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a distinct non-standard-model intermediate strongly-interacting particle. We use data collected by
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luminosity of 6.6 fb−1. We find the data to be consistent with standard model predictions. We report
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One of the few hints of possible physics beyond the
standard model (SM) at the TeV scale is the anomalous
top-quark forward-backward asymmetry Afb observed at
the Tevatron [1–3]. This asymmetry could be generated
by non-SM physics through the production of top-quark
pairs via a light axi-gluon [4], a particle with axial cou-
plings to quarks, that interferes with standard model
(SM) tt̄ production to produce the observed asymme-
try. The axi-gluon would be visible in its alternate decay
mode to low-mass strongly-interacting particles, each of
which decays to a pair of jets [5] yielding a four-jet final
state. This final state is of broad interest, as various mod-
els predict pair-production of strongly-interacting par-
ticles decaying to jet pairs with no intermediate reso-
nance [6, 7] and R-parity-violating supersymmetric the-
ories [8] predict pair-production of light partners of the
top quark (stop quarks), each decaying into to pairs of
light quarks.

The masses of the axi-gluon and its strongly-
interacting decay products are not predicted, but must be
fairly light (< 400 GeV/c2) to explain the Afb measure-
ment [9]. The LHC experiments have excellent sensitivity

23668, USA, rrLos Alamos National Laboratory, Los Alamos, NM
87544, USA
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FIG. 1: Diagrams for resonant (left, via X) and non-resonant
(right) pair-production of Y particles, with subsequent decays
to pairs of gluons. Other models, with final-state quarks, are
also considered.

at high mass due to the large center-of-mass energy, but
difficulties at low mass due to high background rates.
The ATLAS experiment ruled out masses between 100
and 150 GeV/c2 [10]; CMS ruled out masses between 250
and 740 GeV/c2 [11]. No experimental bounds exist for
such non-SM particles with masses below 100 GeV/c2 for
non-resonant pair-production of di-jet resonances; there
are no current limits on resonant production.

In this Letter we report a search for both non-resonant
and resonant production of pairs of strongly-interacting
particles, each of which decays to a pair of jets. Rather
than probing a specific theory, we construct a simplified
model with the minimal particle content. In the non-
resonant case, we consider the production process pp̄ →
Y Y →jj jj, with the mass of the hypothetical Y state,
mY as a single free parameter. In the resonant case,
pp̄ → X → Y Y →jj jj, we also explore the mass of the
X state, mX (Fig. 1). In both cases, we assume that the
natural width of the particles is small compared to the
experimental resolution.

We analyze a sample of events corresponding to an in-
tegrated luminosity of 6.6±0.5 fb−1 recorded by the CDF
II detector [12], a general purpose detector designed to
study pp collisions at

√
s = 1.96 TeV produced by the

Fermilab Tevatron collider. The tracking system consists
of a silicon microstrip tracker and a drift chamber im-
mersed in a 1.4 T axial magnetic field [13]. Electromag-
netic and hadronic calorimeters surrounding the tracking
system measure particle energies, with muon detection
provided by an additional system of drift chambers lo-
cated outside the calorimeters.

We reconstruct jets in the calorimeter using the jet-
clu [14] algorithm with a clustering radius of 0.4 in η−φ
space [15], and calibrated using the techniques outlined
in Ref. [16]. Events are selected online (triggered) by the
requirement of three jets, each with ET > 20 GeV and
with ΣjetsET > 130 GeV [15]. The data set used in this
search is limited to 6.6 fb−1 because the trigger selection
was not available in early data. After trigger selection,
events are retained if at least four jets are found with
ET > 15 GeV and |η| < 2.4.

We model resonant and non-resonant production with
madgraph5 [17] version 1.4.8.4 and the cteq6l1 [18]
parton distribution functions (PDF). Additional parton
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FIG. 2: Overall efficiency, including trigger and selection
requirements. Efficiency is shown for several simulated non-
resonant Y Y →jj jj samples with varying mY . The shaded
band shows the uncertainty. In addition, efficiency is shown
for several simulated resonant X → Y Y →jj jj samples with
varying mX and mY . The uncertainty is not shown but is
similar to the non-resonant case. The turn-on curve is deter-
mined largely by the trigger requirement that ΣjetsET > 130
GeV.

radiation, hadronization, and underlying-event modeling
are described by pythia [19] version 6.420. The detec-
tor response for all simulated samples is modeled by the
geant-based CDF II detector simulation [20].

The trigger and selection requirements have an effi-
ciency on the signal up to 90% if ΣjetsET exceeds signif-
icantly the 130 GeV trigger threshold. For events with
smaller ΣjetsET , the efficiency decreases rapidly (Fig. 2).
In the non-resonant-production model, the ΣjetsET is
strongly correlated with mY . In the resonant-production
model it is correlated with mX ; additionally if mX−2mY

is large, the pT of the resulting Y is large, which leads
to a small opening angle of its decay products and a loss
of efficiency due to merged jets. The trigger efficiency is
measured in simulated events, and uncertainties derived
from validation in disjoint samples; the measured trig-
ger efficiency and uncertainty are applied to the signal
model.

To reconstruct the di-jet resonance, we consider the
four leading jets and evaluate the invariant mass of each
of the di-jet pairs in the three permutations, choosing
the permutation with the smallest mass difference be-
tween the pairs. As the pair masses are correlated, we
take the mean of the two pair masses as the estimate of
the di-jet resonance mass. To reduce backgrounds, we
require that the relative mass difference between the two
pairs is less than 50%, and that the production angle
θ∗ of the di-jet resonance in the Y Y pair center-of-mass
frame satisfies cos(θ∗) < 0.9. In the resonant production
analysis, we calculate the four-jet invariant mass. No spe-
cific mY -dependent selections are made; the requirement
that the relative di-jet mass difference be small ensures
compatibility with the X → Y Y hypothesis. Figures 3
and 4 show the observed di-jet and four-jet spectra, re-
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FIG. 3: Reconstructed mean di-jet mass in events with four
jets. Parametric fit and several signal hypotheses overlaid in
(a). Relative difference between the observed data and the fit
in each bin shown in (b).

spectively.

The dominant background originates from standard
QCD multi-jet production. We model this background
contribution using a parametric function which is fit to
the reconstructed mass spectrum of the observed data.
The function is a piece-wise combination of a third-order
polynomial to describe the turn-on region, a third-order
polynomial to describe the peak region, and a double ex-
ponential of the form f(m) = a1e

−(m−a2)a3/a4 to describe
the falling spectrum. The parametric functional form
was chosen to be flexible enough to describe the multi-
jet mass spectrum, but rigid enough to avoid accurately
describing a spectrum which includes a narrow resonance,
so that in the presence of a narrow feature a signal-plus-
background hypothesis would be preferred. For the di-
jet mass, the ranges used are [35, 82.5], [82.5, 140], and
[140, 700] GeV/c2; for the four-jet mass, the ranges used
are [115, 185], [185, 330], and [330, 800] GeV/c2. The
functional form and ranges were chosen based on their
ability to accurately describe the mass spectra of simu-
lated multi-jet events generated by alpgen [21] version
2.10.

The dominant source of systematic uncertainty is due
to the multi-jet background model. The functional form
is an approximation, which even in the absence of a nar-
row feature may deviate from the observed spectrum.
We estimate the impact of these potential deviations by
measuring their magnitude in two background-enriched
control samples. These two control samples are adjacent
to the signal region and capture the expected deviations
in two independent directions. The first requires a large
relative di-jet mass difference, greater than 50%, and the
second requires cos(θ∗) > 0.9. The observed relative de-
viations are then applied to the observed spectrum in
the signal region to estimate the magnitude of spurious
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FIG. 4: Reconstructed four-jet mass in events with four jets.
Parametric fit and several signal hypotheses overlaid in (a).
Relative difference between the observed data and the fit in
each bin shown in (b).

deviations due to possible mismodeling. In addition, we
verify that the fitting procedure gives an unbiased esti-
mate of the signal rate.

An additional uncertainty is due to knowledge of the
trigger efficiency [22] extracted from the simulated sig-
nal samples, varying from 20% relative at ΣjetsET = 120
GeV to 10% above ΣjetsET = 200 GeV. Uncertainties
in the levels of parton radiation [23] and in the calibra-
tion of the jet energy and resolution modeling [16] also
contribute to uncertainties in the trigger and selection
efficiency and reconstructed mass spectrum of the signal
samples. These uncertainties are small (< 10%) relative
to the fitting and trigger uncertainties.

In the non-resonant analysis, for each Y mass hypoth-
esis, we fit the most likely value of the Y pair-production
cross section (σY Y ) by performing a maximum likelihood
fit of the binned di-jet mass distribution, allowing for sys-
tematic and statistical fluctuations via template morph-
ing [24]. The likelihood takes the form of

L(σY Y ) =
∏
bin i

f ibg(~a) + σY Y L ε fsig,

where fbg(~a) is the parametric function with nuisance
parameters ~a defined above to describe the background
spectrum, fsig is a normalized template of the expected
shape of the signal determined from simulated events,
and Lε is the product of the integrated luminosity and
efficiency. No evidence is found for the presence of pair-
production of di-jet resonances and upper limits on Y
pair-production at 95% confidence level (C.L.) are set.

Limits are calculated using the CLs [25] method by
repeating the measurement on sets of simulated exper-
iments that include signal contributions corresponding
to various hypothetical production cross-sections, and
variation of systematic uncertainties. The values of nui-
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FIG. 5: Upper limit on signal production rate at 95% C.L.
Expected and observed upper limits on σ(pp̄ → Y Y →jjjj)
versus mY in the non-resonant analysis shown in (a). Two
signal hypotheses are shown, see text for details. Observed
limits on σ(pp̄→ X → Y Y →jjjj) versus mX and mY shown
in (b). Circles indicate the true values of the parameters used
in each ensemble of simulated samples used to evaluate the
limits; intermediate values are interpolated.

sance parameters are not fit in the experiments. The
observed limits are consistent with expectation for the
background-only hypothesis. The resonant analysis is
very similar, but is done as a function of the X mass
hypothesis, fitting the four-jet mass distribution for the
most likely value of X production cross section, σX .

In the non-resonant case, this analysis sets limits on
coloron or stop-quark pair production, excluding 50-100
GeV/c2 and 50-125 /c2, respectively; see Table I and the
top of Fig. 5. The uncertainty on the theoretical cross-
section prediction comes from two sources summed in
quadrature. The first uncertainty is the envelope of the
PDF uncertainties from the cteq uncertainties and an
alternative PDF choice, mstw2008lo [26] (5% relative).
The second uncertainty comes from a variation of the
renormalization and factorization scales by a factor of
two in each direction from their default values of the
per-event mass scale. These theoretical uncertainties are
illustrated in Figure 5.

In the resonant case, this analysis excludes axi-gluon
(A) production leading to pairs of σ particles and four-

TABLE I: Observed and expected 95% C.L. upper limits on
σ(pp̄ → Y Y →jj jj) for several values of mY . Also shown
are theoretical predictions for coloron pair production [6, 7]
or stop-quark pair production with R-parity-violating decay
t̃→ qq′ [27].

Mass Expected Observed Coloron Stop quarks
(GeV/c2) (pb) (pb) (pb) (pb)
50 240 250 320 570
70 75 62 180 100
90 8.2 5.9 62 26
100 11 17 37 15
125 14 11 11 4.4
150 37 46 3.7 1.5
200 4.5 2.0 0.60 0.25
250 2.7 1.5 0.11 5.4× 10−2

300 2.0 3.0 2.9× 10−2 1.3× 10−2

400 1.1 1.5 1.7× 10−3 7.2× 10−4

500 0.3 0.3 8.5× 19−5 3.6× 10−5

TABLE II: Observed and expected 95% C.L. upper limits on
σ(pp̄ → X → Y Y →jj jj) for several values of mY and mX .
Also shown are theoretical predictions for axi-gluon produc-
tion assuming coupling to quarks of Cq = 0.4 [5, 9].

mX mY Expected Observed Axi-gluon
(GeV/c2) (GeV/c2) (pb) (pb) (pb)

150 50 641.2 431.1 5600
70 209.6 270.6

175 50 66.8 78.9 3500
70 111.5 163.9

200 50 13.8 9.5 2200
70 30.4 91.5
90 17.8 100.4

225 50 18.0 26.0 1750
70 20.7 25.0
90 20.9 25.3

250 50 6.2 2.0 1000
70 4.0 3.6
90 5.1 2.8

275 50 6.5 1.2 850
70 7.7 1.3
90 9.7 1.4

300 50 5.0 7.1 540
70 2.4 2.6
90 1.7 1.0
140 1.8 1.2

400 50 15.5 6.8 170
70 15.0 20.2
90 30.6 52.8
140 41.0 74.6
180 46.9 79.1

500 50 20.7 6.8 60
70 15.9 4.7
90 17.7 5.9
140 25.2 7.0
180 26.7 8.0
220 29.7 9.3
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gluon final state for mA ∈ [150, 400],mσ ∈ [50,mA/2] in
the case of coupling to quarks Cq = 0.4 (see Table II and
the bottom of Fig. 5) which is close to the value required
to explain the top-quark Afb result [9]. To be consistent
with this analysis, the couplings would have to be smaller
by an order of magnitude. Maintaining consistency with
the top-quark Afb result would require different couplings
to light quarks and heavy quarks, with the heavy-quark
coupling approaching the perturbative limit, Cq < 1.
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