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ABSTRACT: We report on a method to detect an electron cloud in proton accelerators through the
measurement of the phase shift of microwaves undergoing controlled reflections with an accelerator
vacuum vessel. Previous phase shift measurement suffered from interference signals due to uncon-
trolled reflections from beamline components, leading to an unlocalized region of measurement
and indeterminate normalization. The method in this paper introduces controlled reflectors about
the area of interest to localize the measurement and allow normalization. This paper describes
analyses of the method via theoretical calculations, electromagnetic modeling, and experimental
measurements with a bench-top prototype. Dielectric thickness, location and spatial profile were
varied and the effect on phase shift is described. The effect of end cap aperture length on phase
shift measurement is also reported. A factor of ten enhancement in phase shift is observed at certain
frequencies.
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1 Introduction

The electron cloud is caused by the formation of a cloud of non-relativistic electrons in the vacuum
chamber of an accelerator. The cloud is seeded through a variety of phenomena, and amplified
through acceleration in the electromagnetic field of the beam and secondary emission from the
vacuum chamber materials. If the amplification is sufficient, the electron cloud can cause a beam
instability by interacting through electrostatic forces with a stored proton (or positron) beam. This
instability is a particular concern for the proposed Project X [1], a multi-megawatt proton facility
planned for construction at Fermilab. Project X will involve more than tripling the bunch inten-
sity in the Main Injector (MI). The MI is a synchrotron that accelerates 53 MHz proton bunches
from 8 GeV to 120–150 GeV. The electron cloud can be seeded in the MI either by residual gas
ionization or beam loss on the vacuum chambers. The seed electrons are accelerated transversely
by the electric potential of the proton bunches and are amplified upon subsequent collision with
the vacuum chamber. The instability can limit the performance of the accelerator by increasing the
vacuum pressure, inducing large coherent oscillations, emittance growth, and shifting the tune of
the machine, among other things.

Fermilab initiated a program of investigation of the electron cloud to understand the issues
concerning an upgrade MI and other high-intensity proton accelerators. One component of this
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program is to develop instrumentation for measuring the formation of the electron cloud. The elec-
tron cloud density can be measured by sending EM waves through an electron cloud of uniform
distribution and measuring the phase shift of the EM waves [2]. The phase shift of an electromag-
netic wave (of frequency, ω) through a uniform, cold plasma (of plasma frequency ωp and density
ρ) per unit length is given by:

∆ϕ

L
=

ω2
p

2c
√

ω2−ω2
c

; ω
2
p = 4πρrec2 (1.1)

where c is the speed of light, re is the classical electron radius, and ωc is the cut-off frequency
of the pipe. The above formula assumes that the e-cloud density is static but in the MI and other
machines, the e-cloud density varies as a function of time because the proton beam which generates
the electron cloud has a time pattern of a bunch structure. Therefore, sending a carrier wave into
the cloud results in phase-modulation, which can be measured at a receiver some distance from the
transmitter. In other words, sidebands to the carrier appear in a frequency spectrum.

By measuring the amplitude of the sideband, in theory, we can estimate the electron cloud
density. However, this approach has limitations because the carrier follows many separate paths
from the transmitter to the receiver. In general, the carrier will travel in all available directions
from the transmitter and reflect from numerous other parts of the machine. These many multiples
paths combine at the receiver and result in a measurement that is representative of a much larger
region than intended and is generally amplified by the much longer paths. A previous test of an
isolated region, surrounded by ferrite absorbers, resulted in phase shifts that were so small as to be
nearly immeasurable [3]. Therefore, we need a technique that is localized and yet gives a strong
phase-shift. Other technique that are currently used to measure the e-cloud density based on the
microwaves includes TE wave resonances and TE wave modulation [4, 5].

Our aim in this work is to make the measurement both localized and increase the signal am-
plitude. We achieve this by installing reflectors on the beam pipe on either side of the region under
study. By deliberately installing reflectors, the reflections are controlled and thereby increase the
signal and localize it simultaneously. This paper reports our experimental study of microwave
reflection for the specific case of the Fermilab MI beam pipe for various dielectric thickness, ori-
entation and location for different sets of antennae. We begin by describing the experimental setup
and then discuss the experimental methods we undertake using simulations and analytic calcula-
tions. Next, we discuss the results of the measurement from a bench-top prototype and some ideas
for future work.

2 Theoretical rationale

2.1 Analytic model of elliptical beam pipe

The cross section of an MI beam-pipe is approximately elliptic and so it is obvious that we need to
go to an elliptic coordinate system to solve for the fields and resonances. The relationship between
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Figure 1. The elliptic coordinate system with lines of constant ξ > 0 and −π < η ≤ π . The transverse
cross-sectional wall of the elliptic cavity is at ξ0.

Cartesian (x, y, z) and elliptic (ξ , η , z) coordinates is

x = hcoshξ cosη (2.1)

y = hsinhξ sinη (2.2)

z = z . (2.3)

Where h =
√

r2
M− r2

m is the half distance between the foci and lines of constant ξ > 0 are ellipses
and lines of constant −π < η ≤ π are hyperbolae (figure 1). In this case, the wall of the beam pipe
is at ξ = ξ0. The resonant modes of an elliptic cavity has been derived elsewhere [4–6] and we will
just quote the results here. The resonant frequency of eigenmode (m, n, p) of an elliptic cavity is
given by

fm =
c

2π

√
4qmn

h2 +
( pπ

d

)2
(2.4)

where qmn is defined below, p is the eigenvalue in the longitudinal direction, h is half the distance
between the two foci of the ellipse, d is the longitudinal length of the cavity and c is the speed of
light in vacuum.

To define qmn, we have to first define the cosine like Mathieu function Ce(a, q, z)1 which is a
solution of the Mathieu equation with characteristic value a and parameter q

w”− (a−2qcosh2z)w = 0 . (2.5)

We note that the characteristic value a is a function of the characteristic exponent r and pa-
rameter q, i.e. a≡ a(r,q).2 For TM modes, qmn is the nth zero of Ce[a(m,q), ξ0, z], where ξ0 is the

1The argument convention is the same as the Mathematica convention for MathieuC. Note: Ce(a,q,z) =
MathieuC[a,q,iz].

2In Mathematica, a= MathieuCharacteristicA[r,q] for the cosine Mathieu functions.
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elliptic coordinate of the wall of the cavity, m = 0,1,2, . . ., and n = 1,2,3. . .. For TE modes, qmn

are the zeroes of Ce′[a(m,q), ξ0, z], where “′” is the derivative w.r.t. z.

2.2 Main Injector beam pipe cavity

We approximate the cross-section of the MI beam pipe with an ellipse and use the dimensions used
in the Microwave Studio simulation discussed in section 3.3 for calculating the resonant modes of
the cavity. The length of the cavity is d = 1 m, the length of the semi-major axis is rM = 5.9 cm
and the semi-minor axis is rm = 2.7 cm. Thus, the half distance between the foci is

h =
√

r2
M− r2

m = 0.052m . (2.6)

The elliptic coordinate ξ0 of the wall of the beam pipe comes from solving

x2

ρ2 cos2 ξ
+

y2

ρ2 sin2
ξ

= 1 (2.7)

for ρ0 and ξ0 given the lengths of the semi-major and semi-minor axes, i.e.

ρ0 cosξ0 = rM ρ0 sinξ0 = rm . (2.8)

Therefore, for the first approximation of the Main Injector beam pipe, we have ξ0 = 0.4943 rad.
Using these dimensions, we find that the modes between 1.5 GHz to 2.5 GHz are all TE1,1,,n because
the lowest TM mode TM0,1,0 is at 3.3 GHz and TE0,1,1 is at 1.5 GHz.

2.3 Frequency shift from the insertion of a piece of dielectric

The perturbation method for calculating the frequency shift from the insertion of a piece of dielec-
tric into an RF cavity is well-known [9, 10]. Let us suppose that the piece of dielectric is at z = ze

and has thickness ∆ze. See figure 2. This means that both ε and µ behave as follows

ε =

{
ε0 for z < ze and z > ze +∆ze

ε0

(
1+ ∆ε

ε0

)
for ze ≤ z≤ ze +∆ze

(2.9)

µ =

{
µ0 for z < ze and z > ze +∆ze

µ0

(
1+ ∆µ

µ0

)
for ze ≤ z≤ ze +∆ze

(2.10)

If we assume that ∆ε/ε0� 1 and ∆µ/µ0� 1, so that both the electric fields E and magnetic
fields H are approximately equal to the unperturbed fields E0 and H0 respectively then we have

∆ω

ω0
=

∫
∆V dυ

(
∆ε

⇀

E
2
0−∆µ

⇀

H
2
0

)
∫

Vc
dυ

(
ε0

⇀

E
2
0 + µ0

⇀

H
2
0

) (2.11)

where the integral is over the volume Vc of the cavity, ∆ω = ωe−ω and ωe is the perturbed fre-
quency and ω0 is the unperturbed resonant frequency. Eq. (2.11) is the result of Slater’s perturbation
theorem. Therefore, the frequency shift from a small piece of dielectric can be derived if

⇀

E0 and
⇀

H0

are known. In fact, the TM fields of an elliptic cavity have already been derived by Yang [8], and it
only takes a little bit of work to get the TE fields. However, since eq. (2.11) has to be numerically
integrated anyway, the formula is of academic interest only and will not be used in this paper.
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Figure 2. The measured modes using s21 and the calculated modes before and after fitting h and d to
the measured data from modes TE1,1,4 to TE1,1,13. The relative difference between the measured and the
calculated modes are all < 1% (see table 1).

Table 1. Elliptic modes of Main Injector cavity.

Mode Measured Calculated Fractional difference (%)
TE1,1,1 1.5279 1.5253 -0.17
TE1,1,2 1.5522 1.5472 -0.32
TE1,1,3 1.5909 1.5832 -0.48
TE1,1,4 1.6422 1.6321 -0.62
TE1,1,5 1.7052 1.6930 -0.72
TE1,1,6 1.7781 1.7646 -0.76
TE1,1,7 1.8609 1.8456 −0.82
TE1,1,8 1.9482 1.9349 -0.68
TE1,1,9 2.0418 2.0314 -0.51
TE1,1,10 2.1390 2.1340 -0.23

3 Numerical modelling

3.1 Phase shift of microwave traveling through a plasma gas (electron cloud)

In the experiment, a microwave signal is fed into the pipe through the probe of the coaxial coupler
at one side of the pipe and detected by the 2nd probe at the other side. In the simulation, they
are modeled with discrete ports, as shown in figure 4. The entire system configuration has been
simplified to be the elliptical beam pipe blocked by the apertures that induce signal reflections at
both sides of the pipe. In electron gas diagnostics, the phase of a carrier signal, while traveling
along the beam pipe, is shifted by the presence of the electron cloud with gas density, n, which is
given by

∆ϕ

L
=

ω2
p

2c
√

ω2−ω2
c

, (3.1)
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Figure 3. An x-ray view of the elliptical pipe resonator where a dielectric (shaded in cyan) with length ∆ze

has been inserted at z = ze.

and

ωp =

√
nee2

ε0me

∼= 56.4
√

ne (3.2)

where e is the electron charge, ε0 is the permittivity in free space, and me is the electron mass.
Electron clouds energized by a proton beam are normally very dilute gas; densities range from
1011–1012 m−3. The phase shift ratio (∆ϕ/L) of a traveling wave signal in the dilute gas would be
too small to be properly identified; even a 10 m long beam pipe may not enhance the phase shift
large enough to be clearly measured by a signal detector (antenna) within the phase resolution.
Due to the nature of the single path interaction through the waveguide, traveling waves also have
nearly zero response to localized gases, which have no variation on their phase shifts. Therefore,
this method is also limited in identifying the spatial location of the electron cloud. On the other
hand, a cavity resonator captures waves of the spectrum between a waveguide cutoff and a cavity
cutoff and the wave of a cavity eigenmode undergoes a large number of round-trips until it reaches
a saturation point (RF filling time), which could remarkably increase a phase shift. Figure 4 shows
the conceptual drawing of the resonator electron cloud diagnostics. Multiple trips of a trapped
eigenmode effectively increases the travel distance, L, which thereby enhances the phase shift,
as depicted in eq. (3.1). The feeble phase shift through a dilute plasma gas can be thus rapidly
increased far beyond the resolution limit of a signal detector within a very short distance. Besides,
since cavity eigenmodes respond more or less sensitively to electron gases depending upon their
locations corresponding to trapped waveforms, the technique might be much more efficient for
accurately specifying the spatial position and distribution of the electron cloud.

– 6 –
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3.2 Dielectric approximation of uniformly distributed electron gas

Electron Cloud (EC) simulations using Particle-In-Cell Codes (PIC) provide a powerful tool for
understanding cloud build up and mitigation techniques, as well as traveling TE microwave diag-
nostics of electron clouds. However, to explicitly model sidebands induced in TE waves due to
electron cloud plasma, one must simulate beam revolution time scales (the cloud modulation time)
while still resolving the rf signal. Modeling electron clouds as kinetic particles is time consuming
(particle pushes are slow compared to field updates) and numerically noisy over long simulation
times (grid heating). One solution is to replace kinetic particles with an equivalent plasma di-
electric model [11]. Plasma dielectric models of electron clouds are much faster, and are more
stable numerically.

In the given experimental system, the beam pipe is assumed to be filled with an electron gas,
with a density (n), produced by a high intensity proton beam. Although density distribution of a
real gas state has a spatial dependence, n = n(r), for simplicity, we first consider a constant density,
n = n0. A plasma gas with a constant density can be thus simply approximated as a dielectric
medium by a Drude model, as follows.

n =
√

εµ , (3.3)

where

ε (ω) = ε0

(
1−

ω2
p

ω2

)
and µ = µ0 (3.4)

This dielectric approximation very effectively reflects the typical response of a uniformly dis-
tributed plasma gas since the gas strongly resonates with an incident wave as ω approaches ωp.
Therefore, the electron cloud could be equivalently modeled with a dielectric medium with an
effective dielectric constant, n.

Figure 4 shows a signal processing algorithm from a microwave simulation to calculate a
phase shift by an effective electron gas. The port-1 (source) generates a carrier signal of sinusoidal
waveform, S1(t) = A1 sin(ωt + ϕ1), where ϕ1 is the initial phase (ϕ1 = 0), that travels through
the uniformly filled elliptical beam pipe. The detected signal at port-2 (antenna receiver) has the
sinusoidal waveform of S2(t) = A2 sin(ωt + ϕ2ϕm), where ϕ2 is the initial phase and ϕm is the phase
change over the source-to-antenna distance with a dielectric constant, n. In order to extract a phase
change, ϕm, from the simulation, let us multiply S1 and S2,

S1S2 = A1A2 sin(ω1t)sin(ω2t +ϕm) . (3.5)

By trigonometric identity, eq. (2.5) becomes

S1S2 =
A1A2

2
[cos(ϕm)− cos(2ωt +ϕm)] (3.6)

where ω = ω1 = ω2.
The second term in eq. (3.6), cos(2ωt + ϕm), can be removed by a low pass filter (LPF) of

a post-processor. The low pass filter process is precisely shown in figure 4. The S1S2, obtained
from field data monitored at the port-1 and –port2 in simulation, is decomposed into amplitude-
and phase-spectra by fast Fourier transform (FFT). The 2nd frequency harmonic term (2ωt) is then

– 7 –
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4Figure 4. Conceptual flowchart of signal processing and computational algorithm to calculate phase-shifts

due to electron clouds from equivalent dielectric simulation models.

crossed out by low pass filtering. The inverse FFT of the LPF’ed amplitude and phase leaves only
the cosine term of phase change. Therefore, the phase change, ϕm, is

ϕm = cos−1
(

2×LPF(S1S2)
A1A2

)
(3.7)

The phase shift, ∆ϕ , by an electron cloud is ∆ϕ = |ϕe−ϕv|, where ϕe is the phase variation (ϕm)
through the electron gas and ϕv is the phase variation (ϕm) through a vacuum filled in the beam pipe.
This approximation is generally valid since A1 is constant and A2 is very slowly varying amplitude,
which is nearly constant, in the time scale of signal frequency. Normally, in the simulation A1 can
be set to be a unity, so that A2 would need to be measured at a time of saturation (t = tsaturation).

– 8 –
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Figure 5. Finite-integral-technique (FIT) simulation models (a) elliptical waveguide and (b) elliptical cavity.
Two discrete antenna ports for transmitting and receiving a carrier signal are located adjacent to the open
boundaries in the beam pipe. The boundaries are programmed to meet perfect matching layers (PML). The
pipe material is designed with a stainless steel.

3.3 Waveguide and cavity resonator models

Applying the same analytic method, we compare the phase shifts of a traveling wave through
waveguide and standing wave in a cavity resonator. Figure 5 shows the simulation models based on
the elliptical beam pipe: one has ears at both ends to trap waves propagating above the cutoff in the
beam pipe, whereas the other is connected only with the open boundary. The pipe length is set to be
1 m and port-to-port distance (l) is 0.95 m. The upper cutoff frequency is determined by the width
of the aperture (gap spacing between the ears), which also determine the number of eigenmodes
captured in the cavity. The cross-sectional dimensions of the elliptical beam pipe are 11.8 cm
(major) × 5.4 cm (minor), which corresponds to 1.516 GHz of beam pipe cutoff frequency ( fc).
The model for the initial numerical analyses was designed to have 6 mm wide ears. Subsequently,
however, the ears were re-designed to be 20 mm wide to examine the effect of leakage fields through
the apertures since it was found that the beam apertures could be allowed to open up to 80 mm for
the proton beam.

As shown in figure 6, the 6 mm wide ear captures 3 resonating modes, (1) 1.5224 GHz (p =
1), (2) 1.5416 GHz (p = 2), and (3) 1.573 GHz (p = 3), between the two cutoff frequencies of the
beam pipe and the aperture, 1.516 GHz and 1.974 GHz. The discrepancy between the measured
and theoretical frequencies listed in table 1 is attributed to the following reasons: the MI beam pipe
is only approximately elliptical in cross section because it was made by squashing a circular beam
pipe. Also, the theoretical model is for a closed cavity, whereas the simulated one is based on open
boundaries (apertures). Figure 6(b) shows field distributions of those eigenmodes with longitudinal
phase changes of p = 1, 2 and 3. Note that the opening size of the apertures is comparable to

– 9 –
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Figure 6. (a) S21 spectrum measured at port-1 and -2. The designed beam pipe holds three resonating
modes inside (b) field distributions of the three modes (π-mode of f = 1.5304 GHz is a carrier signal for
time-transient analysis.

Figure 7. Phase shift versus time graphs of waveguide (blue) and cavity (red) beam pipe models. The cavity
enhances the phase-shift by a factor of 10. (ear length/width = 60 mm/6 mm)

the wavelengths, leading to a large leakage of fringe fields. Since the 3π mode (1.573 GHz) has
a maximum field amplitude at the aperture position (z = l/2), a huge amount of fringe fields is
leaked out through the apertures. On the other hand, as depicted in figure 6(b), as the π-mode
(1.5224 GHz) has a minimum field amplitude at the cavity fringes, thereby leading to a significantly
smaller amount of leakage fields. One can thus see that the π-mode would have a larger phase-shift
than the 3π-mode, as shown in eq. (3.1). We choose 2π-mode (p = 2, 1.5416 GHz) to compare the
phase shift of the cavity with that of the waveguide as the mode properly reflects the average phase
shift of the π- and 3π-modes.

Figure 7 shows the phase-shift versus time graphs of the cavity and waveguide models with the
2π-mode carrier ( f = 1.5416 GHz), which was obtained from the numerical analysis depicted in
2.2. For consistency, the models are simulated with the same condition, e.g., charge density, ne =

– 10 –
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Figure 8. (a) Phase shift versus time graph (b) electron cloud charge density versus time graphs from
two different assumptions on the wave traveling distance in the cavity: linear- (blue) and non-linear (red)
increases.

1011 m3. The comparative analysis result ended up showing a noticeable improvement: phase shift
seems to be enhanced 10 times more by the cavity than the waveguide. In figure 7, the carrier signal
in the waveguide quickly reaches the maximum phase shift (∆ϕ ∼ 2.3 mrad) at t = 2 µs. However,
it continuously rises in the cavity beam pipe up to ∆ϕ ∼ 23 mrad until t = 6 µs when the cavity
reaches a steady state. Ohmic losses and external coupling mainly constrain RF filling time in the
cavity that determines the number of round trips (signal travel distance) required to reach a steady
state. A phase shift can be thus further increased with a cutoff-nearest mode (p = 1: fundamental
longitudinal mode), a high conductivity material and a smaller aperture on the beam pipe.

3.4 Electron cloud density calculation

In order to verify the proposed concept of the cavity resonator, we re-calculate the electron cloud
density from the cavity-enhanced phase shift of the simulation model. In principle, as a phase
shift increases with travel distance, a normalized phase shift should be the same with the same
gas density at the steady state either in a cavity or in a waveguide: in eq. (3.1), gas density is
the function only of carrier frequency, cutoff frequency, and normalized phase shift, which has no
dependence on the distance (L). We first assume that the travel distance linearly increases with time:
L is assumed to be proportional to group velocity multiplied by time, L = υg·t. The group velocity
is obtained by calculating a time-dependent signal profile. Figure 8 shows the time-dependent
charge density graph. The input parameters for the density calculation are given as the 2π-mode
carrier frequency of f = 1.5416 GHz, fc = 1.516 GHz, and ne = 1011 m−3. The charge density
linearly increases until t =∼ 2 µs and gradually decreases after the stationary state since the travel
distance of the carrier signal is assigned to continuously increase in the definition, whereas the
phase shift is saturated after RF filling time. In other words, the phase shift is no longer increased
in the time period after a carrier signal of a cycle completely leaves from the resonator, even if
L is assumed to continue to increase in the analytic model. Figure 8(b) shows that the charge
density at ∼ 2 µs, corresponding to the saturation time of phase shift in figure 8(a), is ∼ 1011 m−3,
which is exactly matched with the theoretically pre-assigned density to the dielectric Drude model
of eqs. (3.3) and (3.4): one can see that the theoretical calculation based on the signal mixing

– 11 –
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technique accurately predicts the electron cloud density, represented with an equivalent dielectric
model, in the cavity beam pipe. In order to compensate for the saturation effect, we nevertheless
modify the definition of the signal travel distance from a linear increment to one fitting the phase-
shift curve in figure 8(a) to more accurately reflects the time-dependent pattern of charge density.
The red curve in figure 8(b) is the corrected charge density versus time graph, which clearly shows
that the analytic curve converges to the defined density (1011 m−3). In this model, the incremental
rate of signal travel distance also gradually decreases with that of the phase shift. This calculation
technique can thus provide an exact charge density after the simulation time of phase saturation.
The comparative analysis verified that a cloud density can be still accurately calculated even from
the enhanced phase-shift resolution of the cavity resonance diagnostics.

4 Parametric analysis

In principle, phase-shift enhancement of the cavity beam pipe is mainly determined by the amount
of evanescent fringe fields through the apertures. It is understood that the smaller leakage fields
lead to the larger phase-shift enhancement over the longer saturation time as a trapped wave has a
longer traveling time and distance with smaller external coupling losses. Basically, the phase-shift
is thus proportional to a cavity external Q (Qext). With respect to geometrical configuration of an
opened cavity resonator, the amount of leakage fields through the coupling hole-apertures can be
reduced by increasing the aperture length to increase Qext with a fixed width. However, the actual
electron cloud diagnostics apparatus in MI ring has the physical constraint to have long ears, so we
investigated enhancement factors in terms of the ear length using our theoretical analysis. Figure 9
shows phase-shift graphs in terms of the ear lengths that are calculated with the fixed ear width
(= 20 mm) in figure 5(b). The width of the beam pipe aperture was chosen to be ∼ 80 mm with
the consideration of the maximum proton beam diameter. Sweeping the ear lengths ranges from
25 mm to 150 mm with a 25 mm step. The phase-shift graphs in time domain clearly depicts that the
shortest aperture with the longest penetration depth of an evanescent leakage field has the smallest
phase-shift resolution with the short saturation time. The converging shift resolution is gradually
increased from 8 mrad to 40 mrad as the saturation time moves from ∼ 2 µs to ∼ 8 µs, but it does
not increase above the ear length = 125 mm as shown in figure 9(b). The beam pipe apertures with
≥ 100 mm lengths appear to have significantly small amounts of external energy losses, which
thereby need a few thousand round trips for a π-mode standing wave to be completely coupled
out with the 1 m long beam pipe cavity. As shown in figure 9(b), the saturated phase-shifts do not
exceed ∼ 40 mrad as fringe fields at the apertures have a constant amount of leakage with the ear
length of ≥ 100 mm. However, weakening the leakage fields is constrained by the aperture size,
which is thereafter limited due to proton beam size.

5 Spatial identification of a localized electron gas

During its operation, the MI may experience irregular electron gas emissions from the proton beam
owing to various unknown factors under the periodic magnetic confinement. Accurate diagnos-
tics of spatiotemporal profiles of this un-controlled localization is one of the critical issues to be
resolved. The standing wave characteristic of the resonating cavity technique may be capable of
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Figure 9. (a) Phase versus time graphs with respect to the ear lengths (b) saturated phase-shift versus ear-
length graph (carrier signal: f = 1.5224 GHz, π-mode in figure 3(b)). z = 150 mm (red) is not fully saturated
in t = 10 µs.

providing spatial analysis of electron cloud density distribution. It is evident that a phase shift
vastly changes depending upon whether the localized electron gas is positioned at a node or an
anti-node of a standing wave: in other words, phase change of a carrier signal is maximum with
anti-nodes and minimum with nodes. Therefore, phase analysis of multiple carrier signals over the
spectrum of resonating modes confined in the beam pipe cavity will make it possible to identify
the location and spatial distribution of electron clouds. Figure 7 shows phase-shift spectra (∆ϕ),
between two cutoffs of the beam pipe and aperture, of the two beam pipe fully filled uniform gas
and with localized gas, modeled with the 5 cm long dielectric block, and field (Ey) plots corre-
sponding to individual resonating peaks. The dielectric constant of dielectric insertions is defined
as ne = 1011 m−3 electron density. In order to clearly form a standing wave in the simulation, the
aperture is designed with a very small width (5 mm) that traps a large number of resonating modes
in the beam pipe. In figure 10(a), the maximum field positions of the peaks on the localized gas
spectrum are all exactly matched with the dielectric position of z = 0 m. The other non-resonating
peaks disappear. With z = 0.125 m, 0.25 m and 0.375 m in figures 10(b)–(d), one can see that the
peaks with anti-nodes closely matched with the dielectric positions remain on the localized gas
spectrum whereas the other peaks with nodes matched with the positions appear to have nearly
zero phase shift, which thereby disappear in the spectra. Note that the lower frequency modes have
larger phase shifts with smaller spatial resolution, while higher frequency signals have better spa-
tial resolution as phase shift becomes smaller with an increase of frequency. As the phase shift is
also proportional to a traveling distance, a localized gas thickness would thus need to exceed a cer-
tain value to have distinct resonating peaks in the high frequency spectrum. However, overlapping
the field distributions of resonating modes will enable one to accurately conjecture a position of
electron gas, including mapping a one-dimensional density distribution. Although these simulation
results verify the diagnostic method of microwave resonant cavity, more systematic investigation
is still necessary to explore its feasibility for the spatial and temporal electron cloud mapping and
is currently under development.
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(c)

(d)

Figure 10. Phase shift spectra and eigenmode field plots of localized electron clouds with respect to the
axial positions of the equivalent model (electric insertion): (a) z = 0 m (b) z = 0.125 m (b) z = 0.25 m, and
(d) z = 0.375 m.
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Figure 11. Phase shift due to 2.7 cm thick dielectric at the center of the new setup for 8.26 cm aperture
width. The graph compares phase shift for three different thicknesses: 80 µm (negligible thickness), 2.1 cm
and 4.3 cm. The phase signal is generally larger for thicker reflector.

6 Experimental test

In order to test the effectiveness of the reflector ‘ears’, we performed a series of bench-top experi-
ment with the MI pipe of 1 m length and a cross section 11.8 cm by 5.4 cm. We set up the network
analyzer to generate microwave signal with a frequency span from 1.5 GHz to 2.4 GHz with a
bandwidth of 10 kHz, and measure the phase of S21 transmission. Two 5.08 cm half-wave dipoles
in transverse orientation are used to transmit and receive even TE11 mode with cutoff frequency at
around 1.516 GHz. To model the e-cloud, we placed the 2.7 cm dielectric (Teflon) at the center of
the waveguide. The phase data were collected with and without the dielectric inside the waveguide.
We calculated the phase shift of the signal due to the dielectric by subtracting the phase data without
the dielectric from the phase data with the dielectric. Reflectors of three different thickness, 80 µm,
2.1 cm, and 4.3 cm, were designed. The aperture was set to 108 mm as mentioned in figure 5(b).
Figure 11 shows the phase-shift due to three different reflector thicknesses. As predicted by the
simulation, the thicker the reflector-ears, the higher the phase-shift. A separate experiment using
distributed dielectric also indicates phase-shift improvement when thick ears are used as reflectors.

7 Conclusion

We have developed an effective method to accurately measure the density of dilute electron clouds
generated by high intensity proton beams. The strong phase shift enhancement from multiple re-
flections of standing waves in a resonating beam pipe cavity has been demonstrated with numerical
modeling using dielectric approximation and microwave S-parameter measurements. The equiva-
lent dielectric simulation showed a ∼ 10 times phase shift enhancement (2π-mode, 1.5416 GHz)
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with the cavity beam pipe compared to the waveguide model. The position-dependence of the tech-
nique is investigated by overlapping the field distributions of harmonic resonances. The simulation
with various positions of dielectric insertions confirmed that resonance peaks in phase-shift spec-
tra corresponding to the relative distance between field-nodes and electron cloud position, which
allows for one-dimensional mapping. Preliminary experimental studies based on a bench-top setup
confirm the simulation showing that thicker reflectors enhance the phase-shift measurement of the
electron cloud density.
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