTIMATION

At the end of our calibration we have a complete red
sequence model as a function of redshift. Note, how-
ever, that in order to estimate the richness of a photo-
metric cluster we need to know the cluster redshift. If
we have some initial, reasonably accurate redshift guess
zinit for each cluster, we can estimate the cluster richness
and determine the high probability cluster members. We
then simultaneously fit our red sequence model to all high
probability cluster members to derive an improved red-
shift estimate, and iterate this procedure through con-
vergence. We now describe this full procedure in detail,
including the construction of our initial cluster redshift
guess zinit.

7.1. Redshift Initialization: zred

For the full SDSS DR8 survey, we have multiple photo-
metric redshifts based on large training sets (e.g., Csabai
et al. 2007; Sheldon et al. 2012). However, these methods
have certain limitations. First, they require training sets
that span a broad range of magnitudes, which although
abundant at z . 0.5 for SDSS data, will be much sparser
at higher redshifts for large surveys such as DES. Second,
these methods — in particular p(z) methods such as that
of Sheldon et al. (2012) — are very good at estimating
the ensemble of redshifts for a broad class of galaxies.
However, our needs are much more specific: we wish to
have a good initial single-value estimate of the redshift
of the central galaxy of galaxy clusters to initialize our
cluster photometric redshift estimation procedure. To
that end, we have developed our own photometric red-
shift estimator zred which is specifically designed to work
on red sequence galaxies.

Given a red-sequence galaxy at redshift z with i-band
magnitude mi, color vector c, and photometric error
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Cerr(z), the probability distribution of its color is simply

P (c) ∝ exp

(
−1

2
χ2

)
(42)

where χ2 is given by Eqn. 6, i.e.,

χ2 = (c− 〈c|z,mi〉) (Cint(z) + Cerr(z))
−1

(c− 〈c|z,mi〉) .
(43)

The corresponding log-likelihood is therefore simply
lnL = −0.5χ2. In practice, we also include an additional
volume prior that accounts for the fact that there is more
volume at higher redshifts. Assuming that the luminosity
function does not evolve over the redshift uncertainties,
the probability that a galaxy of a given luminosity is at
redshift z is

P0(z) ∝ dV

dz
= (1 + z)2D2

A(z)cH−1(z), (44)

which leads us to the likelihood

lnLred = −χ
2

2
+ ln

∣∣∣∣dVdz
∣∣∣∣ . (45)

The redshift estimator zred is that which maximizes the
above likelihood. We use the “red” subscript to indicate
that the redshift estimator assumes a red sequence galaxy
model. We maximize the likelihood along a redshift grid
with δz = 0.005, and then use parabolic interpolation
to find the correct maximum. This search is restricted
to galaxies with mi < m∗(z) + 2.5, since galaxies fainter
than this fall well below the luminosity threshold used to
define cluster richness (recallm∗(z) is defined in Sec. 4.2).
The error estimate for zred is estimated as the standard
deviation of the redshift over its posterior, i.e.

σ2
zred

=
〈
z2
〉
− 〈z〉2 (46)

where

〈zn〉 =

∫
dz Lred(z)zn∫
dz Lred(z)

. (47)

We could, of course, store the posterior of the redshift
distribution, but we have chosen not to do so since the
only use of zred in the redMaPPer algorithm is that of
providing an initial redshift estimates for galaxy clusters.

The top-left panel of Figure 6 shows zred for DR8 clus-
ter training galaxies with pmem ≥ 0.9 versus the spectro-
scopic redshift of the corresponding central galaxy zCG.
We see that zred performs very well, with low bias and
scatter, and very few gross outliers. The “flare-up” of
the points around zCG ∼ 0.35 is due to the 4000 Å break
moving from the g − r to the r − i color.

The performance of zred is better illustrated in the
bottom-left panel of the same figure. The black triangles
show the mean offset zred−zCG in redshift bins, the blue
dashed line shows the average error in zred as estimated
above, while the red-dashed line shows the observed rms
of the redshift offset in each of the redshift bins. The
magenta dotted line shows the fraction of 4σ outliers.
It is clear from the figure that our errors are somewhat
overestimated, and that there is a small redshift bias in
zred.

We correct for the deficiencies revealed in the left panel
of Figure 6 by applying an afterburner. Specifically, for

the above cluster sample we define the mean redshift
offset as a function of redshift,

dz(z) =
〈
(z0red − zCG)|zCG

〉
(48)

where z0red is the original, uncorrected redshift estimate
defined above. That is, dz(z) is the curve traced by the
black triangles in the bottom-left panel of Fig. 6. We
define a corrected zred redshift, as the solution to the
equation

zred = z0red + dz(zred) (49)

In practice, the above treatment is slightly simplified,
since our correction afterburner allows for the redshift
bias to be a function of magnitude. For details, we refer
the reader to Appendix B.1.

In the right panel of Figure 6 we show the corrected
value of zred as a function of zCG after applying our after-
burner, again for a sample of galaxies with pmem > 0.9.
The notation is the same as for the left panel. The bi-
ases are improved at high redshift, although there are
still some residual issues at z ∼ 0.4 where zred is biased
by ∼ 0.3σ. We also note that the afterburner removes
residual biases observed as a function of mi (not shown).
The overall small bias and scatter in zred allows us to use
this photometric redshift estimate as a good initial guess
with which to initialize our photometric cluster redshift
estimator.

7.2. Cluster Redshift Estimation: zλ

Our approach to computing the cluster photometric
redshift zλ is essentially an iterative extension of zred.
Specifically, given a central galaxy candidate, we:

1. Start with a cluster redshift zλ,i, where i indexes
the iteration. In the first iteration, we set zλ,0 =
zred.

2. Calculate the richness λ around the candidate cen-
tral galaxy setting zcluster = zλ,i, and get the asso-
ciated set of membership probabilities pmem.

3. Select high membership-probability galaxies to es-
timate a new redshift zλ,i+1 by maximizing the like-
lihood function given by Eqn. 51 below.

4. Repeat from step 2 until convergence, such that
|zλ,i+1 − zλ,i| < 0.0002.

All that remains then is the definition of a suitable
likelihood function. To begin with, let us assume that we
have a sample of known cluster member galaxies. Then,
the log-likelihood of the observed colors for these galaxies
would be

lnL =
∑
−χ

2
i

2
− ln |C|

2
. (50)

Eqn. 43, we take into account the log of the determinant
of the covariance matrix, ln |C|. We have found that,
unlike the case of zred, including this term improves the
performance of zλ when the intrinsic scatter is varying
rapidly. This makes sense, given that when utilizing mul-
tiple galaxies, one can directly probe the scatter in the
red sequence, which is an observable that is inaccessible
when estimating single-galaxy photo-zs.
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Figure 6. Left, top: Uncorrected photometric redshift zred for cluster member galaxies in DR8 with pmem > 0.9, as a function of the
central galaxy spectroscopic redshift zCG. Left, bottom: The black triangles show the mean redshift offset zred − zCG in several redshift
bins. The red long-dash line is the rms of these offsets, while the blue short-dash line is the average estimated redshift error. The dotted
magenta line is the fraction of 4σ outliers as a function of redshift. Right, top: Corrected photometric redshift zred, using 49, for cluster
member galaxies in DR8, as in left panel. Right, bottom: Bias, scatter, and outlier fraction, as in left panel, now for the corrected redshift.

Of course, in practice, we do not have a list of known
members, but rather a list of likely members with mem-
bership probabilities. One might be inclined to adopt a
sharp cut pmem ≥ pmin in order to define a likelihood that
can be used to estimate the cluster redshift. However, we
find that a sharp cut in pmem leads to numerical instabil-
ities in the iterative process because galaxies can scatter
in and out of the sample in the course of the iteration.

To overcome this problem, we adopt instead a soft cut,
and define a new likelihood

lnL =
∑
−
w
[
χ2 + ln |C|

]
2

, (51)

where each galaxy contributes a weight w that smoothly
varies from w = 1 at pmem = 1 to w = 0 at pmem = 0.

The assignment of these weights is somewhat ad-hoc.
We assume w(pmem) follows a Fermi-Dirac distribution.
The transition from w = 0 to w = 1 occurs at p70, which
is the probability threshold that accounts for 70% of the
total richness, i.e.,

0.7λ =
∑

pmem≥p70

pmem. (52)

The advantage of defining the probability threshold in
this way — as opposed to a redshift independent thresh-
old pcut — is that p70 varies with cluster redshift in such
a way that one always uses the same fraction of clus-
ter galaxies when estimating redshifts. Were we to take
a constant pmem cut, the number of galaxies contribu-
tion to zλ would decrease with increasing redshifts, since
galaxy pmem values decrease as the photometry becomes
noisier. The width of the distribution is set to 0.04, which
we found is sufficient to regularize the iterative process.

Thus, our galaxy weights are defined via

w(pmem) =
1

exp [(p70 − pmem)/0.04] + 1
. (53)

In Figure 7 we illustrate how the iterative process in
our redshift estimate works. Fundamentally, each loop
in the iteration takes a zin value for the redshift, and
produces a redshift zout, and we wish to find the stable
point where zout = zin. In the figure, we show zout(zin)
for three sample clusters. For the two typical clusters
denoted with red short-dashed lines, this function is well
behaved, and we quickly achieve convergence. However,
there are also ∼ 1% − 2% of clusters that have conver-
gence curves like the blue long-dashed line. These ap-
pear to be projection effects between multiple nearby
structures. As detailed in Section 9.3, redMaPPer of-
ten fragments these clusters along the line-of-sight, as it
should. However, which cluster is “dominant” and which
is a satellite depends on the initial photometric redshift
estimate (zλ,0).

Given an estimate for zλ, we can also map out the
posterior P (ztrue|zλ). Defining χ2

norm via

χ2
norm =

∑
w[χ2 + ln |C|]−min

(∑
w[χ2 + ln |C|]

)
,

(54)
we adopt the posterior

P (ztrue|zλ) =
exp(−χ2

norm/2) |dV/dz|∫
dχ2

norm exp(−χ2
norm/2) |dV/dz|

(55)

where dV/dz is the comoving volume per unit redshift.
The above expression defines our estimate of the redshift
probability distribution of each cluster. In addition, we
fit this distribution with a Gaussian to estimate the red-
shift error σzλ .
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Figure 7. The redshift difference zout − zin for one loop of our
iterative photometric redshift estimator, as a function of the input
redshift zin. Two typical, well behaved clusters are shown with red
short-dashed lines. However, ∼ 1−2% of clusters have convergence
curves like the blue long-dashed line. These appear to be projection
effects between multiple nearby structures.

Finally, in order to ensure that zλ is unbiased, we apply
an afterburner correction, much in the same way as was
done for zred, only now we demand that the redshift be
unbiased in the sense that 〈ztrue|zλ〉 = zλ. We relegate
the details to Appendix B.2.

In the top panel in Figure 8 we compare our photo-
metric redshift estimates to the spectroscopic redshift of
the central galaxy (where available) for all clusters in
DR8 with λ/S(z) > 20 (i.e., every cluster must have 20
galaxy detections). The bottom panel shows the residu-
als (red triangles), as well as the rms of the distribution
(red long-dashed line) and average estimated error σzλ
(blue short-dashed line). There are small biases that are
nevertheless detected with high confidence. We do not
yet fully understand the origin of these biases, but in-
tend to return to this problem in a future paper. We see
too that there is a feature at 0.35 . z . 0.45, both in
the bias and scatter, reflecting the additional difficulties
introduced by the fact that the 4000Å break goes from
being sampled by g − r to r − i. This is also the red-
shift range where we start running into the limit of the
DR8 photometry, which further aggravates these failures.
Indeed, these features are greatly reduced when redMaP-
Per is run on deeper data (e.g., SDSS Stripe 82 coadds,
Annis et al. 2011, not shown).

One interesting thing to note about the top panel in
Figure 8 is that the “large” (∆z ∼ 0.1) redshift offsets in
this plot do not reflect errors in the cluster redshift esti-
mates, but rather cluster miscentering. That is, when we
compare zλ to the redshift of the central galaxy, large off-
sets are primarily due to our selection of a central galaxy
that is not, in fact, a cluster member. To demonstrate
this, we have created a “clean” sample of clusters where
we demand that there be at least two spectroscopic clus-
ter members with pmem > 0.8 within 1000 km s−1 of the
spectroscopic redshift of central galaxy, thereby ensur-
ing that the central galaxy is in fact a cluster member.
Of the 13,178 redMaPPer clusters in DR8 with spectro-
scopic redshifts, 1,829 (or 14%) meet this criterion. The
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Figure 8. Top: zλ vs. spectroscopic redshift of the assigned
cluster central galaxy (CG) for redMaPPer clusters in DR8 with
λ/S(z) > 20. Bottom: Red triangles show the mean offset zλ −
zCG in various redshift bins. The blue short-dashed line shows
the average redshift error on zλ, while the red long-dashed line
shows the measured rms of the redshift offset distribution. The
vast majority of outliers are due to errors in cluster centering, i.e.,
the offset zλ − zCG is large not because zλ is incorrect, but rather
because the chosen central galaxy is not actually a cluster member.

corresponding comparison of zλ to zCG in this case is
shown in Figure 9. We see that this photometric redshift
plot is very clean. The few outliers left (. 0.2%) are
likely multiple systems in projection. In particular, the
obvious outlier cluster at zλ ≈ 0.22 correpsonds to the
cluster represented by the blue long-dashed line shown
in Figure 7.

We can get a better sense of the fraction of gross red-
shift outliers from Figure 10, where we show the fraction
of 3σ, 4σ, and 5σ outliers. A cluster is considered an Nσ
outlier if |zλ − zCG| ≥ Nσzλ . To estimate the fraction of
outliers as a function of redshift, for each redshift z we
collect all clusters with redshift zλ ∈ [z−0.025,z+0.025],
and directly measure the fraction of Nσ outliers. By
moving the window [z − 0.025,z + 0.025] we recover the
outlier fraction as a function of redshift. We see that
≈ 1% of our galaxy clusters are 4σ redshift outliers. We
emphasize that this fraction is measured using the full
cluster sample, not the cleaned version used to produce
Figure 9.

Finally, in Figure 11 we test whether the redMaPPer
estimates for the cluster redshift probability distribu-
tions P (ztrue|zλ) are accurate. First, we select all clus-
ters with spectroscopic central galaxies to create a “true”
N(zCG), shown with a black solid histogram. We note
that this is not representative of the full cluster popu-
lation due to uneven spectroscopic sampling. We com-
pare this to two estimates of N(z) using the same set
of clusters. First, we bin clusters using the central val-
ues of zλ, shown with the red-dashed histogram. Second,
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Figure 9. zCG vs. zλ as in Figure 8, but demanding that the
cluster contain at least two cluster members with pmem ≥ 0.8
with spectroscopic redshifts within 1000 km/s of the redshift of
the assigned central galaxy. This removes clusters centered on
non-cluster-member galaxies. Of the 13,178 redMaPPer clusters in
DR8 with spectroscopic redshifts, 1,829 (or 14%) meet this crite-
rion. The few remaining outliers (. 0.2%) appear to be redshifts
failures from multiple systems in projection.

Figure 10. Fraction of redshift outliers, as a function of photo-
metric cluster redshift. A cluster is said to be an Nσ outlier if
|zλ − zCG| ≥ Nσzλ . We show the fraction of 3σ, 4σ, and 5σ out-
liers, as labelled. These are computed using the full redMaPPer
cluster sample, with no additional spectroscopic requirements on
member galaxies (unlike in Fig. 9).

we integrate
∑
P (ztrue|zλ) over the appropriate redshift

bins, shown with a yellow band (including the expected
measurement errors and Poisson sampling, ±1σ). The
red-dashed histrogram is obviously not a good fit to the
spectroscopic redshift distribution. In particular, there
is an artificial peak near the filter transition at z = 0.35.
This is properly smoothed out by our probability distri-
bution estimate (yellow band), which is a good fit to the
spectroscopic data (χ2/dof = 45.0/40).

8. CLUSTER CENTERING

Figure 11. Comparison of the true and predicted N(z) distribu-
tion for redMaPPer DR8 clusters with central galaxies with spec-
troscopic redshifts and λ/S > 20. We note that this is not repre-
sentative of the full cluster population due to uneven spectroscopic
sampling. The black solid histogram shows the “true” N(zCG).
The red-dashed histogram shows the results of binning the central
values of zλ for the same clusters, leading to obvious biases. The
yellow band (±1σ errors) shows the results of summing the cluster
P (z) values, and provides a good fit to the data.

The issue of galaxy cluster centering is very impor-
tant for constraining cosmology with photometric sur-
veys. In particular, miscentered clusters are a leading
source of systematic error in stacked weak-lensing mass
estimates (e.g., Johnston et al. 2007; Mandelbaum et al.
2008; Rozo et al. 2010), as well as mean velocity disper-
sions (e.g., Becker et al. 2007). In addition, the cluster
richness estimates themselves depend on the choice of
center. Thus, a well-characterized centering model is es-
sential for precision cosmology.

We assume every galaxy cluster halo has a bright, dom-
inant galaxy residing at its center (e.g., von der Linden
et al. 2007, 2012; Menanteau et al. 2013; Mahdavi et al.
2012; Song et al. 2012b; Stott et al. 2012, see also pa-
per II). In our current implementation, we also assume
that the central galaxy is red, which is the case for the
vast majority of massive clusters. The exceptions are
strong cool-core clusters such as Abell 1835, where there
is enough star formation for the broadband color of the
central galaxy to no longer be consistent with that of a
red sequence galaxy (e.g., McNamara et al. 2006). Al-
though blue central galaxies are more common (although
still rare) at the group scale (e.g., George et al. 2011;
More et al. 2011; George et al. 2012; Tinker et al. 2012),
the redMaPPer clusters are much more massive than the
scale at which this is an issue.

Miscentering of galaxy clusters where the central
galaxy is undergoing strong star formation is a known
failure of the redMaPPer centering algorithm (see Paper
II). Simply removing the requirement that central galax-
ies be consistent with the red sequence — i.e. relying
solely on luminosity and proximity — can fix some of
these clusters, but at the expense of miscentering ∼ 10%
of the clusters on foreground galaxies14. Likewise, our

14 We note that foreground galaxies are much more likely to be
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tests have shown that both galaxy centroids and lumi-
nosity weighted galaxy centroids result in worse center-
ing properties than the algorithm currently implemented
below (e.g., see also George et al. 2012). Thus, center-
ing on red galaxies is, as far as we can tell, the “least
bad” option. In its current implementation, the center-
ing success rate is ≈ 85% (see Paper II). We intend to
continue working on improving our centering model for
future data releases, as this is currently the dominant
source of systematic failures in the redMaPPer cluster
catalog.

8.1. Basic Framework

We introduce a fundamentally new way of thinking
about identifying the central galaxy of a cluster: rather
than specifying a unique cluster center, redMaPPer esti-
mates the probability that a given galaxy is the central
galaxy of the cluster. Some clusters have well defined
cluster centers, exhibiting a single galaxy with a center-
ing probability Pcen ≈ 1, whereas others can have two or
more reasonable central candidates, with the most likely
center having Pcen ≈ 50%. We note that these centering
probabilities are the angular-position equivalent of the
standard photo-z distributions P (z). That is, just as a
cluster has an uncertain redshift position characterized
by a redshift probability distribution, so too does the
cluster have an uncertain angular position on the sky,
characterized by the probability of any given galaxy of
being the correct cluster center. The importance of this
new way of treating cluster centering is that it opens up
the possibility of a statistical treatment of cluster cen-
tering akin to the statistical treatment of photometric
redshifts, allowing us to improve our estimates of the
cluster richness functions and cluster correlation func-
tions. A detailed description of this framework will be
presented and tested in a future work.

The key insight that allows us to estimate centering
probabilities is that there are three different types of
galaxies in a cluster: a central galaxy (“CG”), satellite
galaxies, and unassociated foreground and background
galaxies. Let x be an observable vector for a galaxy,
e.g., color (via zred), luminosity (mi), and position of
each galaxy. We define ucen, usat, and ufg as the distri-
bution of x for central, satellite, and background galaxies
respectively. The ucen and usat filters are assumed to de-
pend on cluster redshift and richness, while ufg depends
only on cluster redshift (via zred). We use the subscript
“fg” as we expect foreground galaxies will be more likely
to be misidentified as CGs. Given a galaxy with observ-
able x, the probability that it is the central galaxy of a
cluster is

pcen(x|λ,zλ) = pfree
ucen

ucen + λsatusat + ufg
, (56)

where pfree is the probability that a galaxy has not been
partially masked by a higher ranked cluster (as described
in Section 9.3; typically pfree ≈ 1), and λsat = λ−1 is the
total number of satellite galaxies. This formula can be
thought of as the simple definition of probabilities, or it
can be interpreted as a Bayesian classification algorithm.

confused as centrals than background galaxies because they tend
to be brighter in apparent magnitude

Note, however, that the probability pcen is not the same
thing as the probability Pcen that the galaxy is the unique
central galaxy of the cluster. By assumption, there can
be only one central galaxy, so if galaxy i is the central
galaxy, then every other galaxy j 6= i must not be a
central. Consequently, the probability that galaxy i be
the central galaxy of a cluster is

Pcen ∝ pcen(xi)
∏
j 6=i

(1− pcen(xj)). (57)

The proportionality constant is set by the condition that
there is just one central galaxy in the cluster,

1 =
∑
i

Pcen(xi). (58)

In addition to the central galaxy probability, we can
also calculate the probability that a cluster is centered
on a satellite galaxy, given by

Psat = (1− Pcen)
λsatusat

λsatusat + ufg
(59)

All that remains for us to be able to estimate centering
probabilities is the definition of the filters ucen, usat, and
ufg.

8.2. Centering Filters

With the basic formalism laid out, we need to specify
the observable x and the corresponding filters. There are
three observables that we use to select the CG: the galaxy
i-band magnitude mi; the red-sequence photometric red-
shift zred of the galaxy; and a weight w that characterizes
the local cluster galaxy density around the proposed cen-
tral galaxy. We also explored replacing our photometric
redshift zred with χ2, the “distance” in color space to the
red sequence. However, we have found empirically that
zred works better for estimating central probabilities, in
that small amounts of star formation and/or small color
errors due to deblending have a much smaller impact on
zred than they do on χ2. We consider each of the filters
in turn.

8.2.1. Luminosity Filter: φcen

The magnitude of the CG is correlated with both rich-
ness and redshift, so we define the CG magnitude filter

φcen(mi|m̄i,σm) =
1√

2πσm
exp

(
− (mi − m̄i)

2

2σ2
m

)
, (60)

where in principle both m̄i and σm depend on richness
and redshift. In practice, we expect σm to be roughly
redshift independent, whereas m̄i obviously depends on
redshift. We assume that m̄i traces m∗(z), so that the
full richness and redshift dependent parameterization of
m̄i is

m̄i(zλ,λ) = m∗(zλ) + ∆0 + ∆1 ln

[
λ

λp

]
, (61)

where ∆0 and ∆1 are redshift independent constants, and
λp is the median richness of the sample. Our algorithm
for fitting for ∆0 and ∆1 is detailed below.
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8.2.2. Photometric Redshift Filter: Gcen(zred)

For the photometric redshift filter, we use the red-
sequence photometric redshift zred for each galaxy in the
field. We model this as a Gaussian function, with the
form:

Gcen(zred|zλ) =
1√

2πσzred
exp

(
−(zred − zλ)2

2σ2
zred

)
. (62)

As the error in the single galaxy photometric redshift
dominates that from the cluster photometric redshift,
we have set the scatter in Gcen(zred) to that of the in-
dividual galaxy. In addition to the photometric redshift
filter, we employ a hard cut such χ2(zred) < 100. In-
vestigations of DR8 spectroscopic galaxies have shown
that galaxies with χ2 > 100 are all catastrophic out-
liers in zred, which is not surprising considering the bad
fit to the red-sequence template. By allowing galaxies
with χ2 < 100, we allow some flexibility for galaxies that
have slightly offset colors to still be considered as cen-
tral galaxies. This is especially an issue for SDSS DR8
for bright, nearby central galaxies that may have color
shifts caused by deblending problems.

8.2.3. Local Galaxy Density Filter: fcen(w)

The motivation behind the local galaxy density filter is
to define an observable w that is a pseudo-gravitational
potential connecting each galaxy to every other cluster
member. The weight w assigned to a given central can-
didate is

w = ln

[∑
(pmem(xi)Li[r

2
i + r2c ]

−1/2)

Rc(λ)−1
∑

(pmem(xi)Li)

]
, (63)

where the sum is over all galaxies within the scale radius
Rc(λ) around the candidate central, rc = 50h−1kpc is a
core radius used to soften the 1/r dependence, Li is each
galaxy’s i-band luminosity, and pmem are the usual λ
membership probabilities. The denominator is chosen to
make the argument of the natural log dimensionless, and
to remove the obvious dependence of the numerator of w
on the total number of terms in the sum. Normalized in
this fashion, we expect that w does not scale with cluster
richness nor redshift.

We assume that for central galaxies, w follows a log-
normal distribution fcen(w),

fcen(w) =
1√

2πσw
exp

[
− (ln(w)− w̄cen)2

2σ2
w

]
. (64)

As noted above, we expect w̄cen to be richness and red-
shift independent. On the other hand, σw will certainly
depend on richness. The noise in w should scale with
raw galaxy counts (λ/S)1/2, where S(z) is the redshift-
dependent factor that relates the raw-galaxy counts to a
richness estimate when the survey is not sufficiently deep
to reach 0.2L∗ at the redshift of the cluster (see Eqn. 22).
For Poisson noise, we set

σw = σw,cen

(
λ

Sλp

)−1/2
(65)

where σw,cen is a constant that we fit for. As above, the
pivot point λp should be chosen to match the median
richness of the sample.

With these definitions, the product

ucen = φcen(mi|zλ,λ)Gcen(zred)fcen(w|zλ,λ) (66)

is the filter characterizing the distribution of central
galaxies.

8.2.4. Satellite Filter: usat

Satellite galaxies on the red sequence can be described
by a filter function analogous to Eqn. 66. Therefore, we
have

usat = φsat(mi|λ,m∗)Gsat(zred)fsat(w|zλ,λ), (67)

where fsat(w) is defined in the same way as Eqn. 64, ex-
cept with parameters appropriate for the satellite galax-
ies, w̄sat and σw,sat. The satellite luminosity function,
φsat, is a Schechter function as described in Eqn. 8. The
redshift filter Gsat(zred) is identical to Gcen(zred).

8.2.5. Foreground Filter: ufg

The foreground filter is defined as the expected number
of unassociated galaxies within the cluster radius Rc(λ),

ufg = Σ̄g,z(mi,zred)ffg(w)
πR2

c

d2A
, (68)

where Σ̄g,z is the background density per deg2 per mi

per zred, calculated in a similar to fashion as the red
sequence background described in Section 4.3. In addi-
tion, the area subtended by the cluster in Mpc2 must
be converted to deg2 via the angular diameter distance
dA, with dA measured in Mpc/deg. Finally, the ffg filter
describes the connectivity filter from Eqn. 64, with pa-
rameters appropriate for random points (w̄fg and σw,fg)
as described below.

8.3. Implementation

Implementing this formalism requires that we calculate
the parameters that describe the filters for central galax-
ies, satellite galaxies, and foreground/background galax-
ies. Of course, calibrating these parameters depends on
having a training sample to start with. As usual, we ap-
proach this problem in an iterative fashion, where the
centering model is constrained at the same time as the
redMaPPer red-sequence model. In the first iteration, we
generate a catalog with roughly correct centering, and
use this to provide an initial calibration of the filters. In
subsequent iterations we make use of the centering fil-
ters and use the output to recalibrate. This procedure is
iterated until convergence.

8.3.1. First Iteration and Initial Filter Calibration

First, we implement a rough centering algorithm: for
every cluster, we simply select the brightest high proba-
bility (pmem > 0.8) member galaxy as the central galaxy
of the cluster. In this fashion, we obtain a full train-
ing catalog with a set of central galaxies that should be
roughly correct.

We now use this first iteration of a central galaxy (CG)
catalog to determine the filter parameters that we will
use in subsequent iterations. Note that because the ini-
tial CG catalog contains some miscenterings, when cali-
brating the CG filters it is important to account for this
contamination.
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If a cluster is improperly centered on a satellite galaxy,
it is most often centered on the brightest satellite. Con-
sequently, the luminosity distribution of satellites which
are mistaken as central is not simply a Schechter func-
tion (φsat). Rather, the luminosity distribution of satel-
lite galaxies in the CG catalog is given by φ1(mi|λ,m∗),
the magnitude distribution of the brightest satellite in
clusters of richness λ. The expected magnitude and zred
distribution of the galaxies in our CG catalog is

ρ(mi,zred|z) =Pcenφcen(mi)G(zred|z)
+ Psatφ1(mi)G(zred|z)

+ (1− Pcen − Psat)Σ̄g,z
πR2

c

d2A
,

(69)

where Pcen is the probability that the galaxy in question
is the central galaxy, as in Eqn. 57, and Psat is the proba-
bility that the cluster is centered on the brightest satellite
galaxy. The redshift, z, is the spectroscopic redshift of
the “seed” galaxy used in the training step.

Our primary goal is to constrain the parameters ∆0,
∆1, and σm. However, we also have the parameters Pcen

and Psat, which are unknown in the first iteration. For
these parameters, we have found that setting them in the
first iteration at any reasonable initial estimate (Pcen ∈
[0.7,0.9]; Psat ∈ [0.05,0.2]) has no marked effect on the
final calibration of the filter parameters. Therefore, for
simplicity we set Pcen = 0.9 and Psat = 0.05 for each
individual cluster in this first iteration.

Before we can continue, we must estimate the param-
eters for φ1(mi|λ,m∗). This is modeled as a Gaussian
distribution with central value m̄sat = m∗(z) + cφ1

+
sφ1 ln(λ/λp), where m∗(z) is obtained from Eqn. 4.2 and
λp is the median richness of the sample. The width of
the distribution is similarly modeled as

σsat = cσ,φ1
+ sσ,φ1

ln(λ/λp). (70)

The central value must scale with richness because as
we sample more galaxies from the luminosity function,
we are more likely to find a very bright galaxy. In or-
der to obtain these parameters, we run a simple Monte
Carlo with the luminosity function parameters from Sec-
tion 4.2. For α = −1.0 with λp = 30, we find that cφi =
−0.95, sφi = −0.32, cσ,φ1

= 0.40, and sσ,φ1
= −0.09.

We note that these parameters depend only on α and
λp, and thus do not need to be updated in subsequent
iterations.

Finally, in order to constrain the parameters ∆0, ∆1,
and σm, we define our likelihood based on Eqn. 69

lnL =
∑
i

ln ρ(mi,zred|z). (71)

By maximizing this likelihood with respect to ∆0 and
∆1 we can use our training clusters to estimate the ucen
filter parameters.

8.3.2. Calibrating the w Filters

We now turn to calibrating the w filters. We begin by
calibrating the foreground and satellite filters, ffg(w) and
fsat(w). For these purposes we assume that all satellites
follow the same spatial profile independent of brightness.
Both ffg(w) and fsat(w) can be calibrated in a Monte
Carlo fashion. We note that foreground galaxies will
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Figure 12. Histograms of w parameter for central (black solid),
satellite (red long-dashed), and foreground/random (blue short-
dashed) galaxies. It is clear that there is some power here to dif-
ferentiate between central galaxies and satellites and foregrounds,
but it is not perfect. However, there is some advantage in being
able to reject a low connectivity bright galaxy as a likely interloper
that does not fit the central galaxy model.

uniformly sample the cluster area πR2
c(λ), and thus to

evaluate ffg(w) we draw random points uniformly within
the disc of every training cluster, and compute the cor-
responding ffg(w) parameters, w̄fg and σw,fg.

The satellite filter fsat(w) is computed in a similar fash-
ion. First, for every training cluster we randomly select
a cluster member with a probability p that is propor-
tional to the membership probability. For this randomly
selected member we compute w at the location of that
satellite. After computing w for all the training clusters,
we compute the corresponding fsat(w) parameters, w̄sat

and σw,sat.
We can now turn our attention to the distribution

fcen(w). Consider now the distribution f(w) for all cen-
tral galaxies. This total distribution is then

f(w) = Pcenfcen(w)+Psatfsat(w)+(1−Pcen−Psat)ffg(w).
(72)

The only unknowns in this equation are the mean w̄cen

and rms σw,cen for the central filter, so we write the like-
lihood

lnL(w̄cen,σw,cen) =
∑
i

ln f(w), (73)

where the sum is over all training clusters. We then
maximize this likelihood to find w̄cen and rms σw,cen.

In Figure 12 we show the central, satellite, and fore-
ground f(w) filters for the final training iteration. It
is clear that there is some power here to differentiate
between central galaxies and satellites and foregrounds,
but it is far from perfect. In particular, satellites are only
slightly less well connected than central galaxies.

8.3.3. Subsequent Iterations

As noted above, in our first iteration our catalog of
CG galaxies is constructed using a simple centering algo-
rithm: i.e., select the brightest high-probability member
as the cluster center. In subsequent iterations of the clus-
ter finder calibration we use the probabilistic centering
algorithm described in Section 8.1. After application of
our centering algorithm we have the important advantage
that each cluster now comes tagged with Pcen and Psat.
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Therefore, we can now repeat the calibrations from Sec-
tions 8.3.1 and 8.3.2 while using the correct Pcen and Psat

for each individual galaxy. In this way we continuously
improve our centering model with multiple iterations of
the cluster finding algorithm.

9. THE CLUSTER FINDER

We have now described in detail all the ingredients that
go into the redMaPPer cluster finder. Here, we focus on
how these ingredients are blended within the context of
the cluster finder to produce a catalog. In particular, we
discuss how clusters are ultimately defined and perco-
lated to ensure that every cluster is found once and only
once. From a practical perspective, the cluster finding is
broken into three stages. First, we look for overdensities
around each individual galaxy using zred as an estimate
of the cluster redshift. Second, we calculate the cluster
likelihoods for each of the galaxies that have a sufficient
overdensity. Third, after sorting by cluster likelihood, we
percolate through the full catalog while probabilistically
masking out cluster members.

9.1. First Pass

In the first pass we wish to identify galaxies that are
credible centers of galaxy clusters. This task involves a
lot of data handling, and so we wish to make it as efficient
as possible.

We begin by taking every galaxy in the input cata-
log with χ2(zred) < 20 and brighter than 0.2L∗ at the
red-sequence photometric redshift zred.15 These are very
generous cuts, yet they reduce the input DR8 catalog
from 56 million galaxies to 23 million possible cluster
centers in the redshift region 0.05 < zred < 0.6. Next, we
take all galaxies within 0.5h−1 Mpc of a candidate cen-
ter and measure λ, setting the cluster redshift to zred.
Candidate centers with λ/S < 3 are rejected. The scale
value S = 1/(1−C) (from Section 5.1) is used to ensure
that we have detected at least three red galaxies above
the magnitude limit. This cut rejects a further ∼ 60%
of the catalog of candidate centrals. Finally, for all cen-
ters that pass these cuts we calculate zλ as described in
Section 7.2 to better refine the redshift of the possible
cluster.

9.2. Likelihood Sorting

Given our list of possible clusters from the first pass,
we now calculate the cluster likelihood for each of these
clusters. The total likelihood is a combination of the λ
likelihood and the centering likelihood. To calculate the
λ likelihood, we first calculate the richness λ using the
optimized radial scale parameters with R0 = 1.0h−1 Mpc
and β = 0.2 as described in Section 4. The λ likelihood
is then given by

lnLλ = −λ
S
−
∑

ln(1− pmem), (74)

where λ is evaluated at the cluster photometric redshift
zλ.

Next, following Section 8 and Eqn. 66, the centering
likelihood is given by

lnLcen = ln[φcen(mi|zλ,λ)Gcen(zred)fcen(w|zλ,λ)], (75)

15 In the case of the training runs, we take every “seed” galaxy
at the spectroscopic redshift.

where we combine the luminosity, zred, and connectivity
w of each galaxy. The total likelihood used in the ranking
of possible cluster centers is

lnL = lnLλ + lnLcen. (76)

Note that the amplitude of the of the λ likelihood func-
tion is typically much larger than that of the centering
likelihood. Thus, to zeroth order, clusters are first ranked
by λ likelihood. Two candidate centrals with similar λ
likelihoods are then ranked according to the central like-
lihood. As will be described below, we refine the choice
of cluster center in the percolation step, so the initial
centering likelihood is not especially influential in deter-
mining the final cluster center.

9.3. Percolation

Having rank-ordered the cluster candidates according
to likelihood, we now need to percolate the list to assign
galaxies to clusters and ensure that no cluster is counted
multiple times. The basic outline of the percolation pro-
ceeds as follows.

1. Given cluster number i in the list, recompute λ and
zλ based on the percolated galaxy catalog. At the
beginning of the percolation, the percolated galaxy
catalog is simply the input galaxy catalog.

2. Determine the cluster center and centering proba-
bility via the method outlined in Section 8.

3. Perform a final calculation of λ and zλ with respect
to the new central galaxy.

4. Update the percolated galaxy catalog by masking
out galaxies based on their membership probabili-
ties.

5. Remove all lower-ranked possible centers that have
a membership probability pmem > 0.5 of being a
member of cluster i. Note these galaxies are still
allowed to provide membership weight to lower-
ranked clusters as part of the percolated galaxy
catalog.

6. Repeat Step 1 for the next cluster in the ranked
list.

9.3.1. Masking Galaxies

Masking galaxies based on their membership probabili-
ties is the “probabilistic percolation” step of the redMaP-
Per algorithm. To perform this step, we keep track of the
“total probability” that a galaxy belongs to a cluster,
which we call ptaken. The probability pfree = 1 − ptaken
is the probability that the galaxy does not belong to any
cluster. Initially, one has ptaken = 0 and pfree = 1 for all
galaxies. Upon finding a galaxy cluster, the entire galaxy
catalog is percolated by updating the probability ptaken
via

ptaken,i+1 = ptaken,i + pfree,ipmem (77)

where pmem is given by Eqn. 1.
Now, when we re-estimate the richness of cluster i +

1, we must take into account the fact that some of the
galaxies have a non-zero probability of belonging to a
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cluster j < i + 1. We do so by modifying the richness
calculation from Eqn. 2 via

λ =
∑

pfreepmem(x|λ). (78)

The first factor above is simply the probability that a
galaxy is “free” to belong to the new cluster, and pmem

is the standard membership probability from Eqn. 1. For
instance, suppose a galaxy has a probability pmem = 0.3
of belonging to the first cluster in the rank-ordered list.
In this case, the galaxy still has 70% of its probability
to give to a cluster lower in the list. In practice, when
quoting cluster membership probabilities pmem we report
not the raw pmem value as given by Eqn. 1, but rather
the product pfreepmem for that galaxy–cluster pair. That
is, the reported value is the correct probability that the
given galaxy belongs to the cluster under consideration.
For galaxy clusters that are sparse in the sky (e.g., at
high richness) these corrections are negligible.

9.3.2. Extent of Clusters and Percolation Radius

As noted above, cluster richness is measured within a
radius Rc(λ) that optimizes the signal-to-noise ratio of
the richness measurements (R12), but is not in any way
chosen to be related to standard definitions of the extent
of a halo, say R200c, the radius within which the average
density is 200 times the critical density of the Universe at
the redshift of the cluster. For cosmological purposes, it
is useful to differentiate between the radius Rc(λ) which
defines the richness measurement, and the percolation
radius that is used to mask out cluster members and
blend or deblend nearby systems. In particular, ideally
one selects the percolation radius so that it matches as
best as possible the percolation radii employed in the
halo definition used to calibrate the corresponding halo
mass function.

In the appendix of R12 we used maxBCG clusters to
obtain an approximate scaling of mass to λ richness16.
We found that the slope of the mass–λ relation is consis-
tent with 1, and that R200c ≈ 1.5Rc(λ). Consequently,
we have adopted 1.5Rc(λ) as our default percolation ra-
dius. That is, galaxies are masked out to this radius.
We note that while galaxies outside the Rc(λ) radius are
not used in the summand in Eqn. 2, we can still esti-
mate pmem in exactly the same way as we do with all
other galaxies out to an arbitrary radius, which is how
we implement the large percolation radius above.

In practice, for the λ/S > 20 richness threshold we
have employed, changing the mask radius by ±50% has
a very small impact on the resulting cluster catalog. Only
a small number of clusters (∼ 5%) – primarily satellites of
the richest λ > 100 clusters – are affected at all by mak-
ing this change. We expect to return to the question of
what the optimal masking radius is in future work, par-
ticularly within the context of cosmological constraints
from galaxy clusters.

10. THE REDMAPPER SDSS DR8 CLUSTER
CATALOG

We have run the redMaPPer cluster finding algorithm
in the SDSS DR8 photometric catalog described in Sec. 2.

16 As shown in Appendix G, λcol used in R12 is within ∼ 10%
of the multi-color λ used in this work.
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Figure 13. Footprint of the redMaPPer DR8 catalog, with clus-
ters binned into a Mangle simple pixelization scheme of depth 7.
All clusters with λ > 5 and zλ ∈ [0.1,0.3] are shown to better
illustrate the large-scale structure in the catalog.

The full cluster finder run contains all clusters with λ ≥
5S(zλ) and zλ ∈ [0.05,0.6]. However, we have chosen to
apply very conservative cuts to our catalog . The cuts
we apply are:

1. The richness is cut to λ ≥ 20S(zλ). Roughly speak-
ing, this requires that every cluster have at least 20
galaxy counts above the flux limit of the survey or
0.2L∗ at the cluster redshift, whichever is higher.
From R12, we estimate that this results in an ef-
fective mass cut of M200 & 1014M�.

2. The redshift range is cut to zλ ∈ [0.08,0.55], so as
to minimize edge effects from the training sample.

3. Only clusters with fmask < 0.2 are included (see
Eqn 23), ensuring clusters are not overly compro-
mised by bad fields, bright stars, and survey edges.

The resulting cluster catalog contains 25,236 systems.
In Figure 13 we show the full footprint of the catalog.
The color scale shows the density contrast relative to
the mean cluster density, where red regions are denser
than average and blue regions are less dense, as estimated
using all λ ≥ 5, zλ ∈ [0.1,0.3] clusters so as to give a
better sense of the large scale structure in the survey.
The image was produced by binning the catalog into a
Mangle simple pixelization scheme of depth 7 (Swanson
et al. 2008).

In Figure 14 we show the comoving density of redMaP-
Per clusters with λ/S(z) > 20 over the full redshift range
of interest. The comoving density is roughly constant
at zλ . 0.35 where the catalog is volume limited. At
zλ ∼ 0.35 the richness and redshift scatter are signif-
icantly boosted by both the 4000 Å break filter tran-
sition and the magnitude limit of the survey reaching
0.2L∗. Therefore, the comoving density is boosted by
low richness clusters scattering up into our sample. A
full accounting for this scatter must be made in order to
precisely calculate the redMaPPer abundance function,
which we leave to future work. Above this redshift the
magnitude limit starts to kick in (via the scale factor
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Figure 14. Comoving density of redMaPPer DR8 clusters as a
function of photometric redshift (zλ) for clusters with λ/S(z) >
10,20,40. All densities have been computed by taking the sum of
cluster p(z). The comoving density is roughly constant at zλ <
0.35, where the catalog is volume limited (denoted by the vertical
dashed line). Above this redshift the comoving density falls off
rapidly as the detection threshold rapidly increases.

S(z)), and we only observe the most massive clusters.
As an illustration of this effect, in Figure 15 we plot
the richness λ vs the photometric redshift zλ for the fi-
nal redMaPPer catalog. The red dashed line shows the
redshift-dependent richness cut λ > 20S(z).

Finally, we show a sample redMaPPer cluster. In Fig-
ure 16 we show REDM J003208.2+180625.3, the richest
redMaPPer cluster not found within the MCXC cluster
catalog (Piffaretti et al. 2011), a system with λ = 236±12
at redshift zλ = 0.396± 0.013. We note that this cluster
is associated with a source in the ROSAT Bright Source
Catalog (Voges et al. 1999). The specific data available
for each of the clusters and members are described in Ap-
pendix H, and a detailed comparison of the redMaPPer
clusters to X-ray and SZ catalogs is presented in Paper
II.

11. PURITY AND COMPLETENESS

Purity and completeness can mean many different
things depending on the context. There is a tendency
to think of purity as the probability that a cluster in the
catalog is a real cluster, and to think of completeness
as the probability that a real cluster is in the catalog.
However, it is often incorrect to think of these quantities
as calibrating failure rates of the algorithm. Here, we
adopt specific definitions of purity and completeness and
discuss their implications.

For cluster cosmology, the relevant quantity is the
probability of detecting a halo of mass M with richness
λobs, which can be decomposed into a convolution of two
components,

P (λobs|M) =

∫
dλtrueP (λobs|λtrue)P (λtrue|M). (79)

The probability P (λtrue|M) is a feature of the Uni-
verse, and must be properly marginalized over in any
cosmological study that relies on the cluster number
function. Constraining this probability distribution can
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Figure 15. Two-dimensional histogram of λ vs. zλ for redMaP-
Per clusters. The red dashed line shows the redshift-dependent
richness cut of λ > 20S(z). Although this figure generally shows a
smooth distribution, the boost in low richness clusters at the tran-
sition redshift of z = 0.35 apparent; this redshift is denoted by the
vertical dashed line.

Figure 16. Image of the cluster RM J003208.2+180625.3, the
richest redMaPPer cluster not found within the MCXC cluster
catalog. This system has λ = 236 ± 12 at a redshift of zλ =
0.396±0.013, and is associated with a source in the ROSAT Bright
Source Catalog. This particular cluster has three candidate cen-
ters, denoted with blue boxes.

also be supplemented by utilizing realistic mock cata-
logs (e.g., Song et al. 2012a, Wechsler et al., in prepara-
tion) which we return to in future work. On the other
hand, P (λobs|λtrue) is a feature of the cluster finding al-
gorithm itself. This probability fully contains all of the
information associated with measurement error in our
catalog. In the present work, we define completeness
and purity as specific integrals over this distribution.

Purity and completeness, used as a simple
parametrization of P (λobs|λtrue), can be estimated
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in several ways. Perhaps the simplest consists of remov-
ing galaxy clusters, randomizing galaxy positions, and
then re-inserting galaxy clusters. The cluster finding
algorithm can then be rerun, and one can determine
which clusters are detected, and how many “false”
clusters are detected (e.g., Goto et al. 2002; Koester
et al. 2007b; Hao et al. 2010a). However, as shown in
Rozo et al. (2011), such an algorithm is fundamentally
flawed because background galaxies are not uniformly
distributed. Consequently, we take a somewhat different
approach, as described below.

1. Generate random points: We generate a list of ran-
dom points uniformly sampling the input galaxy
mask. This ensures we sample all the systemat-
ics in the survey, as well as the effect of masked
regions.

2. Sample “true” cluster richness and redshift: Using
the full cluster catalog (λ > 5), we randomly sam-
ple galaxy clusters to generate pairs of parameters
(λtrue,ztrue). This ensures our model cluster distri-
bution has the same richness and redshift distribu-
tion as the final catalog, including covariances.

3. For each pair of sampled values (λtrue,ztrue), as-
sign them a spatial location using a random point
from Step 1, and sample galaxies using the clus-
ter model: Using the same method as in Sec-
tion 5.2, we use Monte Carlo sampling to gener-
ate 5000 galaxies with the model radial and lumi-
nosity profiles. From this sample of 5000 cluster
galaxies, we randomly sample λtrue galaxies from
within Rc(λtrue), as well as kλtrue galaxies from
Rc(λtrue) < r < Rc(2λtrue), where k scales with
λtrue as appropriate for the radial profile. This en-
sures that our fake clusters do not have artificial
hard edges.

4. Measure λobs for the generated fake cluster at the
random location, and repeat 100 times. When mea-
suring λobs, we mask out galaxies according to the
bright stars and edges in the survey mask, as well
as applying any necessary magnitude limits. We
do not, however, make corrections for higher order
effects such as blending of galaxies.

In this way, we generate a map over the full sky of the
detectability of clusters as a function of redshift and rich-
ness, while taking into account the large-scale structure
that is already imprinted on the galaxy catalog. This
is a more stringent test than a random-background test,
but still does not capture the additional effect that cor-
related large scale structure can have on the galaxy clus-
ters. However, we expect that these additional effects
are subdominant: while the correlation length of galaxy
clusters can be as large as ∼ 20 Mpc, the typical length-
scale over which projections are effective is ∼ 100 Mpc
or more, so for most of this volume 1 + ξ ≈ 1. Roughly
speaking, we would expect no more than 20% corrections
to our estimated impurity from these effects, so for exam-
ple, if 5% of our clusters suffer from projection effects in
this analysis, it likely that this fraction is underestimated
by by ∼ 0.2× 0.05 = 1%. A more detailed treatment of
projection effects will be presented in a future work.

In Figure 17 we illustrate how we use the above outputs
to define purity and completeness. The figure shows the
expectation value 〈λobs〉 for the observed richness of a
galaxy cluster vs. λtrue for a narrow redshift slice (0.2 <
z < 0.22). Note that although λtrue is a fixed value, each
cluster has a distribution of λobs, and we have plotted
the mean value.

To define completeness, consider the sub-sample of
galaxy clusters in some richness bin in λtrue, e.g., that de-
fined by the vertical red short-dashed lines in Figure 17.
The bulk of this cluster sample falls within a tight locus
around the λobs ≈ λtrue line, with some noise associated
with background fluctuations. The mean relation can
be measured, including its scatter, using fitting methods
robust to outliers (we rely on median statistics). The di-
agonal red short-dashed lines show the ±4σ scatter, and
points outside this region are gross outliers. We see that
all such outliers fall above the main cloud of points: these
are projection effects, where we placed a fake galaxy clus-
ter atop an existing richer structure. The completeness
c(λtrue) is defined as the fraction of the non-outlier points
to the total number of clusters in the richness bin, i.e.,
it is the ratio of the number of clusters within the red
dashed parallelogram (λobs is consistent with λtrue within
the scatter) to the number of clusters in the λtrue bin.

Note that with this definition c(λtrue) ≤ 1 does not
imply that we are missing clusters. Instead, it is simply
estimating the fraction of clusters at a given λtrue that
suffer from severe projection effects. Similarly, for clus-
ters with λtrue near the detection threshold, a fraction
of these clusters with have λobs less than the detection
threshold. Thus, these clusters are only “missing” due
to well understood observational scatter.

Similarly, we can estimate purity by considering clus-
ters in a bin in λobs, e.g., that defined by the blue long-
dashed lines in Figure 17. Several of the clusters in this
bin are clear outliers compared to their corresponding
λtrue. The fraction of such outliers in the λobs bin is the
impurity. However, we note one additional restriction;
that is, we discard all outliers with λobs ≥ λtrue/2, de-
noted by the grey region in the figure. We note that in
any projection effect, λobs = λmain+λproj, the richness of
the main and projected halo respectively. By definition,
the main halo has a richness λmain ≥ λobs/2, and we are
concerned with calculating the purity of main halos only.
Thus, any fake cluster with λtrue ≤ λobs/2 is necessarily
a projection on a real, significantly richer cluster in the
catalog and should be discarded in this analysis. As with
the completeness calculation, we emphasize that the re-
sulting purity is the fraction of galaxy clusters as a func-
tion of the observed richness that suffer from projection
effects, and does not represent an absence of galaxies.

To formalize all of the above discussion, we define the
completeness in a bin of richness λtrue as

completeness =

∑
inλtrue bin

∫ λ1

λ0
dλobs P (λobs|λtrue)

N(λtrue)
, (80)

where the sum is over all clusters in a given bin of λtrue.
We define λ0 = λtrue − 4σ, with the restriction that
λ0 > 20; λ1 = λtrue + 4σ; σ2 = σ2

int + σ2
λ; and N(λtrue)

is the total number of clusters in the bin. We estimate
σint directly from the output as the intrinsic scatter in
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Figure 17. Expectation value of the measured richness (〈λobs〉)
vs. input richness (λtrue) for simulated clusters in the narrow red-
shift range 0.2 < z < 0.22. Note that although λtrue is a fixed
value, each cluster has a distribution of λobs and we have plot-
ted the mean value. To measure completeness, we consider the
sub-sample of clusters in a richness bin in λtrue, defined by the
vertical red short-dashed lines. While most of the cluster sam-
ple falls within a tight locus around λobs ≈ λtrue, there are some
cluster that fall above the 4σ contours defined by the diagonal
red short-dashed lines. These outliers are projection effects, where
we placed a fake cluster atop an existing richer structure, and are
counted toward incompleteness. To measure purity, we consider
the sub-sample of clusters in a richness bin in λobs, defined by the
blue long-dashed lines. The clusters that are significant outliers
with low λtrue are impurities where the measured cluster is the
result of a projection effect of multiple systems. The grey region
denotes “unphysical” projections where λobs ≥ 2λtrue, and as such
the fake cluster with richness λtrue is the secondary rather than
the primary halo.

the λobs–λtrue relation, and we have chosen to define an
outlier (incomplete) cluster as any cluster that has a mea-
sured richness λobs that is more than 4σ discrepant from
its true richness λtrue.

By the same token, the purity is defined as

purity =

∑
inλobs bin

∫ λ1

λ0
dλobs P (λobs|λtrue)∑

inλobs bin

∫ λobs,2

λobs,1
dλobs P (λobs|λtrue)

, (81)

where now the sums are over all clusters in a given bin of
λobs. Note that we have the additional restruction that
the sum is restricted to systems with λtrue ≥ 〈λobs〉 /2.
We define λ0 = λtrue − 4σint and λ1 = λtrue + 4σint as
before, and λobs,1 and λobs,2 are the extent of the richness
bin in question.

In Figure 18 we show the completeness and purity as
a function of richness for five redshift bins for the DR8
galaxy and cluster catalog. At low redshifts (z < 0.3)
the completeness is essentially & 99% at λ > 30, but
falls below this threshold due to clusters randomly scat-
tering in and out of the selection threshold. At higher
redshift, as we encounter the magnitude limit of the DR8
catalog our richness threshold increases and thus the rich-
ness at which these threshold effects come into play also
increases.

Our purity is > 95% for all richness and redshift bins,
with the richest systems being less pure. This can be un-
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Figure 18. Top panel: Completeness as a function of input rich-
ness, λtrue, in five redshift bins for the DR8 catalog. At low red-
shift, the completeness at λ < 30 falls off as measurement errors
scatter clusters in and out of our λ ≥ 20 selection threshold. At
higher redshifts, the selection threshold increases, as does the mea-
surement error, leading to a broader decrease extending to higher
richness values. Bottom panel: Purity — i.e., fraction of galaxy
clusters not affected by projection effects — as a function of mea-
sured richness, λobs, in five redshift bins.

derstood very simply: consider a chance superposition
of two clusters of richness λ leading to a single detec-
tion of richness 2λ. This factor of two shift has a much
more dramatic impact on the overall abundance function
at the rich end, simply because the richness function is
steeper there, i.e., a constant projection fraction in λtrue
translates into a projection fraction that decreases with
λobs. Again, all these “impurities” actually correspond
to real clusters; it’s just that the observed richness has
been systematically overestimated.

One curious feature of our purity is that it seems to in-
crease with decreasing richness, and with increasing red-
shift. This is a consequence of our definition: at lower
richness and higher redshifts, the measurements errors
in the richness are larger, so a cluster that is a 4σ out-
lier needs to be more and more of an extreme projection,
which makes such 4σ outliers rarer. That is, the pu-
rity increases not because there are fewer projections,
but rather because the projections that do occur become
increasingly less important relative to the observational
errors in the richness estimates.

12. CLUSTER MASKS

One of the great advantages of using model clusters
placed randomly on the real sky is that we can use the
same output to map the detectability of redMaPPer clus-
ters across the entire survey. In this way, we can directly
construct a set of random points directly applicable to
the cluster mask, which is not the same as the galaxy
mask that defines the survey. An appropriate set of ran-
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dom points is essential for cross-correlation studies for
cluster cosmology (e.g., Landy & Szalay 1993).

As an illustration of the difference between the galaxy
mask that defines the survey and the cluster mask that
defines the redMaPPer catalog, we have run a dense sam-
ple of random points in the vicinity of Arcturus using the
methods described in Section 11. This very bright star
contaminates the SDSS photometry over a large area,
and thus effectively masks out a region of the sky that
is 0.8◦ in radius. To isolate the effect of the survey
mask, all the random points have the same true rich-
ness λtrue = 40, with a redshift distribution appropriate
for redMaPPer.

In Figure 19 we show the map of the detectability of
λtrue = 40 clusters in a 4◦ × 4◦ region around Arcturus.
Each pixel shows the fraction of time a sample cluster
is detected, using Eqn. 80, where black is 0% and white
is 100%. In the low redshift bin (0.1 < z < 0.2, up-
per left panel) the detectability of λtrue = 40 clusters is
essentially 100% outside the Arcturus mask, except for
a few pixels around bright Tycho stars. Note, however,
that due to our requirement that the area of a cluster
must not be significantly masked out (fmask < 0.2), the
edge for the detectability of a cluster at these redshifts is
slightly farther from the center of the Arcturus than the
edge of the galaxy mask (denoted by the red dashed line).
At higher redshift these edges drift closer to each other as
the angular extent of the clusters decreases. However, in
the highest redshift bin (0.4 < z < 0.5, lower right panel)
the cluster is only detected ∼ 60%±30% of the time (see
Figure 18) due to the survey depth. The detectability
varies significantly when clusters approach the threshold
and we see a strong dependence on the local depth and
structure.

13. SUMMARY

In this paper, we have introduced redMaPPer, a red-
sequence cluster finder that is designed to make optimal
use of large photometric surveys. As a case study in
the implementation of the algorithm, we have run on
the SDSS DR8 photometric catalog. We have shown
that redMaPPer improves significantly on previous clus-
ter finders (see also Paper II), with many features that
will be required to take advantage of upcoming surveys
such as DES and LSST. In particular:

1. redMaPPer is based on a multi-color extension of
the optimized richness estimator λ, which has been
shown to be a good mass proxy (R12 and Paper II).

2. redMaPPer is self-training, with a modest require-
ment in the number of training spectra, which can
themselves be limited to the brightest cluster galax-
ies. This makes it particularly well-suited to high-
redshift surveys. Furthermore, the multi-color red-
sequence model makes optimal use of all color data
at all redshifts, with no sharp features as the 4000 Å
break transitions between filters.

3. redMaPPer can handle complex survey masks.
Both mask-corrected richness values can be com-
puted, as well as cluster-appropriate random point
catalogs for large-scale structure studies.
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Figure 19. Map of detectability of redMaPPer clusters of λtrue =
40 in the region of the DR8 galaxy mask in the vicinity of Arcturus
(red dashed circle). Each panel is 4◦ on a side. At low redshift
(0.1 < z < 0.2, upper left panel) a cluster will be detected es-
sentially 100% of the time, except when it falls directly on top
of a star (including typical Tycho stars, which show up as small
black regions in the plot). Note that due to our requirement than
no more than 20% of the area of the cluster is masked out that
the effective mask from Arcturus is slightly broader than that of
the survey mask. At higher redshift this effect is smaller because
the clusters subtend a smaller physical region on the sky. In the
0.4 < z < 0.5 bin (lower right panel) the cluster is only detected
∼ 60%± 30% of the time (see Figure 18).

4. All clusters are assigned a redshift probability dis-
tribution P (z), which enables a more accurate re-
construction of the redshift distribution of the clus-
ter population relative to simple point-redshift es-
timates.

5. The centering of clusters is fully probabilistic. In
this way, the uncertainty in the position of the clus-
ter can be handled in an analagous way to the red-
shift uncertainty provided by P (z).

6. The algorithm is numerically efficient, and can be
run on large surveys with modest computing power.

Using the red-sequence model derived in the redMaP-
Per calibration phase, we have derived two red-sequence
based photometric redshifts. The first, zred, is a red-
sequence template-based photo-z, that has been designed
to generate a good “first-guess” estimation of the redshift
in each cluster. We have also shown, in Appendix D, that
zred compares very well to existing DR8 photometric red-
shifts for this specific class of galaxies. However, zred has
the advantage that it requires many fewer spectroscopic
training galaxies. Moreover, these galaxies can be the
brightest galaxies in the clusters, with no penalty to the
performance of zred at the faint end of the galaxy sam-
ple. The second, zλ, is a very precise photo-z derived
from fitting all cluster members simultaneously to the
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red sequence model. In addition, we derive a P (z) esti-
mator for zλ, which we show is superior to point-based
photometric redshifts for the purposes of estimating the
redshift distribution of the galaxy clusters. In DR8, this
is especially true in the region of the filter transition at
z ∼ 0.35.

As a case study in the implementation of the algo-
rithm, we have run redMaPPer on the 10,400 deg2 BOSS
region from the SDSS DR8 photometric catalog. Using
red galaxy spectroscopic redshifts from 1/5 of the total
area from z ∈ [0.05,0.6], we are able to constrain a ro-
bust red-sequence model that defines both the richness
and photometric redshift estimators. The photometric
redshifts, zλ, have small bias and low scatter, ranging
from σz = 0.006 at z ∼ 0.1 to σz = 0.020 at z ∼ 0.5,
due to increased photometric noise near the survey limit.
The rate of catastrophic outliers is low, with only ∼ 1%
of galaxy clusters appearing as 4σ outliers. Note that be-
cause of our high photo-z precision, a cluster at z = 0.1
with a redshift offset as small as ∆z = 0.025 is con-
sidered a catastrophic redshift failure. Furthermore, we
show that the majority of these outliers are bad centers
rather than bad redshifts; when the catalog is cleaned by
demanding that central and satellite galaxies with spec-
troscopy must all be within 1,000 km/s, the failure rate
decreases to . 0.2%.

After running redMaPPer on the full DR8 photomet-
ric catalog, we apply a conservative selection cut of
λ/S(z) > 20, for a total of 25,236 clusters in the redshift
range of z ∈ [0.08,0.55]. As shown in paper II, the co-
moving density of redMaPPer clusters satisfying this cut
it lower than that of all other SDSS photometric cluster
catalogs. The scale factor, S(z), given by Eqn. 22, defines
the correction factor on the richness caused by the survey
depth. The catalog is volume-limited at z < 0.35, where
S = 1 and the survey depth is brighter than the fiducial
luminosity cut of 0.2L∗ used by the λ richness. Because
our selection threshold corresponds to a total of 20 galaxy
detections, as we lose galaxies at high redshift due to the
magnitude limit of the survey, these 20 galaxies must all
be due to bright members. Therefore, the correspond-
ing richness threshold of 20/S(z) is much higher. This
increased detection threshold results in fewer galaxy clus-
ters at high redshifts. Our adopted richness threshold of
20 detected red sequence galaxies is chosen to provide the
most robust cluster catalog possible, with a mass thresh-
old of M & 1014M� where our catalog is volume limited
at z . 0.35 (R12, Paper II). Although the full redMaP-
Per catalog extends to lower richnesses, we expect expect
performance will worsen as one moves towards lower and
lower richness thresholds.

Finally, we investigate the purity and completeness of
our cluster finding algorithm, focusing on the observa-
tionally relevant probability distribution P (λobs|λtrue).
We have defined impurity and incompleteness as the frac-
tion of clusters for which the observed richness λobs is
significantly different from the true richness λtrue. These
outliers are caused by projection effects: when two halos
are merged together, this manifests itself as incomplete-
ness — a cluster with richness λtrue is up-scattered sig-
nificantly, so it is “missing” from where it should have
been — or impurity — the richness λobs of such a clus-
ter is significantly overestimated. We note that while

the completeness of redMaPPer is near 100%, the purity
is ∼ 95% at the rich end, increasing at lower richness.
This decrease simply reflects larger observational error
(in a proportional sense) for lower richness clusters: i.e.
“outliers” become more rare not because projection ef-
fects are less rare, but because projection effects become
sub-dominant to observational uncertainties. Our esti-
mate of the incidence of projection effects is thus ∼ 5%,
similar to what was estimated in Rozo et al. (2011). A
more detailed analysis of projection effects for redMaP-
Per clusters will be presented in a future work.

In Paper II, we present a detailed comparison of the
redMaPPer cluster catalog to various X-ray and SZ cat-
alogs with high quality mass proxies. In all cases, we
show that the redMaPPer richness λ is a low scatter
mass proxy with high completeness and low impurity
compared to these “truth” tables. We also compare the
performance of redMaPPer to other photometric cluster
finders that have been run on SDSS data, and show that
redMaPPer outperforms these other algorithms in all
metrics (e.g., photo-z performance; mass scatter; and pu-
rity and completeness), though some do perform equally
well in subsets of these categories in specific redshift
ranges.

While this present work has focused on the application
of redMaPPer to the SDSS DR8 catalog, we emphasize
that this algorithm was developed specifically for upcom-
ing large photometric surveys such as DES and LSST. In
particular, its ability to simultaneously utilizes all avail-
able photometric data, its smooth handling of the filter
transition of the 4000 Å break across filter passes, and its
ability to self-calibrate using only minimal spectroscopic
training samples of bright cluster galaxies are all specifi-
cally designed to enable cluster finding in these new pho-
tometric data sets. This will be especially advantageous
at z & 0.7 in the Southern Hemisphere, where we do not
have the advantages of more than a decade of survey data
from the SDSS spectrograph. Thus, in short order we ex-
pect redMaPPer will be capable of producing large, high
quality catalogs of ∼ 80,000 clusters at z < 1 with DES,
opening a new era of high redshift cluster cosmology.
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APPENDIX

A. ITERATIVE EVOLUTION OF THE MODEL
CALIBRATION

For illustrative purposes, in this Appendix we collect
the figures illustrating the how the red sequence model
evolves as we iterate our calibration procedure. In Fig-
ure 20 we show the red sequence parameters character-
izing the mean color — i.e., c̄(z) and s̄(z) — for each of
the first 3 iterations of our red sequence calibration, while
Figure 21 shows the corresponding diagonal elements of
the covariance matrix characterizing the intrinsic scat-
ter in each of the colors. As noted in Section 6.5 and
Figure 5, three iterations are sufficient to achieve con-
vergence in the redMaPPer catalog in terms of richness
and redshift estimates.

B. PHOTOMETRIC REDSHIFT CORRECTION
PARAMETERS

B.1. Constraining zred Correction Parameters

Our approach to constraining the zred correction pa-
rameters c̄z(z) and s̄z(z) is similar to that employed for
the red sequence calibration (note the z subscript). As
before, we have chosen to constrain these parameters at
a given node spacing, using cubic spline interpolation be-
tween the nodes. The node spacing we have chosen for
DR8 is 0.05 for c̄z(z) and 0.10 for s̄z(z), suited to the
characteristic variation scales.

One significant complication that we have to deal with
is that we have membership probabilities for all the
galaxies. In order to properly make use of the proba-
bilities, as in Eqn. 33 we need to know the background
PDF. Unfortunately, there is no first-principle way of
calculating the zred background as a function of ztrue.
Therefore, we have chosen to assume the background is
a Gaussian function with zero mean and finite width, and
to marginalize over this background as a set of nuisance
terms. As above, we assume the background width, σb(z)
is a smoothly interpolated function with a node spacing
of 0.10. To ensure that we are calculating the correction
factors appropriate for red galaxies, and not blue cluster
members and interlopers, we limit ourselves to galaxies
with pmem > 0.7.

Given a model correction,

〈cz|ztrue,mi〉 = c̄z(ztrue) + s̄z(ztrue)[mi − m̃i(z)(ztrue)],
(B1)

then we have a Gaussian PDF for the true galaxies,

G1 =
1√

2πσzred
exp

(
−[(zred − ztrue]− 〈cz|ztrue,mi〉]2

2σ2
zred

)
,

(B2)
and for the background,

G2 =
1√

2πσb
exp

(
−[zred − ztrue]2

2σ2
b

)
. (B3)

The total likelihood is then

L = w[pmemG1 + (1− pmem)G2], (B4)

where we have made the addition of a weight function, w,
which is a smooth function of χ2 that de-weights galaxies
with large χ2 and are possible outliers. The weight w is

w =
1

exp[(χ2 − χ2
95)/0.2] + 1

, (B5)

where χ2
95 is the 95th percentile of all galaxies with

pmem > 0.7.
As before, we find the c̄z(z), s̄z(z), and σb(z) pa-

rameters by maximizing
∑
L using the downhill-simplex

method.

B.2. Constraining zλ Correction Parameters

Our approach to constraining the zλ correction param-
eters is analogous to that used for the zred parameters in
Appendix B.1. However, our job is a little easier be-
cause we are applying corrections such that 〈ztrue|zλ〉 is
unbiased rather than the converse. Therefore, the cor-
rection term can be a function of zλ. For DR8, we use
a cubic spline interpolation with node spacing of 0.04
for 〈cztrue |zλ〉. In addition, we allow an additional vari-
ance term as we find that our raw zλ errors are under-
estimated. For σzλ,int we use a smooth function with a
node spacing of 0.10. To ensure that we are using well-
measured clusters, we limit ourselves to calibration clus-
ters that have λ/S(z) > 10, where S is the scale factor
defined in Eqn. 22. Essentially, this limits us to clus-
ters with at least 10 red galaxies above the luminosity
threshold or magnitude limit.

Given a model correction 〈cztrue |zλ〉 and intrinsic scat-
ter correction σzλ,int, we have a Gaussian PDF for the
clusters,

G =
1√

2πσtot
exp

(
−[(zλ − zCG)− 〈cztrue |zλ〉]2

2σ2
tot

)
,

(B6)

where σtot =
√
σ2
zλ

+ σ2
zλ,int

. The total likelihood is then

given by lnL =
∑

lnG. As before, we find 〈cztrue
|zλ〉 and

σ2
zλ,int

by maximizing this likelihood using the downhill-
simplex method.

With this parametrization in hand, we can calculate
the corrected zλ and error as zλ = zλ,raw + 〈cztrue

|zλ〉,
and σ2

zλ
= σ2

zλ,raw
+ σ2

zλ,int
. However, we find that after

applying these corrections there may still be small resid-
uals in the training sample. Therefore, we iterate on this
solution two further times to obtain a final corrected red-
shift zλ.

After the calibration is complete, we must also ap-
ply these corrections to the P (ztrue|zλ) estimation for
each cluster. To replicate the zλ offset represented by
〈cztrue |zλ〉, we first offset the central value of the P (z)
distribution. Next, to replicate the increased scatter we
“expand the space” between the P (z) bins, so that a
Gaussian fit to P (z) will measure the same width as the
corrected σzλ value. We find that this does an adequate
job of maintaining asymmetries in the P (z) distribution
which show up near the filter transitions.
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Figure 20. Top 4 panels: Average color, c̄(z), at the pivot magnitude m̃i(z), for the first (red dotted line), second (blue dashed line), and
third (magenta solid line) iterations of the calibration as a function of redshift. Bottom 4 panels: As top panels, but for the red sequence
slope s̄(z).
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Figure 21. As Figure 20, but for the intrinsic scatter σint
j =

√
Cint
jj , as a function of redshift.

C. HOW MANY TRAINING CLUSTERS?

When calibrating the red sequence in Section 6 on DR8
data, we make use of all the spectroscopy available in our
2000 deg2 training region. However, much of this is su-
perfluous. First, most of the spectroscopic galaxies —
even the LRG samples — are not in massive clusters.
Second, our strategy of leveraging central galaxy spec-
troscopy to all the galaxies in a cluster means that we do
not require thousands of clusters to perform the calibra-
tion. In this section, we investigate how many training
clusters — each represented by a single spectroscopic red-
shift for the central galaxy — are required to create an
accurate and unbiased richness and redshift estimate.

To test the number of required training clusters we
follow the method of Section 6.5 to measure the bias in
the recovered richness and photometric redshift values on
a predetermined set of test clusters. For our test suite, we
select the {5,10,20,40,80} richest clusters per redshift bin
of ±0.025 in the training region. The redshift binning is
used to ensure we have a relatively uniform coverage over
the redshift range of interest. In practice, of course, the
training clusters need not be so uniformly sampled. For
each of these spectroscopic training sets we recalibrate
the red sequence and measure the richness λ and redshift
zλ for each of the test clusters from Section 6.5.

In Figure 22 we show the results of these test runs.

The left panel shows the richness bias and significance of
the bias as a function of redshift for the various training
samples. Although we can get a reasonable calibration of
the red sequence with as few as five spectra per ±0.025
redshift bin, the resulting richnesses are significantly bi-
ased (∼ 1σ) at the transition redshift z ∼ 0.35. In order
to achieved unbiased richness estimates (< 0.3σ) then we
require ∼ 40 clusters per redshift bin. We assume any
residual biases are due to the noise in estimating the off-
diagonal elements of the covariance matrix. This results
in a total of ∼ 400 spectra to achieve essentially the same
fidelity of calibration as we can achieve with millions of
SDSS spectra. The right panel shows the photometric
redshift bias and significance, similar to the left panel.
For accurate photo-z estimation, we require even fewer
training spectra: ∼ 20 per redshift bin, or a total of 200.

For upcoming photometric surveys such as DES, we
can obtain these spectra by first running a crude run
with an approximate red sequence model. After selecting
bright central galaxies, these can easily be followed up
spectroscopically, as they are the most luminous galaxies
at any redshift. For example, over 85% of the training
spectra required for DR8 training are brighter than mi <
18.5. Thus, our method allows for an incredibly efficient
use of limited spectroscopic resources to enable science
in large photometric surveys.
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Figure 22. Left panel, top: Average richness bias as a function of redshift for {5,10,20,40,80} training clusters per redshift bin of width
±0.025, compared to the richness using the full DR8 training sample. All curves use the same set of 4300 test clusters. Left panel, bottom:
Error normalized average deviation relative to the baseline. With at least 40 (10) clusters per redshift bin of ±0.025, biases are always
< 0.3σ (< 0.5σ). Thus, with only 400 well-chosen spectra of the brightest galaxies, we can achieve nearly the same precision as is possible
with all the SDSS spectra. Right panel, top: Average uncorrected photometric redshift (zλ) bias as a function of redshift for {5,10,20,40,80}
training clusters per redshift bin of width ±0.025, compared to the spectroscopic redshift of the central galaxy, zCG. Right panel, bottom:
Error normalized average deviation relative to the baseline. With at least 20 clusters per redshift bin of ±0.025 we achieve the same redshift
performance as is possible with all SDSS spectra.

D. COMPARISON OF zred TO SDSS DR8
PHOTO-ZS

We consider two sets of photometric redshift estimates
available for all of DR8. The first, “zphoto”, uses an up-
dated method of Csabai et al. (2007)17, and the second,
“p(z)”, uses the method of Sheldon et al. (2012). In this
section we make use of high probability cluster member
galaxies to compare these photometric redshifts to zred
at both bright magnitudes (where training galaxies are
plentiful) and at fainter magnitudes.

For our “pseudo-spectroscopic” test sample, we start
with all clusters with λ > 5 and a central galaxy with
spectroscopic redshift zCG. We then select all members
with pmem > 0.9. We thus expect a contamination rate
of up to 10%, although the real rate should be smaller
than this. By assigning each high probability member to
the spectroscopic redshift of the central galaxy we can
leverage the red sequence to obtain spectroscopic quality
redshifts to much fainter magnitudes than available in
the SDSS main or LRG spectroscopic samples.

Figure 23 shows the density map of the photometric
redshift biases as a function of magnitude for zred, zphoto,
and p(z) for a narrow redshift slice of 0.195 < zCG <
0.205. For zred and zphoto we have assumed a probability
distribution function (PDF) that is Gaussian with mean
zred (zphoto) and width σzred (σzphoto). For the p(z) val-
ues we use a spline interpolation to smooth the PDF and
normalize the area to unity. On the right-hand side are
projected histograms from the density field. The dot-
ted red lines show the zred distribution for comparison.
Note that the density plot clearly shows the separation in
magnitude between central and satellite galaxies. Both
zred and zphoto perform well down to the 0.2L∗ limit of
the redMaPPer richness estimation, while the p(z) val-
ues have a broader distribution at the faint end. These is
also obvious structure in the photo-z bias as a function
of magnitude.

17 See http://www.sdss3.org/dr8/algorithms/photo-z.php

Figure 24 shows the same map for a narrow redshift
slice of 0.395 < zCG < 0.405. While all the photometric
redshifts handle the luminous galaxies very well, the ap-
pear to be slight biases at the faint end in the case of the
DR8 zphoto, and a bifurcation of the distribution for the
p(z) redshifts. The evolution of the bias in the p(z) esti-
mates is due to a combination of effects. First, the r-band
magnitude was used as an input to the photo-z estimator.
For a field galaxy, a fainter magnitude correlates with a
higher redshift. For cluster galaxies, however, galaxies of
a wide range of luminosity occupy the same cluster. As a
result, when using magnitude-based photo-z estimators
on galaxies in clusters, one should expect an increasing
bias with magnitude, which is simply a manifestation of
the intra-cluster luminosity function. The large width of
the error distributions relative to the other estimators are
due primarily to the lack of training set galaxies in that
range. As discussed in Sheldon et al. (2012), the main
focus was on recovering the full r < 21.8 galaxy sam-
ple. To avoid biases induced by training set selection,
the authors did not include the most recent BOSS LRG
samples in that work and deferred LRG-optimized p(z)
estimates to a future paper. It is also worth pointing out
that, despite the extra width of the error distributions
obtained when using p(z), the recovered redshift distri-
butions obtained by summing the p(z) of Sheldon et al.
(2012) are still superior to the distributions estimated
using the DR8 zphoto or single-point zred estimates.

There are two important take-home messages from this
comparison. First, the performance of state-of-the-art
photo-z estimators appears to be sufficiently accurate
for bright galaxies that we would likely be able to use
these in the initialization phase of redMaPPer without
any loss. Second, zred appears to be at least as good —
if not better — than what is currently achieved, with
much smaller spectroscopic training samples. As shown
in Appendix C, we can achieve this redshift performance
with only ≈ 400 of the brightest CG spectra. With the
technique of assigning the spectroscopic redshift of the

http://www.sdss3.org/dr8/algorithms/photo-z.php
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Figure 23. Top: Density of total p(zred − zCG) as a function of
i-band magnitude mi for all cluster members with pmem > 0.9 and
0.195 < zCG < 0.205 in clusters with λ > 5. The right panel shows
the total PDF at all magnitudes. There is a small bias in zred,
though it is constant with magnitude. Middle: Same as top panel,
with zphoto calculated with the algorithm of Csabai et al. (2007).
The performance is good down to 0.2L∗. The right panel compares
the distribution for zphoto (black line) to zred (red dotted line).
Bottom: Same as top panel, with p(z) values from Sheldon et al.
(2012). While the bright galaxy performance is good, there are
biases at the faint end and the distribution is significantly wider.

central galaxies to the members, we effectively increase
the faint end of our training sample. This is very useful
for future surveys because of the high cost of obtaining
spectroscopic redshifts of faint galaxies.

E. COMPUTING PERFORMANCE
BENCHMARKS

The redMaPPer algorithm has been designed to be
fast, efficient, flexible, and trivially parallelized. As there
are two parts to running redMaPPer, the calibration and
cluster-finding stages, we split the performance bench-
marks into two parts.

For the calibration phase, the runtime depends on the
number of training spectra and clusters. For the DR8
training sample on 2000 deg2, the full calibration takes
∼ 30 CPU hr on a 3-year old 2.8 GHz AMD Opteron
8389. Current Intel processors can run the calibration
roughly twice as fast. For the minimal training sample of
40 clusters per redshift bin (see Appendix C) calibration
takes ∼ 13 CPU hr.

The cluster-finding stage is designed to be split into
chunks of arbitrary size on the sky. For these purposes
we use the Mangle simple pixelization scheme (Swanson
et al. 2008), although any pixelization scheme will work.
As long as the overlap region between pixels is wider than
twice the largest size of any cluster in the catalog, then
the percolation of clusters within each cell is guaranteed
to be unique. For the DR8 catalog, this corresponds to a
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Figure 24. Same as Figure 23, with members selected from clus-
ters with 0.395 < zCG < 0.405.

border region of 1.5◦, corresponding to twice the size of
a cluster of richness ∼ 300 at z = 0.05, given the mask
radius parameters. In total, running the full DR8 cluster
finder requires ∼ 500 CPU hr including all galaxy mask
corrections. On a modestly sized compute cluster this
can be run in much less than one day.

F. VALIDATING THE CORRECTION C

In Section 5 we laid out our methodology for correcting
the richness for survey holes and a magnitude limit that is
brighter than 0.2L∗. In order to validate the calculation
of the correction term C described in that section, we
have taken a subsample of clusters with 0.15 < z < 0.3
and simulated a more restrictive magnitude limit. We
have chosen a magnitude limit of mi < 19.6, which is
0.2L∗ at z = 0.2, so that all clusters at higher redshift
will have their richness corrected according to our for-
malism. The average correction for the z = 0.3 clusters
is similar to that for the highest redshift clusters in our
catalog, so this test will sample the full range of correc-
tions employed.

In Figure 25 we show the results of our test. In the
top panel we show λ19.6 vs. λ0.2 for all clusters with
0.2 < z < 0.3, where λ19.6 is the richness calculated with
a magnitude limit of mi < 19.6 and λ0.2 is the standard
λ with a 0.2L∗ cut. When calculating λ19.6 we have re-fit
the photometric redshift zλ to ensure that our compari-
son is as fair as possible. It is clear in the top panel that
the correction richness scales with uncorrected richness,
with some scatter as expected. In the bottom panel we
show the richness scale value (S = 1

1−C = λscaled/λraw)
as a function of redshift. The black squares show the me-
dian estimated value of S derived from Eqn. 15, while the
black error bars represent the median error in S as de-
rived from Eqn. 21. The red diamonds show the median
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Figure 25. Top: Richness calculated with a mi < 19.6 cut vs. full
λ richness, for clusters with 0.15 < z < 0.3. The magnitude cut of
mi < 19.6 is equivalent to 0.2L∗ at z = 0.2, so all cluster at z > 0.2
in this test have S(z) > 1. The corrected richness is consistent

with the full richness. Bottom: Scale factor 1
1−C vs. photometric

redshift. Black squares show the scale factor and uncertainty in
the scale factor estimated in the mi < 19.6 run (shifted slightly for
clarity). Red diamonds show the measured shift and width. Our
measured values agree with our model. However at the largest
corrections we are slightly overestimating the correction term as
well as the uncertainty in the correction term.

measured value of S, and the red error bars represent the
observed width in the distribution of S. Our predicted
correction factor does scale with redshift as expected.
However, our errors are slightly overestimated for the
largest corrections.

G. COMPARING λ TO λcol

We now explore how the richness estimate used in this
work, λ, compares to the single-color richness λcol used
in R12. As detailed in Section 4, the primary difference
in richness estimators is the replacement of the Gaus-
sian color filter with a multi-color χ2 filter. However,
we emphasize that there is also a subtle difference in the
background model, as described in Section 4.1. That is,
the χ2 filter does not distinguish between galaxies that
are too red or too blue relative to the model, and while
the red sequence model is symmetric, the background
model is not.

To make our comparisons, we have started with all
redMaPPer clusters with λ > 20. We then calculate λg−r
and λr−i using the appropriate color model from the red
sequence parametrization. Our expectation is that λg−r
should trace λ at low redshift where the dominant signal
is from the g − r color, and λr−i should trace λ at high
redshift.

In Figure 26 we show the statistics from comparing
λg−r and λr−i to λ. In the top panel we show the me-
dian ratio as a function of redshift. At all redshifts the
bias between the appropriate λcol and λ is . 10%. In
the bottom panel we show the median normalized devi-
ation, which is ∼ 1σ at low redshift and less so at high
redshift where the richness errors are much larger due
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Figure 26. (a) Average ratio between the single-color λcol vs.
redshift for both λg−r (blue dotted line) and λr−i (red dashed
line). As discussed in the text, this offset is likely due to different
background models. In all cases the difference between the full
multicolor λ and the color appropriate for the redshift range (g− r
for z < 0.35 and r − i for z > 0.35) are less than 10%. (b) Width
of the λcol/λ distribution as a function of redshift. The scatter is
. 15% for the appropriate color except for the transition redshift
of z ∼ 0.35. (c) Average offset normalized by the richness error.
Thus, using the single color λg−r is systematically biased high by
∼ 1σ at low redshift, and λr−i is systematically biased low by 0.2σ
at high redshift.

to the magnitude limit. We attribute this bias at low
redshift to the different background model employed, as
galaxies that are redder than the red sequence are down-
weighted in the λ model compared to the λcol model.
These biases are not large, but they are significant and
thus show the importance of using the same color model
and consistent survey data to achieve the best richness
estimation.

The middle panel of Figure 26 shows the width of the
λcol/λ distribution as a function of redshift. The scatter
is . 15% for the appropriate color except at z ∼ 0.35,
where the 4000Å break is transitioning from g to r. It
is in this transition region that a single color richness
estimator does especially poorly and we have the biggest
advantage of using a multi-color estimator.

H. DESCRIPTION OF COLUMNS IN THE DR8
CLUSTER CATALOG

The cluster catalog will be available for download when
the paper is accepted. In this section we describe the tags
that will be released with the catalog
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