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We present a study of baryon ground states and low lying excitations of non-strange and strange
baryons. The results are based on seven gauge field ensembles with two dynamical light Chirally
Improved (CI) quarks corresponding to pion masses between 255 and 596 MeV and a strange valence
quark with mass fixed by the Ω baryon. The lattice spacing varies between 0.1324 and 0.1398 fm.
Given in lattice units, the bulk of our results are for size 163 × 32, for two ensembles with light pion
masses (255 and 330 MeV) we also use 243×48 lattices and perform an infinite volume extrapolation.
We derive energy levels for the spin 1/2 and 3/2 channels for both parities. In general, our results in
the infinite volume limit compare well with experiment. We analyze the flavor symmetry content by
identifying the singlet/octet/decuplet contributions of the resulting eigenstates. The ground states
compositions agree with quark model expectations. In some cases the excited states, however,
disagree and we discuss possible reasons.

PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Restricting to strong interactions, almost all of the
hadrons are resonances. For lattice studies, due to the
finiteness of the lattice volumes the smallest momenta
come in units 2π/L. Moreover, for unphysically heavy
pion masses decay channels are often not open or the
resulting phase space is small, leading to energy levels
in the vicinity of the resonance energy. This motivates
the identification of the low energy levels with masses
of corresponding resonances. Eventually, towards phys-
ical pion masses and larger lattices, the interpretation
becomes invalid and the observed energy levels show a
more intricate pattern, related in the elastic channel to
two-hadron states [1, 2]. Recent work, where correlators
of only single hadron operators were studied [3–5], found
no clear signal of possibly coupling two-hadron states
(with the possible exception of s wave channels). It was
concluded that for a full study one should include such
interpolators explicitly. In [6, 7] it was demonstrated in
meson correlation studies, that neglect of two-meson in-
terpolators may obscure the obtained energy level picture
in some cases. Attempts towards including meson-baryon
interpolators are discussed in [8, 9] and a recent study in-
cluding πN interpolators in the negative parity nucleon
sector demonstrated significant effects in the observed
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energy spectrum [10].
The present work is a continuation of a study of sin-

gle baryon correlators, with more ensembles and larger
statistics as compared to [4]. Like before we see no ob-
vious signal of coupling meson-baryon channels (with a
few possible exceptions where the meson-baryon system
is in s wave, as will be discussed). We therefore identify
the lowest energy levels with baryon ground states and
excitations.

We use two mass identical light quarks with the Chi-
rally Improved (CI) fermion action [4, 11, 12]. The
strange quark is considered as valence quark, its mass
fixed by setting the Ω-mass to its physical value. The
pion masses for the seven ensembles of 200–300 gauge
configurations each range from 255 MeV to 596 MeV,
with lattice size 163 × 32 and lattice spacing between
0.1324 and 0.1398 fm. For two ensembles with light pion
masses also lattices of size 123 × 24 and 243 × 48 were
used to allow extrapolation to infinite volume.

Other recent studies aiming at light and strange baryon
excitations, some of them with 2+1 dynamical quarks,
include [3, 13–23]. In [24] excited spectra for non-strange
and strange baryon are derived from anisotropic lattices
and standard improved Wilson fermions. See also recent
reviews [25–27] and references therein.

In Sect. II we discuss the setup for our simulations
and remark on the methods used for the data analysis.
Results from the 163 × 32 lattices for light and strange
baryons are presented in Sections III and IV respectively.
In Sect. V the infinite volume extrapolation and uncer-
tainties with regard to the strange quark mass chosen in
our simulations are discussed. We conclude with a sum-
mary in Sect. VI.
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II. SETUP OF THE SIMULATION AND

ANALYSIS

The CI fermion action [11, 12] results from a
parametrization of a general fermion action connecting
each site along gauge link paths to other sites up to dis-
tance three (in lattice units). This truncated ansatz is
used to algebraically solve the Ginsparg-Wilson equation.
The action consists of several hundred terms and obeys
the Ginsparg-Wilson relation approximately. It was used
in quenched [28, 29] and dynamical simulations [30]. For
further improvement of the fermion action one level of
stout smearing of the gauge fields [31] was included in
its definition. The parameters are adjusted such that
the value of the plaquette is maximized (ρ = 0.165 fol-
lowing [31]). For the pure gauge field part of the action
we use the tadpole-improved Lüscher-Weisz gauge action
[32]. For a given gauge coupling we use the same assumed
plaquette value for the different values of the bare quark
mass parameter.
The lattice spacing a is defined as discussed in [33],

using the static potential with a Sommer parameter r0 =
0.48 fm and setting the scale at the physical pion mass for
each value of βLW . This value of the Sommer parameter
may be slightly too small for nf = 2, as has been argued
recently [34, 35], where a value near 0.5 fm is preferred.
All parameters as well as details of the implementation

in the Hybrid Monte Carlo simulation [30, 36] and various
quality check are given in [4, 33]. For reference we sum-
marize the parameters of the used gauge field ensembles
in Table I.
In each baryon channel with given quantum numbers

the eigenenergy levels are determined with the so-called
variational method [37, 38]. One uses interpolators with
the correct symmetry properties and computes the cross-
correlation matrix Cik(t) = 〈Oi(t)Ok(0)

†〉. One then
solves the generalized eigenvalue problem

C(t)~un(t) = λn(t)C(t0)~un(t) (1)

in order to approximately recover the energy eigenstates
|n〉. The exponential decay of the eigenvalues

λn(t) = e−En (t−t0)(1 +O(e−∆En(t−t0))) (2)

allows us to obtain the energy values, where ∆En is the
distance to other spectral values. In [39] it was shown
that for t0 ≤ t ≤ 2t0 the value of ∆En is the distance
to the first neglected eigenenergy. In an actual computa-
tion the statistical fluctuations limit the values of t0 and
one estimates the fit range by identifying plateaus of the
effective energy. The eigenvectors serve as fingerprints of
the states, indicating their content in terms of the lattice
interpolators.
The quality of the results depends on the statistics and

the set of lattice operators. The dependence on t0 is used
to study the systematic error; in the final analysis we use
t0 = 1 (with the origin at 0). The statistical error is de-
termined with single-elimination jack-knife. For the fits
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FIG. 1: Eigenvalues for the four lowest states in the Σ 1/2+

channel for ensembles A50, C72 and A66 (top to bottom)
which covers the whole range of pion masses considered.

to the eigenvalues (2) we use single exponential behavior
but check the stability with double exponential fits; we
take the correlation matrix for the correlated fits from
the complete sample [33]. As an example we show eigen-
values for the four lowest states in the Σ 1/2+ channel for
three ensembles in Fig. 1. In general, we find very good
agreement between the eigenstates of all considered en-
sembles. This suggests the interpretation of a signal with
physical origin and in some cases serves to justify a fit
relying on only few points.
The set of interpolators used should be capable to ap-

proximate the eigenstates. On the other hand, too large
a set may add statistical noise. In practice one tries to
reduce the number of interpolators to a sufficient sub-
set. We analyze the dependence of the energy levels on
the choice of interpolators and fit ranges for the eigenval-
ues. For the final result, we make a reasonable choice of
interpolators and fit range and discuss the associated sys-
tematic error. For the extrapolation towards the physical
pion mass we fit to the leading order chiral behavior, i.e.,
linear in m2

π.
The Dirac and flavor structure is motivated by the

quark model [40, 41], see also [42]. Within the relativis-
tic quark model there have been many determinations of
the hadron spectrum, based on confining potentials and
different assumptions on the hyperfine interaction (see,
e.g., [43–45]). The singlet, octet and decuplet attribu-
tion [42] of the states has been evaluated based on such
model calculations, e.g., in [46] (see also the summary in
[47]). We use sets of up to 24 interpolating fields in each
quantum channel, combining quark sources of different
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set βLW m0 ms configs. mπ [MeV] L3
× T [a4] mπL a [fm]

A50 4.70 -0.050 -0.020 200 596(5) 163 × 32 6.40 0.1324(11)

A66 4.70 -0.066 -0.012 200 255(7) 163 × 32 2.72 0.1324(11)

B60 4.65 -0.060 -0.015 300 516(6) 163 × 32 5.72 0.1366(15)

B70 4.65 -0.070 -0.011 200 305(6) 163 × 32 3.38 0.1366(15)

C64 4.58 -0.064 -0.020 200 588(6) 163 × 32 6.67 0.1398(14)

C72 4.58 -0.072 -0.019 200 451(5) 163 × 32 5.11 0.1398(14)

C77 4.58 -0.077 -0.022 300 330(5) 163 × 32 3.74 0.1398(14)

LA66 4.70 -0.066 -0.012 97 243 × 48 4.08 0.1324(11)

SC77 4.58 -0.077 -0.022 600 123 × 24 2.81 0.1398(14)

LC77 4.58 -0.077 -0.022 153 243 × 48 5.61 0.1398(14)

TABLE I: Parameters of the simulation: Ensemble names are given in the first row. We show the gauge couplings βLW , the
light quark mass parameter m0, the strange quark mass parameter ms, the number of configurations analyzed (“configs.”),
the pion mass and the volume L3

× T in lattice units. The dimensionless product of the pion mass with the spatial extent of
the lattice, mπL, enters finite volume corrections. We also give the lattice spacing a as discussed in [33]. The three ensembles
LA66, SC77 and LC77 are separated from the others by a horizontal line, since they are used only for a discussion of finite
volume effects. For these ensembles we use the pion masses of A66 and C77, respectively.

smearing widths, different Dirac structure and octet and
decuplet flavor structure. In Appendix A we summarize
the structure and numbering of the baryon interpolators
used in this study.

III. RESULTS FOR LIGHT BARYONS

A. Nucleon

N : I(JP) = 1

2
(1
2

+
): The nucleon (spin 1/2 and posi-

tive parity) ground state is the lightest baryon. We use
interpolators covering three Dirac structures and differ-
ent levels of quark smearing, (1,2,9,10,19,20) (see Ap-
pendix A), and extract the four lowest eigenstates. For
the ground state the leading order chiral extrapolation
yields a mass value roughly 7% larger than the experi-
mental N (see Fig. 2). Part of the deviation is caused
by finite volume effects, which will be discussed in Sec-
tion V. The remaining small deviation might be caused
by systematic errors from scale setting (using r0 = 0.48
fm), or a curvature due to higher order terms in the chi-
ral extrapolation (for a discussion on the latter, see, e.g.,
[35]). Within the basis used in the variational method,
the ground state is dominated by the first Dirac struc-
ture, with a contribution of the third one (cf., Table III).
We stress that all Dirac structures used here generate in-
dependent field operators which are not related by Fierz
transformations.
The first excitation in the nucleon channel should be

the “Roper resonance N(1440)”, notorious because it lies
below the ground state in the corresponding negative par-
ity channel. This “reverse level ordering” differs from
the expectations of most simple quark models (see, e.g.,
[41, 48]). However, in our simulation, the first excitation
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FIG. 2: Energy levels for nucleon spin 1/2, positive (upper)
and negative parity (lower).
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FIG. 3: Eigenvectors for nucleon spin 1/2 negative parity
ground state and first excitation, ensemble A50 (upper) and
B70 (lower). Note the different composition of the states at
the different pion masses.

is O(500 MeV) higher than the experimental value. The
levels are ordered conventionally with alternating parity.
This is also the case in lattice simulation with quenched
and dynamical results of other groups (e.g.,[3, 49, 50]).
Towards physical pion masses, the first excitation was
reported to bend down significantly [18], however, still
all lattice results are closer to the N(1710) than to the
Roper resonance N(1440), with large error bars.
At present it is unclear to us, what the reason for this

behavior may be, although there are several suspects. Fi-
nite volume effects could shift the energy level up. For
the ground state this shift is comparatively small (as dis-
cussed in Section V). This could be significantly larger
for the excited state, which is generally expected to have
larger physical size. (E.g., in quark models it is consid-
ered as a radial excitation.) Unfortunately, the signal of
this state is too weak in our study to allow for a reliable
analysis of finite volume effects.
Another interpretation may be that the used interpo-

lators may not couple strongly enough to the Roper res-
onance and thus represent the physical content poorly

and we might even miss the physical Roper state alto-
gether. We observe a similar problem in the correspond-
ing Lambda sector [5]. There the first observed excitation
is dominated by singlet interpolators (first Dirac struc-
ture) matching the Λ(1810) (singlet in the quark model).
The Roper-like Λ(1600) (octet in the quark model) seems
to be missing.
Furthermore, the energy levels of the p-wave scattering

state πN also could influence the situation dramatically.
Inclusion of such baryon-meson interpolator may be nec-
essary for a better representation of the physical state.
The resulting energy spectrum is related to the scattering
phase shift in this channel [8, 9]. In small boxes and for
broad resonances, the resulting energy levels are shifted
significantly with regard to noninteracting levels and the
resonance mass has to be extracted from the phase shift
data. As the experimental Roper state is broad this shift
might be significant.
After chiral extrapolation, we obtain two close exci-

tations within roughly 1800-2000 MeV. One of those
has a χ2/d.o.f. of the fit of larger than three (see Ta-
ble V), which may suggests a non-linear dependence on
m2

π. However, an extrapolation using only data with pion
masses below 350 MeV misses the experimental Roper
resonance as well.
In several of our ensembles the excited energy levels

overlap with each other within error bars. At light pion
masses, the first excitation is dominated by a combina-
tion of interpolators of the second Dirac structure; the
second excitation is dominated by the first Dirac struc-
ture, with some contribution from the third one. Towards
heavier quark masses, this level ordering interchanges.
Finally, we note that the results in the nucleon posi-

tive parity channel do not deviate significantly from the
corresponding quenched simulations [29].

N : I(JP) = 1

2
(1
2

−
): In general, we find somewhat low

energy levels in the negative parity baryon channels, com-
pared to experiment. This is also true for the nucleon
spin 1/2 negative parity channel. We use again the set
of interpolators (1,2,9,10,19,20), and find that the chiral
extrapolation of the ground state comes out too low and
that of the first excitation ends up near the experimental
ground state mass value (see Fig. 2).
The two lowest states are usually identified with the

N(1535) and N(1650). However, in that channel the Nπ
state is in s wave. A naive estimate of its energy (neglect-
ing the interaction energy) at values of the pion mass
above 300 MeV puts it close to the observed lowest en-
ergy level. Towards small pion masses the Nπ energy
level should fall more steeply than the nucleon mass to-
wards the physical point. This suggests a (avoided) level
crossing of the (negative parity) nucleon and theNπ state
with related energy level shifts, when moving from larger
to smaller pion energies.
Indeed, our results are compatible with such a picture.

In [4] we analyzed only a subset of the configurations
available in this work. There, we argued that the eigen-
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vectors show no indication for a level crossing in the range
of pion masses between roughly 300 and 600 MeV. In the
present work, we can monitor the eigenvectors down to
pion masses of 250 MeV. Furthermore, we use a larger ba-
sis (at the cost of introducing additional noise.) We use
the same quark smearing structures for different Dirac
structures, such that the eigenvectors give information
about the content of the state without the need of addi-
tional normalization of the interpolators. We find indeed
a significant change in the eigenvectors towards lighter
pion masses. The eigenvectors are shown for ensembles
A50 and B70 in Fig. 3. In particular, the ground state is
dominated by interpolator 2 (χ1) aroundmπ = 300 MeV,
and by interpolator 10 (χ2) above mπ = 500 MeV. For
the first excitation, interpolator 10 contributes stronger
at lighter pion masses compared to heavier ones. This
trend is observed also in the other ensembles and at par-
tially quenched data. However, the picture does not
clearly support an (avoided) level crossing scenario, a
unique conclusion is missing.
The observed behavior towards smaller quark masses

was also discussed in [21] for the 2+1 flavor situation. A
recent simulation including (for the first time) also πN in-
terpolators [10] demonstrated significant changes on the
spectrum. In that light we may interpret the states ob-
tained in the present study (with only 3-quark interpola-
tors), as effective superpositions of resonance and meson
baryon states.
We postpone further discussion of the content of the

states to Section V, where finite volume effects will be
discussed.

N : I(JP) = 1

2
(3
2

+
): In the nucleon spin 3/2 positive

parity channel, three states are known experimentally:
The N(1720), N(1900) and N(2040), where the latter
needs confirmation [47]. We use interpolators (1,4,5), re-
spectively (1,2,3,4) in A66 and B70. The signal is rather
noisy and the effective mass plateaus appear to fall to-
wards large time separations. Sizable deviations from
the chiral fit are observed in ensembles B70 and C77.
Nevertheless, the chiral extrapolation of the ground state
agrees well with the experimental N(1720) (see Fig. 4).
The first excitation overshoots the N(1900) by about 2σ,
which thus cannot be confirmed from this study.

N : I(JP) = 1

2
(3
2

−
): In this channel, experimentally,

N(1520), N(1700) and N(1875) are established. Using
interpolators (1,2,3,4), three states can be extracted in
our simulation (see Fig. 4). The ground state extrapo-
lates to a value between the N(1520) and the N(1700),
the first and second excitation come out higher than
N(1700) or N(1875).

B. Delta

∆ : I(JP) = 3

2
(1
2

+
): Experimentally, the ground state
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FIG. 4: Energy levels for nucleon spin 3/2, positive (upper)
and negative parity (lower).

∆(1750) still needs confirmation, while ∆(1910) is well
established. In our simulation, using interpolators
(1,4,5), we find two states, where the second eigenvalue
decreases slower with the pion mass than the first one.
The resulting crossing of the eigenvalues complicates the
analysis and one has to follow the eigenvector composi-
tion in order to properly assign the state. However, the
plateaus can be fitted and energy levels extracted, al-
beit with sizable error bars. The chiral extrapolation of
the ground state is compatible with both ∆(1750) and
∆(1910) within the error bars, the first excitation comes
out higher (see Fig. 5).

∆ : I(JP) = 3

2
(1
2

−
): In the negative parity channel,

∆(1620) is established, while ∆(1900) needs confirma-
tion. Using interpolators (1,2,3,4) we extract two states
in this channel. The chiral extrapolation of the ground
state hits the experimental ∆(1620) within 1.2σ (see
Fig. 5). The excitation extrapolates to the ∆(1900), how-
ever, with a large associated error.
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FIG. 5: Energy levels for ∆ spin 1/2, positive (upper) and
negative parity (lower).

∆ : I(JP) = 3

2
(3
2

+
): The ∆(1232) is the lowest reso-

nance of all spin 3/2 baryons. We find a good signal of
two states, the chiral extrapolations of both come out
too high compared to the experimental ∆(1232) and the
∆(1600) (see Fig. 6). Finite volume effects are a possible
origin of the discrepancy, as will be discussed in Section
V. A possible p-wave energy of a couplingNπ state would
lie between the two observed levels and is not seen. Note
that the partially quenched data of this channel are used
to set the strange quark mass parameter [33].

∆ : I(JP) = 3

2
(3
2

−
): We find a good signal in the

JP = 3/2− ∆ channel in all seven ensembles (see Fig. 6).
However, like in other negative parity baryon channels,
the chiral extrapolation of the ground state comes out
rather low compared to experiment. The results for the
first excitation are inconclusive, the χ2/d.o.f. of the chi-
ral extrapolation fit is larger than three.
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FIG. 6: Energy levels for ∆ spin 3/2, positive (upper) and
negative parity (lower).

IV. RESULTS FOR STRANGE BARYONS

A. Lambda

Lambda baryons come as flavor singlets or octets, or as
mixtures of them. Lattice simulations in this channel are
of particular interest, as for years no state was observed
in the vicinity of the prominent low-lying Λ(1405) (see,
e.g., [51, 52]). Only recent results show a level order-
ing compatible with experiment [20]. Our results for the
Lambda baryons have been discussed elsewhere [5]. Here
a few observations are summarized for completeness.
We include interpolators of flavor singlet and octet

type and three Dirac structures in all four JP = 1
2

±

and 3
2

±
channels. In both 1/2 channels and in the 3

2

+

channel we find ground states extrapolating to the ex-

perimental values, whereas the 3
2

−
ground state comes

out too high. We confirm the Λ(1405) and also find two

low-lying excitations in the 1
2

−
channel. Our results sug-

gest that the Λ(1405) is dominated by flavor singlet 3-
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FIG. 7: Energy levels for Σ spin 1/2, positive (upper) and
negative parity (lower).

quark content, but at mπ ≈ 255 MeV octet interpola-
tors contribute roughly 15-20%, which may increase to-
wards physical pion masses. The Roper-like (octet) state
Λ(1600) may couple too weak to our 3-quark interpolator
basis. We analyze the volume dependence and find that

only the spin 1
2

+
ground state shows a clear exponential

dependence as expected for bound states. For all other
discussed states, the volume dependence is either fairly
flat or obscured by the statistical error.

B. Sigma

Σ : I(JP) = 1(1
2

+
): The Σ(1189) ground state marks

one of the lowest energy levels of the spin 1/2 baryons.
At the SU(3) flavor symmetric point, the octet and de-
cuplet irreducible representations are orthogonal. To-
wards physical quark masses, SU(3)f is broken and hence
octet and decuplet are allowed to mix. We use the set
(1,2,9,10,25,26), which includes octet interpolators with
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FIG. 8: Eigenvectors for Σ spin 1/2 negative parity ground
state and first excitation (upper) and second and third ex-
citation (lower) for ensemble B70. Note the dominance of
decuplet interpolators for the second excitation, which is a
low lying state (see Fig. 7). Details are discussed in the text.

Dirac structures χ1 and χ2 and decuplet interpolators in
the basis. We use the four lowest levels for our analysis.
The eigenvalues for three ensembles are shown in Fig. 1.
The ground state signal is fairly good and the chiral ex-
trapolation results in a value close to the experimental
Σ(1189) (see Fig. 7). The first excitation comes out too
high compared to the experimental Σ(1660). Note the
poor χ2/d.o.f. of the corresponding chiral extrapolation,
with a value larger than four (see Table V). The energy
levels of the second and third excitations appear close to
the first excitation in our simulations.
Monitoring the eigenvectors, we analyze the

octet/decuplet content of the states. Within the
finite basis employed, the ground state and the first
excitation are strongly dominated by octet χ1. Of
the second and third excitation, one is dominated by
decuplet and the other by octet χ2 interpolators. The
mixing of octet and decuplet interpolators is found to be
negligible in the range of pion masses considered. As we
will see, this holds for most Σ and Ξ channels discussed
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FIG. 9: Energy levels for Σ spin 3/2, positive (upper) and
negative parity (lower).

here.

Σ : I(JP) = 1(1
2

−
): In the Σ spin 1/2 negative par-

ity channel, the Particle Data Group [47] lists two low
nearby states, Σ(1620) and Σ(1750), and one higher ly-
ing resonance, the Σ(2000). Of those, only Σ(1750) is
established.
Again the set of interpolators (1,2,9,10,25,26) is used to

extract four lowest states from our simulations. We find
three low nearby states, all of which extrapolate close
to the experimental Σ(1620) and Σ(1750) (see Fig. 7).
Hence, our results confirm the Σ(1620) and Σ(1750) and
even might suggest the existence of a third low lying res-

onance. However, as discussed for the N( 12
−
) (and like in

the case of the Λ( 12
−
)) there are several s wave baryon-

meson channels (NK, Λπ, Σπ), which, for our values of
the pion mass, have energies close to the ground state.
We cannot exclude such contributions, although we did
not include them in the interpolators.
The eigenvectors of all four states are shown for en-

semble B70 in Fig. 8. Within the employed basis, the

ground state is dominated by octet χ2, the first excita-
tion by octet χ1, the second excitation by decuplet and
the third excitation again by octet χ1 interpolators. We
want to emphasize the existence of a low lying state in
this channel which is dominated by decuplet interpola-
tors. This result also agrees with a recent quark model
calculation [46]. Again, the mixing of octet and decuplet
interpolators appears to be negligible in the range of pion
masses considered.

Σ : I(JP) = 1(3
2

+
): The Particle Data Group lists

Σ(1385), Σ(1840) and Σ(2080), where only the lightest
is established. We use interpolators (2,3,10,11,12) and
extract four energy levels (see Fig. 9). The chiral ex-
trapolations come out high compared to the experimen-
tal values. From the eigenvectors we find that the lowest
two states are strongly dominated by decuplet, the sec-
ond excitation by octet and the third excitation again by
decuplet interpolators.

Σ : I(JP) = 1(3
2

−
): In this channel, three states are

known experimentally: Σ(1580), Σ(1670) and Σ(1940),
where the lightest one needs confirmation. Using inter-
polators (2,3,10,11,12) we can extract four states. We
find two low lying states and two higher excitations (see
Fig. 9). In general, the corresponding energy levels are
high compared to experiment, thus not confirming the
Σ(1580). However, the mixing of octet and decuplet
might increase towards light pion masses, complicating
the chiral behavior. Analyzing the eigenvectors, we find
that of the two low lying states, one is dominated by
octet and the other one by decuplet interpolators. Of
the third and fourth state, one is dominated by octet
and the other by decuplet interpolators. Compared to
the other Σ channels, there appears a measurable mix-
ing of octet and decuplet interpolators. We remark the
importance of decuplet interpolators for low-lying states
in this channel.

C. Xi

Ξ : I(JP) = 1

2
(1
2

+
): Experimentally, only one reso-

nance Ξ(1322) is known in the Ξ spin 1/2 positive parity
channel. We use interpolators (1,2,9,10,25,26) and ex-
tract the four lowest states. The ground state shows
a fairly clean signal and its chiral extrapolation agrees
nicely with the Ξ(1322) (see Fig. 10). The three excita-
tions come out much higher and the results at the lightest
pion mass may suggest a significant chiral curvature to-
wards physical pion masses. This is also expressed in the
poor χ2/d.o.f., which is above five for the first excita-
tion (see Table V). Analyzing the eigenvectors, we find
that – within the finite basis used – the ground state and
the first excitation are strongly dominated by octet χ1.
Of the third and the fourth excitation, one is dominated
by decuplet and the other one by octet χ2 interpolators.
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FIG. 10: Energy levels for Ξ spin 1/2, positive (upper) and
negative parity (lower).

The mixing of octet and decuplet interpolators is found
negligible in the range of simulated pion masses.

Ξ : I(JP) = 1

2
(1
2

−
): No state is known in the Ξ spin

1/2− channel experimentally, and no low-lying state iden-
tified in quark model calculations like, e.g., [46]. Never-
theless, using interpolators (1,2,9,10,25,26), we identify
four states in our simulations (see Fig. 10). Of those,
three are low lying and extrapolate to 1.7-1.9 GeV. Note
the poor χ2/d.o.f. larger than three of the correspond-
ing three chiral extrapolations. The fourth state appears
rather high at 2.7-2.9 GeV, but its extrapolation shows a
nice χ2/d.o.f. of order one. From the eigenvectors we find
that the ground state is dominated by octet χ2, the first
excitation by octet χ1, the second excitation by decuplet
and the third excitation again by octet χ1 interpolators.
We emphasize the existence of a low lying state in this
channel which is dominated by decuplet interpolators,
analogous to the Σ spin 1/2 negative parity channel.

Ξ : I(JP) = 1

2
(3
2

+
): In this channel, one state, Ξ(1530),
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FIG. 11: Energy levels for Ξ spin 3/2, positive (upper) and
negative parity (lower).

is experimentally known and well established. We use
interpolators (2,3,10,11,12) to extract four states from
our simulation. All four states show a stable signal and
the ground state energy level nicely extrapolates to the
experimental Ξ(1530) (see Fig. 11). The second and
third energy levels appear rather close to each other and
are compatible with a level crossing picture within pion
masses of 300-500 MeV. Within the finite basis used,
the ground state is dominated by decuplet interpolators,
which agrees with quark model calculations. At light
pion masses, the first excitation is dominated by octet
and the second by decuplet interpolators. The third ex-
citation is again dominated by decuplet interpolators.

Ξ : I(JP) = 1

2
(3
2

−
): The Particle Data Group [47]

lists one (established) state, Ξ(1820), which is ex-
pected to be dominated by octet interpolators accord-
ing to quark model calculations [47]. Using interpolators
(2,3,10,11,12), we extract four energy levels in this chan-
nel. We find two low lying states, the energy levels of
which extrapolate close to the experimental Ξ(1820) (see
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FIG. 12: Energy levels for Ω spin 1/2, positive (upper) and
negative parity (lower).

Fig. 11). Analyzing the eigenvectors, we find that of the
two low lying states, one is dominated by octet and the
other one by decuplet interpolators. The third state is
dominated by octet and the fourth state by decuplet in-
terpolators. Compared to the other Ξ channels, there
appears a small but measurable mixing of octet and de-
cuplet interpolators.

D. Omega

Ω : I(JP) = 0(1
2

+
): Experimentally, the Ω baryons

have been investigated little. No state is known in the
JP = 1/2+ channel. Using the same interpolators as in
the corresponding ∆ channel, we find two states, whose
energy levels are close for all simulated pion masses (see
Fig. 12). Both predicted resonances lie between 2.3 and
2.6 GeV.

Ω : I(JP) = 0(1
2

−
): Again, there is no experimental
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FIG. 13: Energy levels for Ω spin 3/2, positive (upper) and
negative parity (lower).

experience in the JP = 1
2

−
channel of the Ω baryons.

We extract two states, where the excitation comes with
some noise. The chiral extrapolation of the ground state
predicts a resonance around 2 GeV (see Fig. 12). Note
the corresponding poor χ2/d.o.f. larger than four (see
Table VI); its main contribution comes from the light
energy level of one ensemble (C72). Since this behavior is
not systematically observed in other channels, we assume
the deviation to be due to statistical fluctuations.

Ω : I(JP) = 0(3
2

+
): The Ω(1672) in the JP = 3/2+

channel is known experimentally to very high accuracy.
This is one of the reasons why this state is often used to
define the strange quark mass parameters. This approach
is pursued also in our setup. The determination of the
parameters has been performed along a different scheme
of scale setting. The Sommer parameter was identified
with the experimental value for each ensemble, without
extrapolation to physical pion masses. In that scheme the
lowest energy level in the Ω JP = 3/2+ channel was iden-
tified with the experimental Ω(1672) for each ensemble.
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This identification used preliminary data on the 163×32
lattices only. Here we present results relying on another
scheme of scale setting [33]. Thus, the results shown here
for the ground state serve as an additional cross check for
the final setup of the simulation.
The ground state energy level extrapolates close to the

experimental Ω(1672), undershooting it slightly (see Fig-
ure 13). The corresponding χ2/d.o.f. is around two (see
Table V), half of it contributed by ensemble A66. Us-
ing our final dataset and revisiting the tuning, we find
that the strange quark mass of ensemble A66 is slightly
too light while the mass from ensemble C64 is slightly
too heavy. This creates a slope in the chiral extrapo-
lation which causes the Ω(1672) (and to a lesser extent
all baryons involving one or more strange quarks) to be
lighter than a proper tuning would imply. A thorough
discussion is difficult since also other systematics enter.
We will provide some further discussion, also considering
finite volume effects, in Section V.

Ω : I(JP) = 0(3
2

−
): In the JP = 3/2− channel of the Ω

baryons there is no experimental evidence. We find two
states, both with a fairly good signal, in our simulations.
The chiral extrapolation of the ground state energy level
predicts a resonance slightly above 2 GeV (see Figure
13).

V. VOLUME DEPENDENCE OF BARYON

ENERGY LEVELS

For resonance states in large volumes, there are two
leading mechanisms of finite volume effects. For one, the
spectral density of scattering states depends on the vol-
ume and distorts the energy spectrum through avoided
level crossings. This mechanism is very important for
the determination of resonance properties [2, 53]. The
expected distortion from this effect is of O(Γ), where
Γ is the width of the resonance. Notice that the reso-
nance width is expected to be quite a bit smaller than
the physical one at unphysical pion masses. This justi-
fies identifying the pattern of energy levels qualitatively
with the spectrum of resonances. Therefore, this kind
of finite volume effect is discussed only qualitatively for
particular observables. A second volume effect comes
from virtual pion exchange with the mirror image. The
so-called “pion wrapping around the universe” causes an
exponential correction to the energy level of the hadron
[54]. This mechanism can be discussed to higher orders
in Chiral Perturbation Theory [55–57]. Here we follow a
fit form successfully applied in [58],

Eh(L) = Eh(L = ∞) + ch(mπ)e
−mπL(mπL)

−3/2 , (3)

where Eh is the energy level of the hadron at linear size
L of the lattice. It was suggested that ch(mπ) = ch,0m

2
π,

which implies two fit parameters for each observable:
Eh(L = ∞) and ch,0. The parameter ch,0 is shared
among different ensembles, which we exploit to make

combined fits. We remark that the fit form used is a
fairly simple one, however, considering the small number
of different volumes, we have to rely on a method which
uses few parameters.
Due to the exponential behavior, finite volume effects

are expected to become non-negligible for mπL . 4.
This region is entered in particular for the ensembles
with small pion masses. Eq. (3) is valid only for asymp-
totically large volumes, power-like corrections are ex-
pected for mπL . 3 and already earlier for higher ex-
citations. For ensemble C77 (mπ = 330 MeV) we gener-
ated data on configuration size 123 × 24, 163 × 32, and
243 × 48, for ensemble A66 (mπ = 255 MeV) we have
data for size 163 × 32 and 243 × 48. All these ensembles,
2.7 < mπL < 6, where the pion cloud exchange should
have a measurable effect described by Eq. (3). We ap-
ply Eq. (3) separately to each observable. The data of
sets A66 and C77 enter a combined fit, and the resulting
parameters are used to extrapolate the data of all ensem-
bles (for that observable) to infinite volume. Finally, the
results are extrapolated to the physical light-quark mass.
We focus on narrow or stable states with a good signal

where clear finite volume effects can be expected. This
is the case in particular for the ground states of the pos-
itive parity baryon channels. As mentioned in the previ-
ous section, the results for strange baryons are affected
by our imperfect strange quark tuning. The tuning is of
acceptable quality for 5 out of the 7 ensembles of size
163 × 32. We therefore omit the data from C64 and A66
for our final chiral fits for baryons with strangeness. As
our tuning was done in finite volume the resulting value
for the Ω(1672) will still deviate from the physical value.
Assuming a simple dependence on the number of strange
quarks, this deviation can be translated to other states
and we provide this simple estimate as a second uncer-
tainty when citing final values for the baryon masses.
These values are also listed in Table VII.

A. Nucleon

N : I(JP) = 1

2
(1
2

+
):

The nucleon spin 1/2+ ground state shows a very
clean signal. Our result for the finite box of roughly
2.2 fm deviates significantly from experiment (see Fig. 2).
In order to estimate the systematic error we com-
pare two sets of interpolators A=(1,2,9,10,19,20) and
B=(3,4,10,11,19,20). Furthermore, we consider different
starting values for the fit range for the eigenvalues. The
results for the different ensembles and the corresponding
infinite volume extrapolations are shown in Fig. 14. Note
that the result for (B,7) of ensemble A66 lies outside the
plotted region. We conclude that for small volumes late
starts of the fit have to be avoided.
We find a clear dependence of the nucleon energy level

on the lattice volume. For definiteness, we choose the set
of interpolators A and tmin = 5a and the corresponding



12

1
1.1
1.2
1.3

A,4 A,5 A,6 A,7 B,4 B,5 B,6 B,7
(set of interpolators, start of fit range)

0.9
1

1.1
1.2

N 1/2
+
: C77

N 1/2
+
: A66

m
as

s 
[G

eV
]

FIG. 14: Systematic error of the nucleon ground state en-
ergy level. The levels are shown for different choices of in-
terpolators and fit ranges, labeled on the horizontal axis.
E.g., “A4” denotes the set of interpolator “A” and a fit
range for the eigenvalues from t = 4a to the onset of noise.
“A” denotes set of interpolators (1,2,9,10,19,20), “B” denotes
(3,4,11,12,19,20). For each set of interpolator and fit range,
results for small to large lattices (spatial size 16, 24 for en-
semble A66, and 12,16, 24 for C77) are shown from left to
right, the corresponding infinite volume limit rightmost.

infinite volume extrapolation, which is shown in Fig. 15.
After infinite volume extrapolation of all ensembles with
the extrapolation parameters determined from A66 and
C77, we extrapolate to the physical pion mass, shown
in Fig. 16 (upper). Our final result is mN = 954(16)
MeV (error is statistical only), which agrees with the
experimental N(939) within 1σ.

N : I(JP) = 1

2
(1
2

−
):

In the nucleon spin 1/2− channel we analyze the finite
volume effects of the two lowest energy levels. Our re-
sults for the finite box of roughly 2.2 fm are a bit low
compared to experiment (see Fig. 2). We show results
for different volumes and infinite volume extrapolations
for the ground state in Fig. 17 and for the first excitation
in Fig. 18. Note that in some cases the data suggest neg-
ative finite volume corrections to the energy level. Such
are compatible with an attractive s wave scattering state
πN . However, the pattern is not systematically observed
in A66 and C77, neither with nor without assuming a
level crossing (with changing pion mass). Hence the fi-
nite volume analysis does not provide clear information
on the particle content of the two lowest energy levels in
the nucleon spin 1/2− channel.
In fact, as has been shown recently in a study which

includes meson-baryon interpolators [10], the spectrum
should exhibit a sub-threshold energy level in addition to
two levels close the the resonance position. Comparison
of these results with the energy levels obtained here leads
one to interpret the present eigenstates as superpositions
of those states.
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FIG. 15: Volume dependence of the nucleon mass for the set of
interpolators (1,2,9,10,19,20) and tmin = 5a ((A,5) of Fig. 14).

B. Delta Baryons

We show results and infinite volume extrapolations for
different sets of interpolators and different fit ranges for
the ∆ spin 3/2+ ground state in Fig. 19. Compared to the
nucleon, the fit ranges of the eigenvalues are short, corre-
spondingly, and the results tend to fluctuate a bit more.
The volume dependence appears to be the strongest of
all observables considered. For definiteness, we choose
the set of interpolators A and tmin = 5 a and the cor-
responding infinite volume extrapolation, and note that
the systematic error is of the order of the statistical error,
or slightly larger. After infinite volume extrapolation of
all ensembles, we extrapolate to the physical pion mass
as shown in Fig. 16. Our final result is m∆ = 1268(32)
MeV, which agrees with the experimental ∆(1232) within
roughly 1σ. We remark that the energy level in ensemble
A66 appears low compared to other ensembles. This de-
grades the χ2/d.o.f. of the chiral fit (see Table VII), but
improves the comparison with experiment.
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2

+
(upper) and

∆ spin 3
2

+
(lower) in the infinite volume limit. After infinite

volume extrapolation ((A,5) of Fig. 14 resp. Fig. 19), we ex-
trapolate to physical pion masses. We obtain mN=954(16)
MeV and m∆=1268(32) MeV, which both match the experi-
mental values within roughly 1σ.

C. Omega Baryons

The Ω mass was used in the first place to define the
strange quark mass parameter. We consider different sets
of interpolators and fit ranges of the eigenvalues in or-
der to estimate the corresponding systematic error. Fig-
ure 20 shows some of the corresponding results. Here,
we choose for definiteness interpolators (1,3,4) and a fit
range starting from tmin = 4a for the ensembles with let-
ter C and tmin = 6a for the ensembles with letter A; we
note that the corresponding systematic error appears to
be somewhat smaller than the statistical one. We extrap-
olate the energy levels of all ensembles to infinite volume.
In the final extrapolation to physical light-quark masses,
we omit ensemble A66 and C64 (see Fig. 21). We ob-
tain mΩ = 1650(20) MeV, which deviates slightly from
the experimental Ω(1672) as our quark mass tuning was
done in finite volume.
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FIG. 17: Systematic error of the nucleon spin 1/2− ground
state mass, analogous to Fig. 14. “A” denotes set of interpo-
lators (5,11,17), “B” denotes (1,2,9,10,17,18). For each set of
interpolator and fit range, results for small to large lattices
are shown from left to right, the corresponding infinite volume
limit rightmost.
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FIG. 18: Systematic error of the nucleon spin 1/2− first ex-
cited energy level, analogous to Fig. 14. “A” denotes set of
interpolators (5,11,17), “B” denotes (1,2,9,10,17,18). For each
set of interpolator and fit range, results for small to large lat-
tices are shown from left to right, the corresponding infinite
volume limit rightmost.

D. Sigma Baryons

In the Σ spin 1/2+ channel we apply the sets of interpo-
lators A=(1,2,9,10,25,26) and B=(2,3,10,11,19,20,26,27)
and different fit ranges to discuss the volume dependence
of the ground state (see Fig. 23). The volume dependence
is found to be comparable in size to the one of the nucleon
ground state energy level. Towards larger fit ranges the
results start to scatter; nevertheless, they are conclusive
and the systematic error is of the order of the statistical
one. We choose interpolators A and tmin = 6a, and show
the results in the infinite volume limit in the upper pane
of Fig. 22. Our final result is mΣ = 1176(19)(+07) MeV
(second error is a correction estimate based on the slight
mistuning of the strange quark mass), which is compati-
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FIG. 19: Systematic error of the ∆ spin 3/2+ mass, analo-
gous to Fig. 14. “A” denotes set of interpolators (1,4,5), “B”
denotes (1,5,8). For each set of interpolator and fit range,
results for small to large lattices are shown from left to right,
the corresponding infinite volume limit rightmost.
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FIG. 20: Systematic error of the Ω spin 3/2+ mass, analo-
gous to Fig. 14. “A” denotes set of interpolators (1,5,8), “B”
denotes (1,3,4). For each set of interpolator and fit range,
results for small to large lattices are shown from left to right,
the corresponding infinite volume limit rightmost. For defi-
niteness we choose (B,4).

ble with the experimental Σ around 1193 MeV.
In the Σ spin 3/2+ channel we again use interpolators

(2,3,10,11,12). The results are shown in the upper pane of
Fig. 25. Here our final result ismΣ = 1431(25)(+07)MeV
which is somewhat larger than the experimental value of
1384 MeV.

E. Xi Baryons

We consider the sets of interpolators
A=(1,2,9,10,25,26) and B=(2,3,10,11,19,20,26,27) and
different fit ranges to discuss the volume dependence of
the Ξ spin 1/2+ ground state (see Fig. 24). Again, the
results are conclusive, and the systematic error is well

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

1.4

1.6

1.8

2

m
as

s 
[G

eV
]

Ω 3/2
+

χ2
/d.o.f.= 3.10/3

FIG. 21: Energy levels for Ω spin 3/2+ in the infinite volume
limit. After infinite volume extrapolation we extrapolate to
physical pion masses, obtaining mΩ=1650(20) MeV. For dis-
cussion please refer to the text.
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FIG. 22: Energy levels for the Σ spin 1
2

+
(upper pane) and the

Ξ spin 1
2

+
(lower pane) ground states in the infinite volume

limit. After infinite volume extrapolation we extrapolate to
physical pion masses. We obtain mΣ=1176(19)(+07) MeV
and mΞ =1299(16)(+15) MeV.

bounded. We choose interpolators A and tmin = 6a, and
show the results for infinite volume in the upper pane of
Fig. 25. Our final result is mΞ = 1299(16)(+15) MeV
which is again slightly lower than the experimental Ξ
around 1317 MeV.
For the Ξ spin 3/2+ ground state we use interpo-

lators (2,3,10,11,12). The infinite volume results are
shown in the right pane of Fig. 25. Our result is mΞ =
1540(22)(+15)MeV which is slightly larger than the ex-
perimental value 1532MeV.
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FIG. 23: Systematic error of the Σ spin 1
2

+
mass, analogous

to Fig. 14. “A” denotes set of interpolators (1,2,9,10,25,26),
“B” denotes (2,3,10,11,19,20,26,27). For each set of inter-
polator and fit range, results for small to large lattices are
shown from left to right, the corresponding infinite volume
limit rightmost.
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FIG. 24: Systematic error of the Ξ spin 1/2+mass, analogous
to Fig. 14. “A” denotes set of interpolators (1,2,9,10,25,26),
“B” denotes (2,3,10,11,19,20,26,27). For each set of inter-
polator and fit range, results for small to large lattices are
shown from left to right, the corresponding infinite volume
limit rightmost.

VI. SUMMARY

We have derived results for the low lying energy levels
in all baryon channels (spin 1/2 and 3/2, both parities)
for baryons with light and strange valence quark con-
tent. The light quarks were included as dynamical quarks
in the generation of gauge configurations by the hybrid
Monte Carlo method. The quarks were implemented as
Chirally Improved quarks, the pion masses range from
255 to 596 MeV.
Figure 26 shows our results for the extrapolation (lead-

ing order ChPT linear in m2
π) of the finite volume energy

levels to physical pion mass. We find good agreement of
the ground state energy levels with the experimental val-
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FIG. 25: Energy levels for Σ spin 3/2+ (upper pane) and Ξ
spin 3/2+ (lower pane) ground states in the infinite volume
limit. After infinite volume extrapolation we extrapolate to
physical pion masses. We obtain mΣ=1431(25)(+07) MeV
and mΞ=1540(22)(+15) MeV.

ues, where available. In some cases (e.g., in the Omega
and the Ξ sectors) our results suggest the existence of yet
unobserved resonance states. We use 3-quark interpola-
tors for the baryons throughout and find no signal for a
coupling to dynamically generated meson-baryon states
in p- and d-wave channels. This is not so clear for the s
wave channels. These show several energy levels close to

ground states in the 1
2

−
channels. In these cases there

could be mixing with the s wave meson-baryon sectors.
We want to mention that for all our ensembles (i.e.,

over the whole pion mass range) the Gell-Mann–Okubo
formula [59, 60] is fulfilled with high precision. The values
of the combination of the spin 1/2 positive parity octet
ground state masses obey

2MN + 2MΞ −MΣ − 3MΛ

〈2MN + 2MΞ +MΣ + 3MΛ〉
< 0.004 (4)

for all pion masses studies here (the denominator denotes
the average over all ensembles).
We analyze the flavor symmetry content by identifying

the singlet/octet/decuplet contributions. For the ground
states agreement with the expectations from the quark

model is found. In the 1
2

+
nucleon channel the first ex-

citation is considerably higher than the Roper resonance
and one possible interpretation is, that the physical state
couples very weakly to our interpolators. This may be

also the case in the Λ 1
2

+
channel, where the first excita-

tion is dominated by singlet interpolators matching the
Λ(1810) (singlet in the quark model) and the Roper-like
Λ(1600) (octet in the quark model) seems to be missing.
We study the systematic errors due to the final choice

of interpolator sets and fit ranges and we also perform in-
finite volume extrapolations for the lowest energy levels.
Because a slight mistuning of the strange quark mass is
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FIG. 26: Energy levels for positive parity (top) and negative
parity baryons (bottom). All values are obtained by chiral ex-
trapolation linear in the pion mass squared. Horizontal lines
or boxes represent experimentally known states, dashed lines
indicate poor evidence, according to [47]. The statistical un-
certainty of our results is indicated by bands of 1σ, that of the
experimental values by boxes of 1σ. The strange quarks are
implemented in valence approximation. Grey symbols denote
a poor χ2/d.o.f. of the chiral fits (see Tables V and VI).

identified in two of the ensembles, we omit them in the
final extrapolation to the physical pion mass. Remain-
ing small deviations are expected to stem from systematic
effects which cannot be identified uniquely given our lim-
ited dataset at a single lattice spacing with 2 dynamical
quark flavors. In general, however, our results in the in-
finite volume limit compare favorably with experiment,
as shown in Fig. 27.
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Appendix A: Tables of Baryon Interpolators

All interpolators are projected to definite parity using
the projector

P± =
1

2
(1± γt) . (A1)

The resulting correlation matrices of positive and nega-
tive parity (±),

C±
ij (t) = ±Z±

ije
−tE±

± Z∓
ije

−(T−t)E∓

, (A2)

are combined to the correlation matrices

C(t) =
1

2

(

C+(t)− C−(T − t)
)

, (A3)

which are then used in the variational method.
All Rarita-Schwinger fields (spin 3/2 interpolators of

Table II) are projected to definite spin 3/2 using the
continuum formulation of the Rarita-Schwinger projec-
tor [61]

P 3/2
µν (~p) = δµν−

1

3
γµγν−

1

3p2
(γ ·p γµpν+pµγνγ ·p) . (A4)

The baryon interpolators used in this work are detailed
in Tables II, III and IV. Table II shows the flavor struc-
ture for all interpolators. For the spin 1/2 channels of
the nucleon, Σ, Ξ and Λ, we use the three different Dirac
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structures χ(i) = (Γ
(i)
1 ,Γ

(i)
2 ), (i = 1, 2, 3), listed in Table

III. Details about the quark smearings in the interpo-
lators are found in Table IV. The name convention of
all baryon interpolators is determined by Tables III and
IV. In the Λ channels, singlet and octet interpolators are
collected in one set. We assign to the first octet interpo-
lator the number after the last singlet interpolator, and
continue to count for the remaining octet interpolators.
In the Σ and Ξ channels, the same holds for octet and
decuplet interpolators.
In the continuum, the actual number of independent

fields is reduced by Fierz identities. In particular, there
are no non-vanishing point-like interpolators for ∆( 12 )

and singlet Λ( 32 ). However, using differently smeared
quarks in the construction of interpolators, we do ac-
cess independent information and find good signals for
the singlet Λ( 32 ) propagation.

Appendix B: Tables of Energy Levels and χ2

We give the results of our extrapolation (linear in m2
π)

to the physical pion mass together with the associated
value of χ2/d.o.f.



18

Spin Flavor channel Name Interpolator
1
2

Nucleon N
(i)

1/2 ǫabc Γ
(i)
1 ua

(

uT
b Γ

(i)
2 dc − dTb Γ

(i)
2 uc

)

1
2

Delta ∆1/2 ǫabc γiγ5ua

(

uT
b C γi uc

)

1
2

Sigma octet Σ
(8,i)

1/2 ǫabc Γ
(i)
1 ua

(

uT
b Γ

(i)
2 sc − sTb Γ

(i)
2 uc

)

1
2

Sigma decuplet Σ
(10,i)

1/2 ǫabc γiγ5ua

(

uT
b C γi sc − sTb C γi uc

)

1
2

Xi octet Ξ
(8,i)

1/2 ǫabc Γ
(i)
1 sa

(

sTb Γ
(i)
2 uc − uT

b Γ
(i)
2 sc

)

1
2

Xi decuplet Ξ
(10,i)

1/2 ǫabc γiγ5sa
(

sTb C γi uc − uT
b C Γi sc

)

1
2

Lambda singlet Λ
(1,i)

1/2 ǫabcΓ
(i)
1 ua(d

T
b Γ

(i)
2 sc − sTb Γ

(i)
2 dc)

+ cyclic permutations of u, d, s
1
2

Lambda octet Λ
(8,i)

1/2 ǫabc
[

Γ
(i)
1 sa(u

T
b Γ

(i)
2 dc − dTb Γ

(i)
2 uc)

+ Γ
(i)
1 ua(s

T
b Γ

(i)
2 dc)− Γ

(i)
1 da(s

T
b Γ

(i)
2 uc)

]

1
2

Omega Ω1/2 ǫabc γiγ5sa
(

sTb C γi sc
)

3
2

Nucleon N
(i)

3/2 ǫabc γ5 ua

(

uT
b Cγ5γi dc − dTb Cγ5γi uc

)

3
2

Delta ∆
(i)

3/2 ǫabc ua

(

uT
b C γi uc

)

3
2

Sigma octet Σ
(8,i)

3/2 ǫabc γ5 ua

(

uT
b Cγ5γi sc − sTb Cγ5γi uc

)

3
2

Sigma decuplet Σ
(10,i)

3/2 ǫabc ua

(

uT
b Cγi sc − sTb Cγi uc

)

3
2

Xi octet Ξ
(8,i)

3/2 ǫabc γ5 sa
(

sTb Cγ5γi uc − uT
b Cγ5γi sc

)

3
2

Xi decuplet Ξ
(10,i)

3/2 ǫabc sa
(

sTb Cγi uc − uT
b Cγi sc

)

3
2

Lambda singlet Λ
(1,i)

3/2 ǫabcγ5ua(d
T
b Cγ5γisc − sTb Cγ5γidc)

+ cyclic permutations of u, d, s
3
2

Lambda octet Λ
(8,i)

3/2 ǫabc
[

γ5sa(u
T
b Cγ5γidc − dTb Cγ5γiuc)

+ γ5ua(s
T
b Cγ5γidc)− γ5da(s

T
b Cγ5γiuc

]

3
2

Omega Ω
(i)

3/2 ǫabc sa
(

sTb C γi sc
)

TABLE II: Baryon interpolators: Flavor structure. The possible choices for the Dirac matrices Γ
(i)
1,2 in the spin 1/2 channels are

listed in Table III. All interpolators are projected to definite parity according to Eq. (A1). All spin 3/2 interpolators include
the Rarita-Schwinger projector, according to Eq. (A4), which is suppressed for clarity in the table. C denotes the charge
conjugation matrix, γi the spatial Dirac matrices and γt the Dirac matrix in time direction. Spin 1/2 and spin 3/2 channels
are separated by a solid line. Summation convention applies for repeated indices, and in the case of spin 3/2 observables, the
open Lorentz index (after spin projection) is summed after taking the expectation value of correlation functions.
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i Γ
(i)
1 Γ

(i)
2 Numbering of associated interpolators

N1/2,Λ
1
1/2,Σ

8
1/2,Ξ

8
1/2 Λ8

1/2,Σ
10
1/2,Ξ

10
1/2

1 1 Cγ5 1-8 25-32

2 γ5 C 9-16 33-40

3 i1 Cγtγ5 17-24 41-48

TABLE III: Baryon interpolators: Dirac structures used for
the spin 1/2 nucleon, Λ, Σ and Ξ interpolators, according to
Table II. The naming convention (numbering) for associated
interpolators in the different channels is given as well. The
subscripts denote the spin, the superscripts the flavor irre-
ducible representation.

quark Numbering of associated interpolators

smearing ∆1/2,∆3/2 Λ8
3/2, N1/2,Λ

1
1/2, Λ8

1/2,

Ω1/2,Ω3/2, Σ10
3/2, Σ8

1/2,Ξ
8
1/2 Σ10

1/2,Ξ
10
1/2

N3/2,Λ
1
3/2 Ξ10

3/2

Σ8
3/2,Ξ

8
3/2

(nn)n 1 9 1,9,17 25,33,41

(nn)w 2 10 2,10,18 26,34,42

(nw)n 3 11 3,11,19 27,35,43

(nw)w 4 12 4,12,20 28,36,44

(wn)n 5 13 5,13,21 29,37,45

(wn)w 6 14 6,14,22 30,38,46

(ww)n 7 15 7,15,23 31,39,47

(ww)w 8 16 8,16,24 32,40,48

TABLE IV: Baryon interpolators: Quark smearing types and
naming convention for the interpolators in the different chan-
nels. The subscripts denotes the spin, the superscripts the
flavor irreducible representation. The brackets in the first row
symbolize the diquark part. Due to Fierz identities, some of
the interpolators may be linearly dependent.

Baryon: I(JP ) Energy level [MeV] χ2/d.o.f.

N : 1/2(1/2+) 1000(18) 2.16/5

N : 1/2(1/2+) 1848(120) 3.61/5

N : 1/2(1/2+) 1998(59) 18.31/5

N : 1/2(1/2+) 2543(280) 1.96/3

∆ : 3/2(1/2+) 1751(190) 1.58/5

∆ : 3/2(1/2+) 2211(126) 1.15/5

Λ : 0(1/2+) 1149(18) 1.89/3

Λ : 0(1/2+) 1807(94) 4.63/5

Λ : 0(1/2+) 2112(54) 20.27/5

Λ : 0(1/2+) 2137(68) 1.50/5

Σ : 1(1/2+) 1216(15) 6.94/5

Σ : 1(1/2+) 2069(74) 3.41/5

Σ : 1(1/2+) 2149(66) 20.37/5

Σ : 1(1/2+) 2335(63) 2.09/5

Ξ : 1/2(1/2+) 1303(13) 8.31/5

Ξ : 1/2(1/2+) 2178(48) 7.51/5

Ξ : 1/2(1/2+) 2231(44) 26.53/5

Ξ : 1/2(1/2+) 2408(45) 10.37/5

Ω : 0(1/2+) 2350(63) 4.14/5

Ω : 0(1/2+) 2481(51) 4.35/5

N : 1/2(3/2+) 1773(91) 8.35/5

N : 1/2(3/2+) 2298(191) 3.79/5

∆ : 3/2(3/2+) 1344(27) 6.13/5

∆ : 3/2(3/2+) 2204(82) 6.23/5

Λ : 0(3/2+) 1991(103) 3.56/3

Λ : 0(3/2+) 2058(139) 23.04/5

Λ : 0(3/2+) 2481(111) 4.26/5

Σ : 1(3/2+) 1471(23) 2.52/5

Σ : 1(3/2+) 2194(81) 4.78/5

Σ : 1(3/2+) 2250(79) 7.05/5

Σ : 1(3/2+) 2468(67) 4.22/5

Ξ : 1/2(3/2+) 1553(18) 3.78/5

Ξ : 1/2(3/2+) 2228(40) 6.99/5

Ξ : 1/2(3/2+) 2398(52) 7.03/5

Ξ : 1/2(3/2+) 2574(52) 4.26/5

Ω : 0(3/2+) 1642(17) 10.86/5

Ω : 0(3/2+) 2470(49) 8.14/5

TABLE V: Energy levels at the physical pion mass and
corresponding χ2/d.o.f. for the chiral fits of the positive
baryon energy levels reported in this work. Sources of large
χ2/d.o.f. (≥ 3) are discussed in the text. Spin 1/2 and spin
3/2 baryons are separated by a line. Given errors are statis-
tical only.
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Baryon: I(JP ) Energy level [MeV] χ2/d.o.f.

N : 1/2(1/2−) 1406(49) 6.51/5

N : 1/2(1/2−) 1539(69) 8.72/5

N : 1/2(1/2−) 1895(128) 6.35/5

N : 1/2(1/2−) 1918(211) 5.94/5

∆ : 3/2(1/2−) 1454(140) 11.16/5

∆ : 3/2(1/2−) 1914(322) 3.24/5

Λ : 0(1/2−) 1416(81) 1.25/3

Λ : 0(1/2−) 1546(110) 0.57/3

Λ : 0(1/2−) 1713(116) 3.49/3

Λ : 0(1/2−) 2075(249) 13.56/5

Σ : 1(1/2−) 1603(38) 7.45/5

Σ : 1(1/2−) 1718(58) 12.78/5

Σ : 1(1/2−) 1730(34) 10.79/5

Σ : 1(1/2−) 2478(104) 11.94/5

Ξ : 1/2(1/2−) 1716(43) 19.10/5

Ξ : 1/2(1/2−) 1837(28) 20.25/5

Ξ : 1/2(1/2−) 1844(43) 15.75/5

Ξ : 1/2(1/2−) 2758(78) 5.61/5

Ω : 0(1/2−) 1944(56) 20.48/5

Ω : 0(1/2−) 2716(118) 8.58/5

N : 1/2(3/2−) 1634(44) 14.75/5

N : 1/2(3/2−) 1982(128) 7.40/5

N : 1/2(3/2−) 2296(129) 9.59/5

∆ : 3/2(3/2−) 1570(67) 4.01/5

∆ : 3/2(3/2−) 2373(140) 17.97/5

Λ : 0(3/2−) 1751(41) 1.42/3

Λ : 0(3/2−) 2203(106) 3.97/5

Λ : 0(3/2−) 2381(87) 6.48/5

Σ : 1(3/2−) 1861(26) 6.33/5

Σ : 1(3/2−) 1736(40) 2.25/5

Σ : 1(3/2−) 2394(74) 9.73/5

Σ : 1(3/2−) 2297(122) 3.90/5

Ξ : 1/2(3/2−) 1906(29) 3.12/5

Ξ : 1/2(3/2−) 1894(38) 3.19/5

Ξ : 1/2(3/2−) 2497(61) 8.53/5

Ξ : 1/2(3/2−) 2426(73) 7.60/5

Ω : 0(3/2−) 2049(32) 7.32/5

Ω : 0(3/2−) 2755(67) 5.68/5

TABLE VI: Same as Table V, but for negative parity baryons.
Spin 1/2 and spin 3/2 baryons are separated by a line.

Hadron I(JP ) Energy level [MeV] χ2/d.o.f.

N 1/2(1/2+) 954(16) 2.26/5

Λ 0(1/2+) 1126(17)(+07) 2.74/3

Σ 1(1/2+) 1176(19)(+07) 6.67/3

Ξ 1/2(1/2+) 1299(16)(+15) 5.05/3

∆ 3/2(3/2+) 1268(32) 8.67/5

Λ 0(3/2+) 1880(116)(+07) 2.38/3

Σ 1(3/2+) 1431(25)(+07) 2.29/3

Ξ 1/2(3/2+) 1540(22)(+15) 2.05/3

Ω 0(3/2+) 1650(20)(+22) 3.10/3

Λ 0(1/2−) 1436(84)(+07) 1.25/3

Λ 0(1/2−) 1635(70)(+07) 4.93/3

Λ 0(1/2−) 1664(66)(+07) 3.49/3

Λ 0(3/2−) 1712(51)(+07) 2.92/3

TABLE VII: Same as Table V, but for hadrons after the
infinite volume extrapolation. The horizontal line separates
different parity and spin. Notice that the Omega mass is not
a prediction of our calculation. The second errors given are
näıve estimates for the systematic error from a mistuning of
the strange quark mass.
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