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quark mass ratios as low as 1/20. We use the Fermilab interpretation of the clover action for
heavy valence quarks and the asqtad action for light valence quarks. We compute the hadronic
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our results for |Vcb|.
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1. Introduction

The CKM matrix element |Vcb| plays a prominent role in tests of the Standard Model. It
normalizes the legs of the unitarity triangle. The dominant uncertainty in |Vcb| has come from
theoretical determinations of the decay rates for B→ c`ν + . . . . The purpose of this work is to
study the exclusive processes B→ D`ν and B→ D∗`ν in lattice gauge theory in order to reduce
the uncertainty in |Vcb| determined from these decays.

The Fermilab Lattice and MILC collaborations are completing a B- and D-physics program
based on fourteen large ensembles of gauge configurations, generated in the presence of (2+1)-
flavors of improved staggered (asqtad) sea quarks. The strange-quark mass ms is kept at approx-
imately its physical value and the degenerate light (up and down) quark mass m̂′ takes on values
from m̂′/ms = 0.05 to 0.4. The lattice spacings in these ensembles range from approximately 0.045
fm to 0.15 fm, as discussed in [1]. Clover (Fermilab) fermions are employed for the bottom and
charm quarks and staggered (asqtad) fermions, for the light valence quarks with masses set equal
to the sea quarks. Among the quantities calculated are the hadronic form factors for B→ D`ν at
nonzero recoil and for B→ D∗`ν at zero recoil

Our methodology for B→ D`ν has been outlined in previous conferences in this series [1],
and for B→ D∗`ν , we update our previously published results [3] with data from the same full set
of asqtad ensembles. For both decays, papers with details are in preparation [4, 5]. Here we focus
on details of the B→ D`ν analysis that have not been reported previously.

To avoid biases, the analysis described here was blind, following now common practice in
experimental high energy physics. The vector current renormalization constants were determined
by two members of the collaboration and reported to the rest of the collaboration, multiplied by a
common, secret blinding factor. Only after the value of |Vcb| was obtained was the blinding factor
revealed and removed. That is the value reported here.

2. Notation

We start by reviewing our notation. The differential decay rate for the exclusive process B→
D`ν is given by

dΓ

dw
(B→ D`ν) = |η̄EW|2

G2
F |V 2

cb|M5
B

48π3 (w2−1)3/2r3(1+ r)2G (w)2 . (2.1)

in the approximation that the masses of the leptons ` = e,µ,νe,νµ are much smaller than the B
and D mass difference MB−MD. The recoil parameter, w = v · v′, is the dot product of the four-
velocities of the B and D mesons, v = pB/MB and v′ = pD/MD, respectively, and r = MD/MB. The
factor |η̄EW|2 accounts for electroweak corrections. The hadronic form factor G (w) is proportional
to the vector form factor f+(w) = (1+ r)G (w)/(4r). That form factor is obtained from a tensor
decomposition of the hadronic vector-current matrix element for the transition,

〈D(pD)|V µ |B(pB)〉= f+(q2)

[
(pB + pD)

µ −M2
B−M2

D

q2 qµ

]
+ f0(q2)

M2
B−M2

D

q2 qµ , (2.2)

where the four-momentum transfer is q = pB− pD. Here V µ = b̄γµc is the b→ c vector current
and f+ and f0 are the vector and scalar form factors, respectively.
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Figure 1: Global fit of all data for the form factors h+ (left) and h− (right) vs w, the recoil parameter. The
simultaneous fit gives p = 0.53. The blue band shows the physical continuum prediction. In both plots the
symbol shapes distinguish the lattice spacing as indicated in the left legend and the colors distinguish sea
quark mass ratios, as indicated in the right legend. Errors are statistical only.

The alternative form factors h+ and h− are convenient for lattice simulations:

〈D(pD)|V µ |B(pB)〉√
MBMD

= h+(w)(v+ v′)µ +h−(w)(v− v′)µ , (2.3)

They are related to f+ and f0 through

f+(q2) =
1

2
√

r
[(1+ r)h+(w)− (1− r)h−(w)] ; f0(q2) =

√
r
[

w+1
1+ r

h+(w)−
w−1
1− r

h−(w)
]

(2.4)

Lattice calculations at zero recoil (w = 1) typically have the smallest errors. However, because
of the phase space suppression near zero recoil in B→ D`ν , evident from the factor (w2−1)3/2 in
Eq. (2.1), experimental errors are largest there. Thus, we aim to work at nonzero recoil where the
combined experimental and theoretical error is minimized.

3. Determination of the form factors

Using procedures outlined in previous reports [1], the hadronic form factors h+(w) and h−(w)
were determined from fits to appropriate three-point and two-point correlation functions. Some
w-dependent adjustment was necessary because the simulation values of the charm and bottom
quark masses (κb and κc) were slightly different from our final, preferred, tuned values of these
masses. Statistical errors with correlations were propagated through the entire calculation using a
single-elimination jackknife.

Results for all ensembles are plotted in Fig. 1. To extrapolate to the physical quark mass and
zero lattice spacing, we use the following fit Ansätze for the chiral/continuum extrapolation

h+(a, m̂′,w) = 1+
X+(Λχ)

m2
c
−ρ

2
+(w−1)+ k+(w−1)2 + c1,+xl + ca,+xa2 + ca,w,+xa2(w−1)+
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Table 1: Systematic error budget (in percent). The total error is obtained by adding the individual errors
in quadrature. Not explicitly shown because they are negligible are finite-volume effects, isospin-splitting
effects, and light-quark mass tuning.

source h+(%) h−(%)
κ-tuning adjustment ≤ 0.1 1.4
Lattice scale r1 0.2 ≤ 0.1
Heavy quark discretization 2.0 10.
ρ factor (current matching) 0.4 20.
Total systematic error 2.1 22.

+ ca,a,+x2
a2 + ca,m,+xlxa2 + c2,+x2

l +
g2

D∗Dπ

16π2 f 2 logs1−loop(Λχ ,w, m̂′,a) (3.1)

h−(a, m̂′,w) =
X−
mc
−ρ

2
−(w−1)+ k−(w−1)2 + c1,−xl + ca,−xa2 + ca,w,−xa2(w−1)

+ ca,a,−x2
a2 + ca,m,−xlxa2 + c2,−x2

l .

which depend on the light spectator quark mass xl = 2B0m̂′/(8π2 f 2
π ) in the notation of [2], lattice

spacing xa2 = [a/(4π fπr2
1)]

2, and w = v ·v′. The chiral “logs” term comes from a staggered fermion
version of the one-loop continuum result of Chow and Wise [6] that includes taste-breaking dis-
cretization effects [7]. We supplement the next-to-next-leading order (NNLO) heavy-light meson
staggered χPT expression with terms analytic in (w−1) to enable an interpolation in w at nonzero
recoil. The fit at NLO is already satisfactory (p = 0.27). The analytic NNLO terms are then added
with priors 0±1 so the final statistical error contains the error of truncation.

The several sources of systematic error in the lattice determination of h+ and h− are listed in
Table 1 together with estimates of their contributions. Data were adjusted to our best tuned κs,
based on a calculation on one ensemble that varied them. The error listed reflects the uncertainty
in the adjustment. We used r1 = 0.3117(22) fm. The uncertainty in this value is systematic. The
heavy-quark error in h+ is estimated from heavy quark effective theory with O(αs(Λ/2mQ)

2), and
in h−, with O(αsΛ/2mQ). The current renormalization factor ρV4 is known to one loop. The error
shown comes from our estimate of the omitted higher order terms. The corresponding ρV1 is not
known. We assume, very conservatively, that it differs from unity by at most 20%. Because h− is
about one tenth the size of h+, this choice does not impair the overall precision.

These errors are applied to the result of the chiral/continuum extrapolation in quadrature with
the statistical error. The thus-combined errors in h+ and h− propagate to f+ and f0 according to
the linear transformation Eq. (2.4). For a more complete discussion, see [4].

To compare the lattice and experimental form factors we need to interpolate/extrapolate to a
larger w range. We do this using the z-expansion of Boyd, Grinstein and Lebed [8], which provides
a model-independent parameterization of the q2 dependence of f+ and f0. This expansion builds
in constraints from analyticity and unitarity. It is based on the conformal map

z(w) =
√

1+w−
√

2
√

1+w+
√

2
, (3.2)
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Figure 2: Left: form factors f+ and f0 parameterized by the z expansion to cubic order (p = 0.12). Right:
combined fit result with experimental results from the Babar collaboration [11] (p = 0.3). The plotted
experimental points have been divided by our best fit value of η̄EW |Vcb| and converted to f+.

which for B→ D`ν maps the physical region w ∈ [1,1.59] to z ∈ [0,0.0644]. It pushes poles and
branch cuts far away at |z| ≈ 1. Form factors are then parameterized as

fi(z) =
1

Pi(z)φi(z)

N

∑
n=0

ai,nzn , (3.3)

where N is the truncation order, Pi(z) are the Blaschke factors and φi are the “outer functions”. The
latter are chosen to simplify the unitarity bound: ∑n |ai,n|2 ≤ 1. The constraint on the sum of the
coefficients, combined with the small range of z, imply that we need only the first few coefficients
in the expansion. We also impose the kinematic constraint f+ = f0 at q2 = 0 or z≈ 0.0644.

To implement the z expansion, we start from the results for f+ and f0 at the continuum physical
point, as determined from the chiral/continuum fit. We choose three w values, w = 1.00, 1.08, and
1.16, and fit the corresponding form factor data to determine the coefficients ai, j. These, then, are
used to parameterize the form factors over the full kinematic range, as shown in the left panel of
Fig. 2. We tested the truncation of the z-expansion by adding higher terms with priors set to 0±1
and found the results were already stable at N = 2. We quote results for N = 3 so that the fit error
incorporates the systematic error of truncation. Details of the fit result, including parameters and
correlations will be presented in the forthcoming paper [4].

When fitting to the experimental data it is necessary to take into account electroweak effects
still present in the experimental values, but not included in the lattice calculation. These include a
Sirlin factor ηEW = 1.00662 for the Wγ and WZ box diagrams [9] and a further Coulomb correc-
tion for final state interactions in B0 decays. BaBar reports that 37% of the decays were B0s, which
results in a QED correction factor in the amplitude of 1+0.37α/(2π). We have assigned an uncer-
tainty of ±0.005 to this correction to account for omitted electromagnetic effects at intermedicate
distances. The net factor is, then, η̄EW = 1.011(5). (We use a bar to denote the EW/QED correction
of a sample of neutral and charged Bs.) We prefer to use G (w) to denote the purely hadronic form
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factor, so in our notation η̄EW |Vcb|G (w) corresponds to the quantity often reported as |Vcb|G (w),
and the ratio of experimental to theoretical values must be divided by η̄EW to get |Vcb|.

The joint fit to our theoretical data and the experimental data from the BaBar collaboration [11]
is shown in Fig. 2. The errors here include statistical and systematic errors, combined in quadrature.
For the experimental systematic error we assumed, for want of more accurate information, that the
quoted percentage value at small w is appropriate over the entire fit range [10].

4. Results and discussion

Our best fit value for |Vcb| from the exclusive process B→ D`ν at nonzero recoil is

|Vcb|= 0.0385(19)exp+lat(2)QED . (4.1)

This value includes the full electroweak/QED correction. The first error combines statistical and
systematic errors from both experiment and theory. The second error reflects the uncertainty in
the Coulomb correction. To get a sense of the relative importance of the various systematic errors,
we repeated the fit with only statistical errors from both theory and experiment with the result
0.0388(11)(2). With all errors, except the theoretical systematic errors, the result is 0.0383(17)(2).
With all errors, except the experimental systematic errors, it is 0.0388(14)(2). Thus we conclude
that the experimental systematic error contributes more to the resulting error than the theoretical
one.

To quantify the improvement due to working at nonzero recoil, we also use the standard
method for extracting |Vcb| based on extrapolating the experimental data to zero recoil and compar-
ing with the theoretical form factor at this point. If we use the BaBar collaboration result from the
same BaBar data as in the nonzero recoil analysis, namely, η̄EW |Vcb|G (1) = 0.0430(19)stat(14)sys

[11], and our extrapolated value G (1) = 1.081(25), we obtain |Vcb|= 0.0393(22)exp+lat(2)QED. So
although the result is consistent with our nonzero recoil determination, the error is 25% larger.

A still better approach would be to fit the lattice results together with a world average of the
measured values of η̄EW |Vcb|G (w) as a function of recoil parameter w (suitably binned), rather than
with data from a single experiment, as we have done. To our knowledge, such a compilation has
not been done [12], but it would be welcome.

In our companion study of B→ D∗lν at zero recoil, [5] we obtain F (1) = 0.906(4)stat(12)sys

for the hadronic form factor. Here, in keeping with our new convention for B→ D`ν we reserve
the notation F (1) for the purely hadronic form factor. The values in the HFAG world average
reported in their notation as |Vcb|F (1) are, in ours, η̄EW |Vcb|F (1) [12]. Because of the different
proportion of neutral B decays in this average, we use η̄EW = 1.015. The result is

|Vcb|= 0.0390(5)exp(5)lat(2)QED . (4.2)

A recent analysis of inclusive decays quotes |Vcb| = 0.0424(9)exp+thy [13]. It disagrees at 1.8σ

from ours for the exclusive D final state and by nearly 3σ from our more precise result from the
exclusive D∗ final state.

The error in our determination of |Vcb| from B→ D`ν could be improved by repeating the
analysis with a world average of experimental form factors, suitably binned in w, and by improving
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our understanding of the experimental systematic error at larger w. Improvements in lattice results
will come from future studies with still better actions, better statistics, smaller lattice spacing, and
ensembles with physical light quark masses that eliminate the need for a chiral extrapolation.
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