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One of the most pernicious theoretical systematics facing upcoming gravitational lensing surveys
is the uncertainty introduced by the effects of baryons on the power spectrum of the convergence
field. One method that has been proposed to account for these effects is to allow several additional
parameters (that characterize dark matter halos) to vary and to fit lensing data to these halo
parameters concurrently with the standard set of cosmological parameters. We test this method.
In particular, we use this technique to model convergence power spectrum predictions from a set
of cosmological simulations. We estimate biases in dark energy equation of state parameters that
would be incurred if one were to fit the spectra predicted by the simulations either with no model
for baryons, or with the proposed method. We show that neglecting baryonic effect leads to biases
in dark energy parameters that are several times the statistical errors for a survey like the Dark
Energy Survey. The proposed method to correct for baryonic effects renders the residual biases in
dark energy equation of state parameters smaller than the statistical errors. These results suggest
that this mitigation method may be applied to analyze convergence spectra from a survey like the
Dark Energy Survey. For significantly larger surveys, such as will be carried out by the Large
Synoptic Survey Telescope, the biases introduced by baryonic effects are much more significant.
We show that this mitigation technique significantly reduces the biases for such larger surveys, but
that a more effective mitigation strategy will need to be developed in order ensure that the residual
biases in these surveys fall below the statistical errors.

PACS numbers: 98.80.-k,98.62.Py,98.35.Gi

I. INTRODUCTION

Weak gravitational lensing is a potentially powerful
probe of cosmology (e.g., Refs. [1–7]) 1. Imaging sur-
veys such as the Dark Energy Survey (DES) and, in the
longer term, the surveys of the Large Synoptic Survey
Telescope (LSST), the European Space Agency’s Euclid
satellite, and the Wide Field Infra-Red Survey Telescope
(WFIRST) expect to measure the power spectrum of cos-
mological weak lensing with sufficient precision to im-
prove constraints on dark energy dramatically. However,
a number of sources of systematic error must be con-
trolled in order to achieve these goals. From a theoretical
perspective, it is necessary to predict matter power spec-
tra with precisions of better than one percent over a wide
range of scales [9, 10]. This is a challenging goal, but
significant progress has been realized utilizing N-body
simulations containing only dark matter [11–14]. The

1 This application of lensing goes back more than forty years (e.g.,
Ref. [8])

largest remaining challenge to this goal is to account for
the influence of the baryonic component of the universe
in these predictions. Baryonic effects have been shown to
alter lensing power spectra significantly on small scales
[15–20]. This theoretical systematic error associated with
baryonic processes is sufficient to cause large systematic
errors in inferred dark energy parameters if unaccounted
for [10, 20–22], though Ref. [23] explored methods to cull
data in order to protect against scale-dependent uncer-
tainties in predicted power spectra. In the present work,
we assess a proposal to mitigate dark energy biases in-
duced by baryonic effects using a method proposed in
Ref. [21].

Rudd et al. [18] recognized changes in the internal
structures of dark matter halos as the cause of the largest
alterations to lensing spectra in baryonic simulations (a
result confirmed in Refs. [19, 20]). Consequently, Zent-
ner et al. [21] suggested a strategy to mitigate baryonic
effects in forthcoming lensing analyses. Zentner et al.
[21] proposed altering the canonical relationship between
halo mass and halo concentration (e.g., [24, 25]) to ac-
count for the matter redistribution precipitated by bary-
onic effects, as this enables the simulations of Ref. [18]
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to be modeled successfully. Zentner et al. [21] then sug-
gested introducing additional parameter freedom into the
concentration-mass relation, a necessity because this re-
lation cannot be unambiguously predicted due to the un-
certainties in baryonic processes, and fitting the data si-
multaneously for the parameters that quantify the mass-
concentration relation and the cosmological parameters.
The value of this strategy is that it can reduce systematic
errors (or biases) in dark energy parameters to acceptable
levels, while increasing the statistical errors on dark en-
ergy parameters by only ∼ 10−40%, depending upon the
experiment and the complexity of the mass-concentration
relation [21] (a similar argument can be made for modi-
fied gravity [22]).

FIG. 1: Cartoon view of the effect of bias on cosmological
parameters (here called “Parameter 1” and “Parameter 2”).
The true value of the parameters is given by the red star. If
the bias (in our case the effect of baryons on the weak lensing
power spectrum) is not accounted for, the allowed region in
parameter space will be given by the shaded blue region at the
top right. The parameters will be offset from their true val-
ues, or biased. We call the offset in this case the “raw bias.” If
one attempts to mitigate the bias by introducing new param-
eters (in our case allowing for a varying mass-concentration
relation), the allowed region will shift to that given by the
shaded green contour at the lower left. The errors are now
larger due to the increased number of parameters used in the
fit, but the offset, which we refer to as the “residual bias,” is
much smaller than the raw bias.

Our aim here is to test this mitigation strategy more
extensively. We wish to determine if this algorithm will
extract cosmological parameters successfully from up-
coming survey data. Successfully here has a specific and
technical meaning, a cartoon version of which is illus-
trated in Fig. 1. First, success demands that biases in

the cosmological parameters due to inaccuracies in the-
oretical models should be small. There are two biases
at play here, the “raw bias” (the offset of the smaller
contour in Fig. 1) before any mitigation is applied and
the “residual bias” (offset of the larger contour in Fig. 1)
which remains after fitting for the new free parameters.
Ideally the residual bias will be much smaller than the
raw bias; for the method to be truly effective, the residual
bias should be smaller than the statistical error. Second,
success requires that the additional parameter freedom
introduced by the model should not inflate the error bars
on cosmological parameters so much as to markedly re-
duce the constraining power of the experiment. At min-
imum, the increase in the statistical error bars due to
additional parameters should not be so large as to nullify
the reduction in the systematic errors.

To carry out this test, we use the results from the Over-
Whelmingly Large Simulations (OWLS) [20, 26, 27] as
mock data. The OWLS suite consists, in part, of a set
of ten simulations, each with the same initial conditions
evolved in the context of the same cosmology. One simu-
lation treats only dark matter, while the other nine model
baryonic processes using different effective models. We
proceed by assuming that each one of the OWLS sim-
ulations, in turn, produces the true matter power spec-
trum. We fit each of the OWLS predictions for lensing
power spectra with our mitigation model, including nui-
sance parameters. We compute residual differences in
power spectra between our fits and the OWLS predic-
tions and use these differences to estimate the biases in
dark energy equation of state parameters that would be
realized after applying the mitigation scheme. We re-
peat this analysis in the context of two distinct imaging
surveys. The first survey we consider has the precision
expected from DES. The second survey we consider rep-
resents more long-term, Stage IV2 surveys, such as may
be conducted by LSST or Euclid.

We will show that baryonic effects may reasonably lead
to raw biases as large as ∼ 2σ − 6σ (where σ represents
the marginalized statistical error) on dark energy equa-
tion of state parameters if unaccounted for in the analysis
of DES-like data. The size of the bias depends upon the
range of multipoles used in the analysis and the baryon
model. This broadly confirms prior estimates [20–22].
We will then show that this mitigation scheme can render
systematic errors sufficiently small, so as to suggest con-
centration fitting as an attractive strategy for the cosmo-
logical analysis of lensing power spectra from DES. In all
cases that we consider, the residual biases remain . 0.5σ
and can be kept . 0.1σ if the range of scales included
in the cosmological analysis is restricted to ℓ . 2000,
though restricting scales comes at a non-negligible cost
in statistical error.

2 Using the classification scheme of the Dark Energy Task Force
[28], within which DES would be a Stage III experiment.
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For Stage IV experiments with wide sky coverage, such
as LSST or Euclid, the conclusion is slightly more com-
plicated. Absent any mitigation scheme for baryonic pro-
cess such future experiments may be subject to raw biases
ranging from ∼ 1.5σ to as large as ten times the statis-
tical error or more. The broad range reflects the differ-
ences from one OWLS simulation to the next. However
the largest of these biases are unlikely to be the product
of any actual analysis. It seems more likely that the team
undertaking the analysis will notice that all models pro-
vide poor fits to the data using some “goodness-of-fit”
criterion. Nevertheless, it remains imperative to under-
stand the reasons for the poor fits. Our analysis suggests
that concentration fitting may reduce systematic errors
on dark energy equation of state parameters due to bary-
onic effects to . 1.6σ in the worst case and . 0.5σ in six
of the nine simulations we have analyzed. The concomi-
tant increase in the statistical errors is . 30%. While
concentration fitting does alleviate biases in this case, a
more sophisticated analysis may be necessary for data of
the quality expected from Stage IV experiments.
The remainder of this manuscript is organized as fol-

lows. In the following section, we describe the lensing
power spectra from which we aim to infer cosmological
parameters, the details of our modeling procedure, and
the cosmological parameters that we consider. We also
discuss the Fisher matrix method for estimating statisti-
cal and systematic errors in model parameters. In § III,
we describe the OWLS simulations and show the differ-
ences in lensing power spectra predicted by several of the
simulations in the OWLS suite. We describe our simple
mitigation model in § IV. Our results for the statisti-
cal and systematic errors on dark energy parameters are
given in § V, where we address a DES-like experiment,
and a future LSST- or Euclid-like experiment in turn.
We summarize our results and present our conclusions in
§ VI.

II. PRELIMINARIES

A. Weak Lensing Observables

We consider cosmological parameter inference using
measurements of cosmic shear from large-scale imag-
ing surveys. We assume that each galaxy has a well-
characterized photometric redshift estimate, so that the
source galaxies can be binned in Nz photometric red-
shift bins. We infer cosmological parameters from the
Nobs = Nz(Nz + 1)/2 number density-weighted angular
convergence power spectra and cross spectra among the
galaxies in each of the redshift bins,

P ij
κ (ℓ) =

∫

dz
Wi(z)Wj(z)

H(z)D2
A(z)

Pδ(k = ℓ/DA, z). (1)

In Eq. 1, H(z) is the Hubble expansion rate, DA(z) is the
angular diameter distance to redshift z, Pδ(k, z) is the

three-dimensional matter power spectrum at wavenum-
ber k and redshift z, Wi(z) are the Nz lensing weight
functions, and the lower-case Latin indices indicate the
redshift bins (e.g., index i runs from 1 toNz). The lensing
weight functions are

Wi(z) =
3

2
ΩMH2

0 (1 + z)DA(z)

∫

dz′
DA(z, z

′)

DA(z′)

dni

dz′
, (2)

where dni/dz is the redshift distribution of source galax-
ies in the ith redshift bin, H0 is the present Hubble rate,
and DA(z, z

′) designates the angular diameter distance
between redshifts z and z′.
The observed spectra P̄ ij

κ , consist of terms due to signal
(P ij

κ ) and noise,

P̄ ij
κ (ℓ) = P ij

κ (ℓ) + niδij〈γ
2〉, (3)

where ni is the surface density of source galaxies in red-
shift bin i, 〈γ2〉 is the intrinsic source galaxy shape noise
for each shear component, and δij is the Kronecker delta
symbol. The covariance among observables is

C[P ij
κ (ℓ), P

kl
κ (ℓ)] = P̄ ik

κ P̄ jl
κ + P̄ il

κ P̄
jk
κ , (4)

assuming Gaussian statistics. Over the range of scales we
consider, the Gaussian approximation is reasonable (e.g.,
Ref. [29]) and greatly simplifies the analysis. Moreover,
it is a conservative assumption for our purposes because
adopting non-Gaussian covariance generally renders sta-
tistical errors larger and diminishes the relative impor-
tance of the systematic errors we consider. Throughout
this study, we adhere to a common convention by taking
√

〈γ2〉 = 0.2.

B. Survey Characteristics and Cosmological

Parameters

We consider cosmological constraints from two repre-
sentative surveys. The first experiment we consider is
based on the specifications of the Dark Energy Survey
(DES)3. DES is an example of a near-term, “Stage III”
project that will exploit cosmic shear measurements to
derive constraints on dark energy parameters. We model
DES by taking a fractional sky coverage of fsky = 0.12,

corresponding to approximately 5000 deg.2, and a total
surface density of imaged galaxies of NA = 15 arcmin−2.
This choice is optimistic, but it is a conservative assump-
tion for our purposes as smaller statistical error bars set
a more stringent requirement for the mitigation of sys-
tematic errors. We take the DES redshift distribution
of source galaxies from the DES Blind Cosmology Chal-
lenge (BCC) simulation. The DES BCC simulation com-
prises 5000 square degrees of simulated shear maps and

3 http://darkenergysurvey.org

http://darkenergysurvey.org
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is tuned to match the expected observational character-
istics of the DES mission. We divide the source galaxies
into Nz = 5 redshift bins such that 20% of the total num-
ber of observed galaxies are placed in each bin, this gives
Nobs = 15 distinct convergence spectra. Binning more
finely in redshift does not alter our results, in accord
with prior studies [10, 30]. Throughout the remainder of
this paper, we will refer to results based on these survey
specifications by the name “DES.”

In addition to DES, we will estimate the potential in-
fluences of baryonic physics on dark energy constraints
from long-term future experiments, categorized as “Stage
IV” experiments in the report of the Dark Energy Task
Force [28]. Examples of potential Stage IV experiments
that will explore cosmological constraints from weak
gravitational lensing are the Large Synoptic Survey Tele-
scope (LSST, Ref. [31])4 or the European Space Agency’s
Euclid5 project [32]. We characterize these experiments
by a fractional sky coverage of fsky = 0.5 and a number

density of source galaxies ofNA = 30 arcmin−2 6. Again,
these choices are optimistic, but they maximize the rel-
ative importance of the systematics we aim to militate
against, so they are conservative choices for our purposes.
We model the redshift distribution of source galaxies in
these long-term surveys as dn/dz ∝ z2 exp(−(z/z0)

1.2),
with z0 ≃ 0.34 to give a median redshift zmedian = 1.
This choice is based on the approximate, observed dis-
tribution of high-redshift galaxies [33]. As with DES, we
place the source galaxies into Nz = 5 redshift bins so
that the 20% of the galaxies fall into each bin. We refer
to results with these specifications as “Stage IV” results.

We consider cosmologies defined by seven parameters,
three of which describe the dark energy. The parameters
that describe the dark energy are the contemporary dark
energy density in units of the critical density, ΩDE, and
the two parameters w0 and wa that specify a dark energy
equation of state that varies linearly with scale factor,
w(a) = w0+wa(1−a). The parameters of our fiducial cos-
mology are fixed to match the cosmological parameters
assumed in the OWLS simulation program [26]. The pa-
rameters specified in the OWLS program are the matter
density, ωM = 0.1268, the baryon density, ωB = 0.0223,
the scalar spectral index, ns = 0.951, the amplitude of
curvature fluctuations on a scale of k = 0.05Mpc−1,
∆2

R = 1.9 × 10−9 (we actually vary ln∆2
R about this

value), ΩDE = 0.762, w0 = −1, and wa = 0. These pa-
rameter values imply that the root-mean-square matter
density fluctuation on a scale of 8 h−1 Mpc is σ8 = 0.74.
We include prior constraints on these parameters that re-
flect expected limits from the Planck cosmic microwave
background anisotropy measurements in all of our calcu-

4 http://www.lsst.org
5 http://sci.esa.int/euclid
6 The sky coverage of Euclid will likely be closer to fsky ≈ 1/3
[32].

lations. The Planck prior matrix that we use was com-
puted in Ref. [34]. In addition to these seven cosmo-
logical parameters, we introduce three other parameters,
described in § IV, that account for baryonic effects.

C. Methodology

In principle, we propose to assess the effectiveness of
the mitigation approach proposed in Ref. [21] using the
following steps.

1. Take the lensing spectra predicted by one of the
OWLS simulations as mock data.

2. Fit the mock data to a model by varying 7 cos-
mological parameters and determine the statistical
errors on the cosmological parameters. This model
does not include the effects of baryons.

3. Determine the raw bias as the difference between
the resulting best-fit dark energy parameters and
the “true” input parameters used to generate the
OWLS simulations.

4. Fit the mock data again to a model with those same
7 cosmological parameters as well as 3 additional
parameters that account for baryonic effects.

5. Determine the residual bias as the difference be-
tween this second fit and the “true” values of the
dark energy parameters used in the OWLS simula-
tions.

6. Compare the size of the error bars in both cases to
see the amount by which the errors are inflated as
a result of the new degrees of freedom.

7. Repeat for each of the OWLS simulations to arrive
at nine distinct assessments.

In practice, going through this entire process for all the
cases of interest would be extremely time consuming, be-
cause fitting for the cosmological and concentration pa-
rameters in the multi-dimensional parameter space that
we explore is a computationally-expensive task. Instead,
we proceed using an approximation, based on both di-
rect fitting for model parameters and Fisher matrix (de-
scribed below) estimates for the statistical and system-
atic errors in model parameters. However, it is important
to stress that we are assessing the residual bias that will
ensue if analysts follow the mitigation strategy proposed
in Ref. [21] on upcoming data sets.

In order to limit computational effort, we use the
Fisher information matrix to assess the constraining
power of these Nobs observable spectra. We assume that
the spectra are independent, Gaussian random variables

http://www.lsst.org
http://sci.esa.int/euclid
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at each multipole, so that the Fisher matrix may be writ-
ten as

FAB = F
P
AB

+

ℓmax
∑

ℓ=ℓmin

(2ℓ+ 1)fsky

Nz
∑

i=1

Nz
∑

j=i

Nz
∑

k=1

Nz
∑

l=k

×
∂P ij

κ (ℓ)

∂pA
C
−1[P ij

κ (ℓ), P
kl
κ (ℓ)]

∂P kl
κ

∂pB
. (5)

The matrix F
P
AB represents the prior constraints on the

cosmological parameters, pA are the parameters of the
model, and C

−1[P ij
κ , P

kl
κ ] is the inverse of the covariance

matrix between observables. The upper-case Latin in-
dices signify model parameters. The parameter fsky spec-
ifies the fraction of sky observed in the survey, and the
sum runs over multipoles from ℓmin to ℓmax. We take

ℓmin = 2f
−1/2
sky ; however all of the constraints we con-

sider are dominated by multipoles significantly higher
than ℓmin so that this choice is inconsequential. We
take ℓmax = 5000 throughout most of our study so as
to remain in a regime in which a number of simplifying
assumptions are approximately valid (e.g., Refs. [29, 35–
39]), but we explore other choices of maximum multipole.
Including such high multipoles in our analysis may well
be overly optimistic. However, using higher multipoles
(smaller scales) in the cosmological analysis results in
greater constraining power, so it is interesting to deter-
mine the utility of our mitigation scheme out to relatively
high multipoles. The Fisher matrix approximates the co-
variance among model parameters at the maximum of the
likelihood, so that the error in the estimate of the Ath pa-

rameter can be approximated as σ(pA) =
√

F
−1
AA, after

marginalizing over the remaining parameters.
The Fisher matrix formalism provides a straightfor-

ward estimate of parameter biases due to undiagnosed,
systematic offsets in observables. Let ∆P ij

κ represent the
difference between the true observable and the observable
perturbed due to some systematic effect. A Taylor ex-
pansion about the maximum likelihood gives an estimate
of the systematic error contribution to model parameter
pA due to the systematic offsets in observables [40]:

b(pA) =
∑

B

F
−1
AB

∑

ℓ

(2ℓ+ 1)fsky

×
∑

i,j,k,l

∆P ij
κ C

−1[P ij
κ (ℓ), P

kl
κ (ℓ)]

∂P kl
κ

∂pB
. (6)

The sums over observable (lower-case Latin) indices in
Eq. (6) have the same form as those in Eq. (5), though
we have written them as a single sum for brevity.
The practical strategy that we implement in an effort

to limit computational expense is a modification to the
ideal strategy that we would, in principle, pursue as de-
scribe above. We repeal and replace Step 2 through Step

5 with the following steps.

2′. Determine the raw bias using the Fisher matrix re-
lation [Eq. (6)] with the systematic offsets in power
spectra given by the difference between the OWLS
baryonic simulation and the fiducial OWLS simu-
lation that treats dark matter only.

3′. Fit the 3 parameters of the concentration-mass re-
lation of halos to the OWLS convergence power
spectra within a fixed cosmological model. This re-
sults in a best-fit concentration-mass relation that
best describes the OWLS simulations within the
true underlying OWLS cosmological model.

4′. Compute the residual differences between the
predicted convergence spectra from the OWLS
simulations and those predicted by the best-fit
concentration-mass model with cosmological pa-
rameters fixed to the OWLS cosmological model.
These residual differences, ∆P ij

κ , will give rise to
systematic errors in inferred cosmological parame-
ters.

5′. Use the Fisher matrix formalism [particularly
Eq. (6)] to estimate the residual bias from ∆P ij

κ

after allowing for parametric freedom in the
concentration-mass relation. This level of bias will
not be removed by fitting for halo structure and
will remain in the error budget on cosmological pa-
rameters.

This strategy enables us to estimate the efficacy of the
baryonic physics mitigation proposal. Additionally, it
requires explicitly fitting for only the concentration-mass
relation (a 3-dimensional subspace of the full parame-
ter space), so that the computational effort required is
significantly less than would be required to fit for halo
structure and cosmology simultaneously. The merit of
this approach is that the fit allows us to assess the fi-
delity with which we can model lensing power spectra in-
cluding baryonic effects and it brings our fiducial model
closer to the true, underlying model prior to applying the
Fisher formalism in step 5′. This modified procedure in-
troduces a possible source of confusion. One might think
that our final statistical and systematic error estimates
do not include the covariance between cosmological and
concentration parameters. We emphasize that this is not
the case. The Fisher matrix formalism for computing
biases in model parameters accounts for the covariance
among all the model parameters. The limitation is the
standard caveat that the Fisher matrix is a first-order
approximation about the maximum likelihood.

III. SPECTRA FROM SIMULATIONS

We estimate the influence of baryonic processes on
weak lensing power spectra using the OverWhelmingly
Large Simulations (OWLS) [20, 26, 27]. The OWLS suite
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includes a set of ten simulations set within the same cos-
mological model that evolve from the same initial con-
ditions to redshift z = 0. One of these simulations, the
“DMONLY” simulation, treats the gravitational evolu-
tion of dissipationless dark matter only. This type of dis-
sipationless dark matter simulation is similar to the vast
majority of simulations that have been used to model the
observations of contemporary and future surveys. The
remaining nine simulations include the baryonic compo-
nent of the Universe along with various effective models
for baryonic gas cooling, star formation, and a number
of feedback processes. It is not feasible to simulate these
processes directly, so baryonic simulations rely on a vari-
ety of effective models for these processes. Effective mod-
els for baryonic processes remain quite uncertain and it
is not possible to produce a definitive prediction for the
influences of baryonic processes on observables, such as
convergence power spectra. The utility of a simulation
suite such as OWLS, is that it provides a range of dis-
tinct, but plausible predictions for observables so that
systematic errors induced by our ignorance of baryonic
physics can be estimated. An important advantage of the
test that we present here is that we are applying a mit-
igation strategy developed on the simulations of Rudd
et al. [18] to an independent set of simulations that were
performed using markedly different simulation strategies.
The details of the OWLS simulations have been given in
Refs. [26, 41–45], while the OWLS power spectra were
the subject of Ref. [27], to which we refer the reader
as these details are not of immediate importance in the
present paper. Follow up studies by McCarthy et al. [46]
and McCarthy et al. [47] suggest that the properties of
galaxies and hot gas in galaxy groups are modeled most
reliably in the “AGN” simulation, which includes strong
feedback from active galactic nuclei.

We regard each of the nine baryonic simulations sepa-
rately as a potential realization of the effects of baryons
on convergence power spectra. Accordingly, we treat the
convergence spectra from each of the OWLS baryonic
simulations as “observed” spectra that must be modeled
faithfully in order to extract reliable constraints. The aim
is to test whether a specific strategy to mitigate the in-
fluence of baryonic processes on dark energy constraints
can be applied to a variety of distinct predictions success-
fully. Success in this context means that the mitigation
procedure renders the biases in dark energy parameters
significantly smaller than the expected statistical errors.
If a single mitigation strategy were to achieve the req-
uisite reduction in dark energy parameter biases for all

plausible simulations, it would be a strong indication that
the mitigation strategy may be applied to observational
data to limit systematic errors on dark energy parameters
associated with the influences of baryons.

van Daalen et al. [27] used the OWLS simulations
to study the effects of baryonic physics on the matter
power spectrum. We use the 3D matter power spec-
tra, Pδ(k, z), provided in Ref. [27] for the OWLS sim-
ulations to estimate convergence power spectra using

Eq. (1). In practice, the tabulated matter power spectra
from Ref. [27] cannot be used directly to predict conver-
gence power spectra. Due to computational limitations,
the OWLS simulation volumes are relatively small (cu-
bic boxes L = 100 h−1Mpc on a side), and are subject to
significant sample variance and finite volume effects on
large scales. In order to overcome these drawbacks, we
utilize the OWLS Pδ(k, z) tables directly for wavenum-
bers k > 0.314 hMpc−1. The OWLS spectra are reliable
for k < 10 hMpc−1 [27], which is sufficient for our pur-
poses [10]. For wavenumbers k < 0.314, we use the halo
model as implemented in Ref. [21] to estimate the mat-
ter power spectrum. We multiply the halo model power
spectra by a correction factor that ensures that the two
spectra agree at k = 0.314 hMpc−1. In the OWLS simu-
lations, baryonic effects induce changes in power spectra
of . 1% on scales k . 0.314 hMpc−1. An important
caveat to our approach is that assume that the effects of
baryons on scales k . 0.3 hMpc−1 are insignificant.

Figure 2 shows the fractional differences between the
convergence power spectra predicted by the baryonic sim-
ulations compared to the DMONLY simulation. For sim-
plicity, we show only the power spectrum in our third
DES redshift bin, P 33

κ (0.5025 ≤ z < 0.6725 for our DES
model). The predictions for the other fourteen observ-
ables show similar features. Fig. 2 shows these residuals
in several distinct ways. The shaded band is the envelope
of the power spectrum residual constructed from all nine
of the baryonic simulations. The residual power spectra
from three specific simulations, namely AGN (bounding
the shaded region above), NOSN (bounding the shaded
region below for ℓ & 2000), and WDENS (intermediate),
are shown as solid lines.

As is evident in the AGN, NOSN, and WDENS
models, the deviations in the spectra predicted by
the baryonic simulations differ from the DMONLY
simulation in a way that is correlated from multipole
to multipole. Accordingly, the shaded bands in Fig. 2
represent the envelope of deviations, while an individual
spectrum will not range over the shaded area. To
represent the typical shapes of the baryonic simulation
spectra, we have performed the following exercise.
We have computed the covariance among the distinct
spectra of the baryonic simulations, C[P 33

κ (ℓ), P 33
κ (ℓ′)] =

N−1
∑N

i=1

(

P 33,i
κ (ℓ)−

〈

P 33
κ (ℓ)

〉) (

P 33,i
κ (ℓ′)−

〈

P 33
κ (ℓ′)

〉)

,
where i is an index designating the simulation, N = 9
is the number of baryonic simulations, and 〈P 33

κ (ℓ)〉
is the average of the spectra from all of the simula-
tions. We then diagonalized the covariance matrix,
C[P 33

κ (ℓ), P 33
κ (ℓ′)]. The eigenvectors of the covariance

matrix represent the principal modes of variation of the
power spectra and the eigenvalues represent the variance
accounted for by the corresponding eigenvectors. The
dashed lines in Fig. 2 are the two eigenvectors corre-
sponding to the first- and second-largest eigenvalues.
These principal modes account for over 90% of the
variance among the spectra and illustrate the correlated
manner in which the baryonic simulation spectra may
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FIG. 2: Convergence power spectrum residuals between
the DMONLY simulation and baryonic simulations (denoted
“BAR” in the vertical axis label). For simplicity, this fig-
ure shows only the residual for the auto power spectra in the
third tomographic bin (0.5025 ≤ z ≤ 0.6725), P 33

κ , assum-
ing a DES analysis. Fractional residuals of the other fourteen
observables display similar features. The shaded band cov-
ers the region spanned by the residuals of all of the OWLS
baryonic simulations. The three thick, solid lines show three
specific simulations that contribute to this band, namely, the
AGN (bounding the shaded region above), NOSN (bounding
the shaded region below for ℓ & 2000, and WDENS (interme-
diate) simulations. The residuals at different multipoles are
highly correlated. The dashed lines show the principal modes
of the residuals that have the highest (upper) and second-
highest (lower) variance. These modes account for over 90%
of the variance among the spectra and demonstrate the cor-
related manner in which baryons alter lensing power spectra.

differ from the DMONLY predictions.

IV. FITTING FOR BARYONIC EFFECTS WITH

HALO CONCENTRATIONS

Motivated by prior studies indicating that the largest
effect of baryons on convergence spectra on relevant
scales is a modification of halo structure [18, 21], we pur-
sue a mitigation strategy in which baryonic effects are
entirely encapsulated into changes in the internal mass
distributions within dark matter halos. It is certainly
not true that the only effect of baryons is to alter halo
structures. For example, the distribution of halo masses
changes slightly (e.g., Ref. [18, 48]), and baryonic effects
extend beyond halo virial radii (e.g., Ref. [18, 27]). Our

FIG. 3: Convergence power spectrum residuals between our
halo model fits to the spectra predicted by the baryonic sim-
ulations and the baryonic simulation predictions themselves.
The shaded band shows the envelope containing the fit residu-
als for all of the OWLS baryonic simulations, analogous to the
shaded band in Fig. 2. As in Fig. 2, the thick, solid lines show
examples of the fit residuals from specific cases, namely the
AGN (lowest at high multipole), NOSN NOZCOOL (highest
at high multipole, lowest at ℓ . 1000), and WDENS (interme-
diate) simulations. It is evident that the envelope containing
all residuals is comprised by different simulations over differ-
ent multipole ranges. The dashed lines show the two principle
modes of the residuals with the highest variance. These rep-
resent correlated failure modes of the fitting procedure. This
figure is to be compared to Fig. 2, but notice that the ranges
on the ordinal axes are considerably different in the two fig-
ures. The halo model fits typically reduce power spectrum
residuals by more than an order of magnitude.

goal is to determine the practical utility of such a model
in analyses of forthcoming data.
We assume that the average mass distributions within

dark matter halos can be described by the density profile
of Ref. [49] (NFW hereafter),

ρ(r) ∝
1

(cr/R200m)(1 + cr/R200m)2
. (7)

The parameter c is the halo concentration and the den-
sity profile is normalized by our definition of a halo as
a spherical object within which the mean density is 200
times the mean density of the universe, ρvir = 200ρM.
Therefore, halo mass and radius are related by m =
4πρvirR

3
200m/3, so that the profile can be normalized by

m = 4π
∫ R200m

0
ρ(r) r2 dr for a given mass and concen-

tration. Halo concentrations predicted by dissipation-
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TABLE I: Concentration parameters that best-fit the OWLS
simulation spectra. The best-fit values are given for the nor-
malization of the concentration relation c0, in units of the
normalization for the DMONLY simulation, the power-law
index specifying the mass dependence α, and the power-law
index of the redshift dependence, β. The values in this table
correspond to the specific case of DES with ℓmax = 5000. The
other cases were explore yield very similar best-fit concentra-
tions.

Simulation c0/c
DMONLY
0 α β

REF 1.13 0.20 0.83

WML4 1.14 0.18 0.91

NOSN 1.20 0.27 0.50

NOZCOOL 1.16 0.16 0.91

WDENS 0.96 0.20 1.39

WML1V848 1.09 0.22 1.33

DBLIMFV1618 0.89 0.24 1.23

NOSN NOZCOOL 1.41 0.40 1.44

AGN 0.34 0.79 2.06

less simulations of dark matter only have been stud-
ied extensively (recent examples are Refs. [24, 25, 50–
52]). The relationship between halo concentration, halo
mass, and redshift in the OWLS DMONLY simulation
can be adequately characterized by a power-law distri-
bution [27, 53, 54]7,

c(M, z) = c0

(

M

Mp

)−α

(1 + z)−β, (8)

with c0 = 7.5, α = 0.08, and β = 1, in broad agreement
with prior studies. The parameter Mp is a pivot mass,
which we take to be Mp = 8 × 1013 h−1M⊙. We choose
the pivot mass to be close to the halo mass that is most
well constrained by lensing spectra [21].

We describe modifications to halo structure through a
modified concentration relation, following Refs. [18, 21].
In particular, we allow the parameters c0, α, and β in
Eq. (8) to vary in order to describe convergence power
spectra within the baryonic OWLS simulations. We de-
termine the values that best capture the simulation re-
sults as follows. For each simulation, we produce a set

7 The fit values come from Ref. [53] after applying a correction to
change the pivot mass to Mp at z = 0. Ref. [53] explored a set of
simulations that differ slightly from the OWLS simulations that
we examine here. Ref. [54] and Ref. [27] confirm that the OWLS
DMONLY simulation has a very similar concentration-mass re-
lation, but do not provide detailed fits to the concentration-mass
relation as a function of redshift. For the purposes of the present
paper, this relation serves only to establish a baseline with re-
spect to which we model the remaining baryonic simulations.
Plausible alterations to the baseline model, given the results
quoted in Refs. [53, 54], cause only minor quantitative changes
to our subsequent results.

of Nz convergence power spectra. We fit the spectra by
minimizing

χ2 =

ℓmax
∑

ℓ=ℓmin

(2ℓ+ 1)fsky

×
∑

i,j,k,l

δP ij
κ (ℓ)C

−1[P ij
κ (ℓ), P

kl
κ (ℓ)] δP kl

κ (ℓ), (9)

where δP ij
κ (ℓ) is the difference between the model and the

simulation prediction, for the concentration parameters
c0, α, and β at fixed cosmology. This results in best-
fit values for the concentration parameters, and residual
differences between the best-fit modified concentration
models and the predicted spectra from the baryonic sim-
ulations. In this manner, we assess the ability of the
modified concentration model to describe the baryonic
simulations.
The implementation of our model for the effect of

modified concentrations on convergence power spectra
is based upon the halo model for Pδ(k, z). The de-
tails of the halo model implementation are described in
Ref. [21]. However, using the halo model to fit con-
vergence power spectra from the OWLS simulations in-
troduces a non-trivial complication. On large scales,
the halo model predictions for Pδ(k, z) are systemati-
cally offset from the OWLS simulation predictions be-
cause of the finite volumes of the simulations. To over-
come this, we proceed as follows. For each trial value of
the halo concentration parameters, we compute a mat-
ter power spectrum offset ∆Pδ,HM(k, z) between the fidu-
cial halo model with the standard values of c0, α, and
β and the halo model prediction with our trial values
of the concentration parameters. We then compute our
trial matter power spectrum, which we use to predict
convergence and compute χ2, by adding the offset de-
fined by the halo model to the DMONLY prediction,
Pδ,trial(k, z) = Pδ,DMONLY(k, z) +∆Pδ,HM(k, z). In other
words, we utilize the halo model to estimate a correction
to be applied to the DMONLY matter power spectra.
In this manner, the spectra are not offset systematically
with respect to each other on large scales. This strategy
mimics what would likely have to be done in any anal-
ysis of real data; the predictions of dissipationless dark
matter simulations would be established, but a correc-
tion would need to be applied to account for baryonic
effects. This is the same strategy suggested in Ref. [18]
and adopted by Ref. [20].
Figure 3 summarizes the results we obtained by fit-

ting concentrations to describe the baryonic OWLS sim-
ulations. The figure shows the difference between the
power spectra in the best-fit models with modified con-
centrations and the “true” baryonic simulations. This
is analogous to Fig. 2. As in Fig. 2, Fig. 3 shows only
residuals of the auto-correlation for sources in the third
DES photometric redshift bin, in the interest of clarity.
The most obvious feature of Fig. 3 is that the fit resid-
uals are nearly an order of magnitude smaller than the
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differences between the baryonic and DMONLY simula-
tions. The correlated structure of the fit residuals is also
shown in Fig. 3 by the two principal modes that account
for the majority of the variance in the spectra among the
baryonic OWLS simulations. The two modes depicted in
Fig. 3 account for nearly 97% of the variance among the
spectra in the third redshift bin.

The residuals in Fig. 3 represent the remaining sys-
tematic errors in the predictions of convergence power
spectra after accounting for baryonic effects using a sim-
ple, phenomenological model. These systematic offsets
will propagate into biases in the estimators of the cosmo-
logical parameters. We explore this in detail in the next
section.

The best-fit concentrations are given in Table I. The
concentrations of the dark matter halos in the OWLS
simulations have been presented in Duffy et al. [54]. The
concentrations we quote in Table I exhibit two important
deviations from the results quoted in Ref. [54]. First,
our fit to the AGN simulation results in significantly
lower concentrations. This could be because mass that
would be within the DMONLY virial radii of these halos
is moved outside of the virial radii in the AGN simula-
tion and the concentrations are driven to low values to
account for this effect. The OWLS collaboration has ar-
gued that the AGN simulation is the most realistic among
their suite, so a genuine discrepancy in this case could
have important implications for our method. Second,
our fits generally yield a stronger mass dependence than
the OWLS fits.

A comparison of between our concentration results is
not trivial for several reasons. Foremost among these,
Ref. [54] quote the effective concentrations of dark mat-
ter while lensing is sensitive to all matter. The concen-
trations that we quote are the effective concentrations of
all matter (baryonic as well as dark). Ref. [54] does pro-
vide non-parametric measures of total matter concentra-
tion; however these measures exhibit behavior different
from the NFW fits and it is unclear how they correspond
to the result of our fitting procedure. Additionally, the
lensing signal on the scales that we explore is sensitive
to mass redistribution on scales near halo virial radii and
insensitive to halo profiles on significantly smaller scales.
Therefore, it is not clear that our exercise should yield
the same concentrations as those derived from fitting pro-
files directly because the two procedures are not equally
sensitive to halo structure at all scales. Furthermore,
we have assumed power law relationships between halo
concentration, halo mass, and redshift. This can be jus-
tified by the fact that lensing is sensitive to a relatively
narrow range halo masses and redshifts [21], so that the
power-law indices that we recover may not correspond to
those derived from a fit to simulation results over a wide
range of masses and redshifts. As a results of these com-
plicating factors, we reserve a more detailed comparison
between our concentration parameters and those of the
simulations for future work.

V. COSMOLOGICAL CONSTRAINTS AND

RESIDUAL BIAS

In this section, we project the effects of baryons in
simulations onto cosmological parameters. We begin by
discussing our results in the context of the DES and con-
clude the section with a brief discussion of possible cos-
mological biases for stage IV experiments such as LSST
or Euclid.
It is useful to consider the baseline constraints on the

dark energy equation of state parameters. We consider
two cases that will prove useful in the following. The
first case corresponds to standard constraint projections
on the dark energy equation of state parameters assum-
ing that the nonlinear growth of structure is known per-
fectly. In the context of our analysis, this means that the
concentrations of halos are known perfectly and we re-
fer to these constraints as “Fixed-C” constraints accord-
ingly. As we are exploring a mitigation strategy in which
we fit for concentrations concurrently with cosmological
parameters, it is necessary to assess the degradation in
dark energy parameter constraints due to this additional
freedom. We refer to constraints derived from an analy-
sis in which concentrations are fit alongside cosmological
parameters as “Fit-C”.

A. Results for the Dark Energy Survey

Our baseline constraints for DES, as well as the degra-
dation in constraints when concentrations are fit along-
side cosmological parameters, are shown as a function of
the maximum multipole used in the analysis in Figure 4.
Fig. 4 contains four panels. The two panels on the left
show results for w0, while the two panels on the right
show results for wa. The top panels show the marginal-
ized constraints on the equation of state parameters as
a function of the maximum multipole used in the analy-
sis. The solid lines show the marginalized constraints in
the standard Fixed-C case, while the dashed lines show
constraints in the Fit-C case in which concentrations are
permitted to vary. The lower panels show the ratio of
the Fit-C constraints to the Fixed-C constraints at each
multipole, giving the factor by which introduction of the
additional nuisance parameters describing concentrations
degrades the constraints.
It is clear that constraints are degraded if the

concentration-mass relation of dark matter halos must
be allowed to vary. This degradation is mild (. 20%) if
the maximum multipole used in the cosmological analy-
sis is ℓmax . 3000, and increases to & 40% once scales
to ℓmax ≈ 5000 are included. The level of degradation
depicted in Fig. 4 is slightly larger than that estimated
in Ref. [21] for a DES-like experiment. We find that
this discrepancy is almost entirely due to the fact that
the source redshift distribution used in the present study
differs significantly from that assumed in Ref. [21]. In
particular, the redshift distribution that we assume con-
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FIG. 4: Constraints as a function of maximum multipole used to infer cosmological parameters. The left panels show results
for w0, while the right panels show results for wa. In the top panels, the solid lines show standard constraints assuming that
the power spectrum is known perfectly. The dashed lines show the constraints that may be realized if the halo concentration-
mass relation must be fit simultaneously with cosmological parameters. The bottom panels show the ratio of the constraints
realized when concentrations must be fit, σFit−C to the constraints realized in the standard scenario, σFixed−C. Constraints are
significantly degraded beyond ℓmax ∼ 3000 when the concentration-mass relation is permitted to vary. Constraints on w0 and
wa show the same qualitative features.

centrates source galaxies at significantly lower redshift,
resulting in relatively lower lensing power compared to
noise and reducing the lever arm to high redshift sources.

To determine the impact of this mitigation scheme
on the dark energy program of a particular experiment,
such as DES, the degradation in cosmological param-
eters caused by fitting for the concentrations of halos
must be compared to the biases in these parameters that
may be realized if baryonic effects are neglected. We
compute these biases by using the residuals between the
DMONLY and baryonic simulations as the systematic
offsets in Eq. (6). An example of these offsets is depicted
in Fig. 2.

The maximal biases that are induced by neglecting

baryonic effects in our analysis of the OWLS simulations
are shown as the outer (blue) bands in Fig. 5 (for w0)
and Fig. 6 (for wa). In particular, the outer (blue) bands
delineate the extremal biases (maximum and minimum
as the biases may be positive or negative) induced by an-
alyzing any of the OWLS simulations without account-
ing for baryonic effects. The outer bands in Fig. 5 and
Fig. 6 represent the envelope of the bias from all simu-
lations, while for any individual simulation, the bias is a
smooth function of maximum multipole. The features in
the bands in Fig. 5 and Fig. 6 arise when the particular
simulation that gives rise to the extremal bias changes
from one multipole to the next.

The biases induced by neglecting baryonic effects in
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FIG. 5: Biases induced in the dark energy equation of state
parameter w0 as a function of the maximum multipole used
to infer cosmological parameters. The bias is shown in units
of the statistical error on w0 in order to make the relative
importance of the systematic error induced by baryons ex-
plicit. The outer shaded (blue) band covers the range of biases
spanned by computing the biases induced by analyzing all of
the OWLS baryonic simulations without any model for bary-
onic effects. The inner shaded (orange) band shows the range
of biases induced by after taking the best-fit concentration
model to describe baryonic effects in the OWLS simulations.

Fig. 5 and Fig. 6 are as large as ∼ 3σ for w0 and wa

if the analysis include multipoles out to ℓmax ≈ 3000.
Including multipoles out to ℓmax ≈ 5000 drives the max-
imal potential bias to ∼ 6σ. These bias levels have a
clear significance for the effort to understand dark en-
ergy. However, we remind the reader that we have used
the Fisher matrix approximation to estimate the biases
on cosmological parameters. A necessary caveat to our
results is that Eq. (6) is the lowest-order approximation
to the bias in the limit of small parameter biases and
may not provide an accurate bias estimate for large bi-
ases. Nevertheless, the statement that the biases are sig-
nificant (& 1σ) in this case is robust.

The inner (orange) bands in Fig. 5 and Fig. 6 de-
lineate the extremal range of dark energy equation of
state parameter biases realized after fitting for the halo
concentration-mass relation in the baryonic simulations
and using the fit to correct the power spectra as described
in § IV. Specifically, we compute these biases by utiliz-
ing the residuals between the corrected DMONLY spec-
tra and the baryonic simulations, an example of which is
shown in Fig. 3, in Eq. (6). To make Fig. 5 and Fig. 6
show fair comparisons of the biases, the biases for the fit-

FIG. 6: Biases induced in the dark energy equation of state
parameter wa as a function of the maximum multipole used
to infer cosmological parameters. The bias is shown in units
of the statistical error on wa in order to make the relative
importance of the systematic error induced by baryons ex-
plicit. The outer shaded (blue) band covers the range of biases
spanned by computing the biases induced by analyzing all of
the OWLS baryonic simulations without any model for bary-
onic effects. The inner shaded (orange) band shows the range
of biases induced by after taking the best-fit concentration
model to describe baryonic effects in the OWLS simulations.

corrected cases are shown in units of the statistical error
in the case of fixed concentrations (“Fixed-C”). Showing
these biases in units of the statistical error in the case
of varying concentrations (“Fit-C”) would reduce their
magnitudes in Fig. 5 and Fig. 6.

Fitting for concentrations clearly leads to dramatic re-
ductions in parameter biases. Indeed, the biases are typi-
cally less than ∼ 10% of the statistical error at low multi-
poles and never exceed ∼ 50% (∼ 60%) of the statistical
error in w0 (wa) for ℓmax . 5000. This suggests that the
mitigation strategy of fitting for a halo concentration re-
lation alongside cosmological parameters will result in a
dark energy error budget that is preferable to neglecting
baryonic effects. At ℓmax ∼ 3000, fitting for concentra-
tion increases the statistical error in w0, for example, by
∼ 20% compared to the ideal case (Fig. 4), and reduces
the systematic error to ∼ 40% of the statistical error
(maximum). Taking a simple and conservative approach
of adding these two contributions, the resulting error on
w0 increases to ∼ 160% of the constraint in the ideal case.
This is to be compared to a potential systematic error in
the case where no mitigation for baryonic processes is
undertaken of as much as ∼ 350% of the statistical error.
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B. Stage IV Experiments

Having discussed the utility of the proposed mitigation
scheme of Zentner et al. [21] for DES, we briefly describe
analogous results for forthcoming, Stage IV dark energy
experiments such as LSST and Euclid. Figure 7 shows
cosmological constraints for a Stage IV dark energy ex-
periment, including the degradation in those constraints
incurred by fitting for the concentrations of halos concur-
rently with the cosmological parameters. Fig. 7 exhibits
two notable features compared to the analogous results
for DES (Fig. 4). First, the constraints from Stage IV ex-
periments are significantly more restrictive, though this
is an expected result (e.g., Ref. [28]). Second, Stage IV
experiments suffer from slightly greater degradation in
dark energy parameter constraints when fitting for halo
structure along with cosmological parameters. In partic-
ular, the degradation in dark energy parameters reaches
≈ 30% at a maximum multipole of ℓmax ≈ 3000 and
≈ 55% at ℓmax ≈ 5000.
The biases resulting from the analysis of STAGE IV

experiments are shown in Figure 8 (w0) and Fig. 9 (wa).
Notice that we present the results in a slightly differ-
ent way for STAGE IV experiments. In particular, four
of the OWLS simulations (“AGN”, “DBLIMFV1618”,
“WDENS”, and “WML1V848”) give significantly larger
biases than any of the other five simulations. Therefore,
we show the biases for these individually in the main
panels of Fig. 8 and Fig. 9. We show results for the re-
maining five simulations in the inset panels. In all cases,
the value of fitting concentrations to mitigate for bary-
onic effects in cosmological parameter analyses is appar-
ent. However, notice that the residual biases in the worst
cases can remain significant compared to the ideal sta-
tistical error even after fitting for the concentration-mass
relation. This indicates that a more accurate mitigation
scheme will be needed in order to reduce the theoretical
systematic associated with baryonic physics to the level
of the statistical errors expected of STAGE IV dark en-
ergy experiments.

VI. CONCLUSIONS

We have explored the viability of a strategy to miti-
gate the influence of baryonic effects on dark energy con-
straints from cosmological weak lensing. The strategy
entails fitting lensing data for both cosmological param-
eters and the concentration-mass relation of all matter in
halos simultaneously. We assessed this scheme by using
it to analyze power spectra predicted by a suite of cos-
mological simulations as though they were genuine data.
Specifically, we computed the resultant systematic and
statistical errors on dark energy parameters that would
be incurred by fitting such data according to this strat-
egy.
We find that introducing additional parameter freedom

to describe the concentration-mass relations of halos re-

duces the systematic errors on dark energy parameters
to marginally-acceptable levels in all cases. For a DES-
like analysis exploiting all multipoles ℓ ≤ 3000 (5000),
fitting for concentrations increases statistical errors by
. 25% (45%) (Fig. 4), but reduces the potential system-
atic error by a factor of as much as ∼ 7, to . 0.3σ (0.5σ),
in the worst case scenario (Fig. 5 and Fig. 6). The reduc-
tion in systematic error outweighs the increase in statis-
tical error suggesting that this mitigation scheme may be
a viable option for analyzing data of the quality expected
from DES.

For Stage IV experiments, such as the surveys to be un-
dertaken by the LSST or Euclid, the conclusion is some-
what less straightforward. What is clear is that some mit-
igation strategy for baryonic effects is necessary. System-
atic errors on w0 and wa incurred by fitting the OWLS
simulations with no model for baryonic processes can be
as large as several tens of the statistical error if all scales
ℓ . 5000 are included in the analysis (Fig. 8 and Fig. 9).
Of course, as we mentioned in the introductory section,
such large biases are not likely to be realized as the result
of any analysis. Rather, it is likely that the analysis team
will not find acceptable fits to the observables according
to a specific fit criterion. Nevertheless, it is apparent that
a model for possible baryonic effects will be necessary in
order to extract cosmological parameters reliably.

For Stage IV experiments, the strategy of fitting the
concentrations of halos in order to militate against large
biases in the inferred cosmological parameters, particu-
larly the dark energy equation of state parameters, is
relatively less effective. One complicating factor is that
the different OWLS simulations lead to more disparate
conclusions in this case. In the worst case, that of the
OWLS “AGN” simulation, the residual biases after fit-
ting for concentrations are ∼ 1.6σ, assuming all scales to
ℓmax = 5000 are included. It is necessary to restrict con-
sideration to multipoles ℓmax . 1100 in order to reduce
this bias to∼ 1σ. However, for six of the nine OWLS sim-
ulations that we have analyzed, the residual bias includ-
ing all scales to ℓmax = 5000 is . 0.5σ. The concomitant
cost of the additional parameters for the statistical errors
is . 55%. Fitting for an effective halo concentration-
mass relation does reduce biases in the dark energy equa-
tion of state parameters; however, in the most extreme
cases that we have analyzed, these biases remain signif-
icant compared to the statistical errors expected from
Stage IV experiments.

As pointed out by Zentner et al. [21], fitting for an
effective concentration-mass relation also yields informa-
tion that may help to constrain galaxy formation models.
In this case, the procedure gives constraints on the pa-
rameters of the concentration-mass relation at no addi-
tional cost. In the case of DES (Stage IV), the best-
constrained halos have masses M ∼ 8 × 1013 h−1M⊙

(M ∼ 6 × 1013 h−1M⊙) at redshift z ∼ 0.23 (z ∼ 0.31)
and constraints on the average concentrations of such ha-
los are σc/c ∼ 0.06 (σc/c ∼ 0.03). Such constraints may
prove useful in understanding the formation histories of



13

FIG. 7: Constraints as a function of maximum multipole used to infer cosmological parameters. The panels and lines are as in
Fig. 4, but pertain to a Stage IV dark energy experiment such as the Large Synoptic Survey Telescope or the European Space
Agency’s Euclid.

galaxies and galaxy clusters.

A handful of other recent studies have investigated
methods for marginalizing over uncertainty in power
spectra in deriving cosmological constraints from weak
lensing [10, 20, 55–57]. Refs. [10, 55, 56] explore signifi-
cantly more general parameterizations. However, they all
reach conclusions that are broadly consistent with ours
in that each finds self-calibration of uncertainty in the
nonlinear matter power spectrum a promising approach.
This broad agreement among different approaches likely
stems from the well-known fact that cosmological infor-
mation can be extracted from lensing data based only
upon geometrical considerations [58, 59]. Refs. [20, 57]
are most similar to ours. These authors explore a halo
model-based mitigation scheme in which gas and stars
are modeled separately from dark matter, similar to the
model proposed by Rudd et al. [18]. Semboloni et al. [20]
find that their simple model can significantly reduce dark

energy parameter biases for near term surveys, but that
improvement may be necessary in order to address Stage
IV dark energy experiments, a result in broad agreement
with ours. However, Semboloni et al. [20] did not use
their methods to model an independent set of simulations,
nor did they address the statistical cost of marginalizing
over additional parameters in their model.

In summation, our results suggest concentration fit-
ting as a useful and viable strategy with which to analyze
cosmological weak lensing power spectra from DES in or-
der to extract constraints on the dark energy equation of
state. Based on our analyses, Stage IV experiments may
remain vulnerable to significant biases in the inferred val-
ues of the dark energy parameters even after militating
against baryonic effects with concentration fitting. At
minimum, estimates for systematic errors such as those
presented here should be a component of the error bud-
gets of such experiments.
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FIG. 8: Biases induced in the dark energy equation of state
parameter w0 from the analysis of a STAGE IV dark energy
experiment as a function of the maximum multipole used to
infer cosmological parameters. For STAGE IV experiments,
four of the OWLS simulations lead to biases significantly
larger than the others and it is useful to emphasize this. In
the main panel, the biases that result from analyzing those
four simulations without any model to account for baryonic
effects. These biases are clearly very large. Each line is la-
beled by the name of the corresponding OWLS simulation in
the panel. The shaded (orange) band, shows the range of bi-
ases that result after taking the best-fit concentration model
to describe baryonic effects to analyze these same four simu-
lations. The biases here are significantly reduced, but remain
non-negligible (∼ 1σ). The inset panel shows results for the
remaining five OWLS simulations. In this case, the inner (or-
ange) and outer (blue) shaded bands are the same as in Fig. 5
for DES. In each of these cases, the mitigation procedure ren-
ders biases in the dark energy equation of state parameter w0

smaller than the statistical error.

Future work may be able to improve this situation. For
one, simulations such as the OWLS simulations make pre-
dictions for the properties of galaxies. It may be possible
to compare the properties of galaxies in order to deter-
mine which simulations are more likely to represent the
observed universe, and use this information to place pri-
ors on additional parameters in mitigation schemes (the
concentration parameters in our case, see Ref. [21]). The
OWLS collaboration has shown that the “AGN” simu-
lation describes the observed properties of galaxies most
successfully [27, 46], while our analysis of the “AGN” sim-
ulation for Stage IV experiments leaves a non-negligible
residual bias. An important and necessary aspect of fu-
ture efforts to address these issues with simulations will
be to develop lensing predictions from baryonic simula-

FIG. 9: Same as Fig. 8, but for the bias on wa from a Stage
IV experiment. Notice that the vertical axis is asymmetric
about zero.

tions in larger computational volumes. On another front,
it may be possible to develop more sophisticated models
for the influence of baryons on lensing power spectra that
can minimize biases in inferred cosmological parameters
without a significant cost in statistical errors. As the cos-
mological community learns from Stage III experiments
such as DES and prepares for the Stage IV experiments
of the coming decade, such efforts should be a high prior-
ity in order to maximize the scientific yields of the next
generation of dark energy experiments.
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