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Abstract: The Pierre Auger Observatory is the world’s largest cosmic ray observatory. Our current exposure
reaches nearly 40,000 km? str and provides us with an unprecedented quality data set. The performance and
stability of the detectors and their enhancements are described. Data analyses have led to a number of major
breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies.
We present analyses of our Xy,x data and show how it can be interpreted in terms of mass composition. We
also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A
coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray
composition and the properties of UHECR sources are briefly discussed.
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1 The Pierre Auger Observatory

The Pierre Auger Collaboration is composed of more than
500 members from 19 different countries. The observa-
tory [1]], the world’s largest, is located in the southern part
of the province of Mendoza in Argentina. It is dedicated to
the studies of Ultra High Energy Cosmic Rays (UHECR)
from a fraction of Ee\%ﬂ to the highest energies ever ob-
served at several hundreds of EeV. The Observatory com-
prises several instruments working in symbiosis :

e A surface detector array (SD) of 1600 water
Cherenkov detectors (WCD) arranged on a regular
triangular grid of 1500 m and covering 3000 km? [2]].

e 4 sites with fluorescence detector (FD) (each site
contains 6 telescopes for a total of 180° azimuth by
30° zenith field of view) [3].

e A subarray, the Infill, with 71 water Cherenkov de-
tectors on a denser grid of 750 m covering nearly 30
km? [4]. This subarray is part of the AMIGA exten-
sion that will also have buried muon counters at each
71 WCD locations (7 are in place [30]]).

e 3 High Elevation Auger Telescopes (HEAT) located
at one of the fluorescence site [S)] dedicated to the
fluorescence observation of lower energy showers.

e A subarray of 124 radio sensors (AERA, Auger
Engineering Radio Array) working in the MHz range
and covering 6km? [6]].

e A sub Array of 61 radio sensors (EASIER, Extensive
Air Shower Identification with Electron Radiometer)
working in the GHz range and covering 100km? [7]].

e Two GHz imaging radio telescope AMBER [§]] and
MIDAS [9] with respectively 14°x14° and 10°x20°
field of views.

The three last items are R&D on the detection of extensive
air showers using the radio emission of the EM cascade in
the atmosphere.
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Changes in FD energies at 10'8 eV
Absolute fluorescence yield -8.2%
New optical efficiency 4.3%
Calibr. database update 3.5%
Sub total (FD calibration) 7.8%
Likelihood fit of the profile 2.2%
Folding with the point spread function | 9.4%
Sub total (FD profile reconstruction ) | 11.6%
New invisible energy 4.4%
Total 15.6%
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To characterize the spectral features we describe the data
with a power law below the ankle J(E) o< E~" and a power
law with smooth suppression above:
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Figure 4: The combined Auger energy spectrum compared
to spectra from different astrophysical scenarios.

flying light source (the Octocopter now also jointly used at
TA [41]]), the changes in the reconstruction of the shower
longitudinal profile, the better understanding of the tele-
scope point spread function and accurate simulation of the
optics through detailed ray-tracing [[13]], the improvements
in the analyses and in particular in the estimation of the
missing energy [12]. A summary of the changes at a ref-
erence energy of 1 EeV is given in table[2] amounting to
+15.6%. There is an small energy dependence associated
with some of those corrections and the global shift becomes
+11.3% at 10 EeV.

These extensive studies also have allowed better control
of the uncertainties associated with each of those correc-
tions. While our overall systematic uncertainty was 22% at
the 32nd ICRC in Beijing (China, 2011), it is now reduced
to 14%.

2 Spectrum

After energy calibration the exposure for each data set
(hybrid, Infill, SD vertical and SD horizontal) is carefully
evaluated on the basis of our precise monitoring systems.
The corresponding spectra are shown in Fig.

Those spectra are combined to form the Auger spectrum
as shown in figure 4] The combination process relies upon
a maximum likelihood method that allows for a normal-
ization adjustment between the various spectra [16]. The
corrections, which are well within the normalization uncer-
tainty of the individual spectra, amount to -6%, +2%, -1%
and +4% respectively. The total number of events compris-
ing the spectrum shown in figure [d]is about 130,000.

This unprecedented statistical accuracy allows clear
identification of two features in the energy spectrum, the
Ankle and a cut-off at the highest energy. At the Ankle
the spectral index changes from -3.2340.07 to -2.63+0.04
at a break point energy of 5 EeV. Above 20 EeV the
spectrum starts to deviate from a simple power law and a
flux suppression (a cut-off) is observed. At E5pq, = 40 EeV
the observed spectrum is half of what is expected from
the extrapolation of the power law observed just above
the Ankle. When compared to a simple continuation of a
power-law, the significance of the cut-off is more than 20
sigma, however its origin, as that of the Ankle is yet to be
determined.
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Figure 5: Evolution of (Xmax) and o, as a function of energy. Measurements are from the hybrid data set of Auger.

(119D).

These features can originate from interactions of the
cosmic rays with the intergalactic radiation field (mainly
the CMB) during their transport from their sources to
the Earth. This is the case for example of the eTe™ pair
or pion production (GZK) from protons off the CMB
photons for the Ankle and the cut-off respectively or of
the photo-disintegration of nuclei. Such features also can
originate from the sources spatial distributions and/or their
acceleration characteristics, in this case the Ankle could
sign the transition from a Galactic dominated cosmic ray
sky to an extra-galactic dominated one while the cut-off
would directly reflect the maximum energy reachable by
the sources themselves. Various scenarios have been put
forward, combining these possible origins in various ways
(see e.g. [45] for an overview).

The models shown in figure [4] assume either a pure
proton or pure iron composition. The fluxes result from
different assumptions of the spectral index 8 of the source
injection spectrum and the source cosmological evolution
parameter m. The maximum energy of the source was set
in these particular examples to 100 EeV and 300 EeV, the
former describing better the data in the cut-off region. The
model lines have been calculated using CRPropa [47]] and
validated with SimProp [48]].

Despite its high statistical accuracy, the energy spectrum
alone is not sufficient to distinguish between the various
scenarios. There are simply too many unknowns (source
distributions and evolution, acceleration characteristics,
cosmic ray mass composition). Other observables such as
anisotropies and mass composition parameters will have to
be combined to disentangle the situation.

3 Mass composition

The hybrid nature of the Auger observatory allows for a
very precise measurement of the shower longitudinal profile
on a subset of less than 10% of the events (the hybrid data
set). The combination of the FD and SD allows for a precise
determination of the shower geometry which in turn allows
measurement of the position of the maximum shower size
(Xmax) With an accuracy of better than 20 g/ cm?.

The updated (but preliminary) results regarding the
evolution with energy of the two first moments of the
Xmax distributions are shown in Fig. E} When compared

to the model lines, the data clearly indicate a change of
behavior at a few EeV, i.e. in the Ankle region.

While predictions of different models may not be an ac-
curate representation of nature for the absolute values of
(Xmax ), hence making it difficult to convert with confidence
this data into mass values, they have similar predictions
(within 20 g/cm? for (Ximax) and 10 g/cm? for oy, ) for
those parameters. In particular, all models predict that for
a constant composition the elongation rate (slope of the
(Xmax) evolution) and o'y, are also constant as a function
of energy. This is at clear variance from the measurements
themselves. Hence, under the hypothesis that no new inter-
action phenomena in the air shower development come into
play in that energy range, the data clearly support that the
composition evolves in the Ankle region.

While subject to the belief that current interaction mod-
els do represent reality, it is possible to convert the mea-
sured data into the first two moments of the InA distribution
at the top of the atmosphere [52]]. This is shown in Fig. [6]us-
ing several hadronic interaction models [49} 50, 51]. From
this conversion it is possible to interpret the aforementioned
evolution as a change from light to medium light compo-
sition with a minimum in the average InA just before the
Ankle, i.e. between 2 and 3 EeV. Looking at the G2 nA plot,
one can also argue that the evolution is slow in terms of
masses (G2 jna stays below 2 in the whole range indicating
that the mix is between nearby masses rather than between
proton and iron We also observed that for some model
the central predicted variance of InA is negative but this is
not the case within our systematic uncertainties.

4 Hadronic Interactions

We have performed several analyses to extract a muon
size parameter from the hybrid or SD data sets. These
analyses [20} 21} 22, [23]] all indicate that current hadronic
interaction models predict muon sizes that are smaller
(by at least 20%) than observed in the data, unless one
assumes that the data is composed of pure iron which is
in contradiction, according to the same models, with the
observed X.x distributions.

2. (InA) is O for pure proton and 4 for pure iron while 62 1pa is 0
for pure composition and 4 for a 50:50 p/Fe mix.
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Figure 6: Conversion to (inA) and 62,4 using various hadronic interaction models, The red bands indicate the systematic

uncertainties.([19]).

In [23] we have selected all showers (41 1) m@as»ur@d in
hybrid mode with an energy between 10°8 and 10'2 EeV.
For cach of those showers, we have generated Monte Carlo
events with similar energies selecting those which also
matched the measured longitudinal profile. Then, for those
matching events, the predicted lateral distribution of the
signal has been compared to the data recorded by the SD.

The Monte Carlo predictions have been found to be sys-
tematically below the observed signals, regardless of the
hadronic model being used. To match the lateral distribu-
tions we introduced-twooppananategsstitut hoxe heem adjusted
to the data. These parameters are Rg which acts as a rescal-
ing of the shower energy, and R,, which acts as a muon size
rescaling factor. The values that best reproduce the data
are shown imHiig [7] fiar 2 sett off protom showers only and
for a set showers from a mixed composition sample whose
global X;,,,x distribution matches that of the data.

In all casesthieRR, ressaliigd dawipisi dabege thimwenandi-
duatatng dedidficin itheherpdectiononw hithiforf & RE i1t ¢owpat-
plakebba tvithf drfibiethei nedksel satchnthalfor fitie therpypopooteet
tmtthom yntyi thith th¢hey systantitio noetthitite  (maantyycnipg-
matiimg flomm owr absolute energy scale). Independent analy-
ses using inclined showers or relying on the distinct signal
shape left by muons in the WCD also point to a deficit of
muons in the simulations [21),122].

In another study, based purely on the SD data we have
reconstructed the muom production depth profile (MPD,
120]) From this profile it is possible to extract the depth of
mammum production of the muons that reach the ground
(X,,W ) which is also a mass indicator as it is linked to the
longitudinal evolution of the EAS in the atmosphere.

An interesting aspect of this stady is that it gives us a
second observable, similar 10 Xmayx, that can be converted
into (InA). It is therefore tempting to convert both our

Ximax and Xy, data into (InA) using the same interaction
model. The result of such conversion is shown ¢n Fig.
for two models. In the first case, with EPOS-LHC, the
two observables convert into an incompatible mass value.
According tto thbentoddehurhtherf5 B} hithis linkédkedtlie
Beetdettprespuesdotatid thefthiliapidipyd gap Wisvibofipp
nltdhections Inktasiped) aOthe WHE, THECR seplUHECR
athiisipheire anmosphepecattisionphpcal lisisi-But aolbasons
HKinovHigharsnifissstshibheobresesd Thparbt el ryxhiateon
contichdhetiosi oapilyl podntsanpdilpotinectiditstivetbéfentslef
il Insicles ol atmios fheatnibsphreppcitrtatipne frotat the
fenondersedehn QGSdet] IJESIecihObe searhe biet thabet se
that wpidibe gapidistrgaptibstdimti dhdrordbk imind ploisrar
peoremegtegitie tew it hiafa HW hd ket an@/dd tm oheocahnde
oonitladg alityhef qualign ofiadglvieomdde] piotnal dnis, phos
aluilysithsh ewaltsi s sleosss dhd ineepestcant HEIBGRed avd
HBaRraliathighconsteain dteghatimrgnodtdsaction models.

S Anisotropies
The Auger collaboration has also performed extended anal-
yses of the UHECR arrival direction distributions in several
energy ranges and different angular scales [24, 25, 26, 27].
Some particularly interesting results come out of the
analysis of the first harmonic modulation in the right as-
cension distributiiom off tthee eeariss] [24)) Theeresaltt o6 flibgs
analysis on the equatorial dipole amplitudes is sihowm on
Fig[9 for an extended range in energy covering nearly 4 or-
ders of magnitude. While no clear evidence for anisotropy
has been found yet it is remarkable to see that in the range
fhoel 1tbd U, Be® 8ol sdapoutioaretab99 et Ite, Ck.
bnky bacqdiceneqfeiesmopicisetippis saonpdeshvwidd shost
equatgurlangeliamdpditudes.
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Figure 12: An overall view of the Auger results showing the variety of the observables and the coherence of their behavior.
The blue bands correspond to the Ankle region where features are observed in the spectrum, mass and anisotropy data. The

the mass information 1s missing. For completeness the VCV correlation (from [53])) is also shown as an energy ordered plot.

The onset of the correlation signal is visible at about 55 EeV.

the issue. An anisotropy study for at least two different
mass spectra (one light, one heavy) from 0.1 EeV up to
10 EeV would for example allow to distinguish between
a propagation effect and a source transition scenario. The
key is to cover a wide enough energy range to connect
adequately the new data to that measured by observatories at

lower energies such as those from KASCADE-Grande [56].

Additional information such as the limits on the photon
fractions in the EeV range and/or the neutrino fluxes will
also bring interesting light into both regions. The absence
of cosmogenic photons or neutrinos, for example, would
indicate clearly that there are no (or very few) proton
sources in the cosmos with limiting energy well above the
GZK cut-off.

The Auger observatory will continue taking data for the
years to come and the collaboration is deeply engaged in
improvements and upgrades of our detection systems. We
aim at covering the open issues discussed above.

At the low energy end (between 0.01 and 1 EeV) we have
the HEAT and AMIGA extensions. We have also recently
modified the local trigger conditions of the surface array
detectors to lower our full trigger efficiency threshold. It is

now about 1 EeV for the 1.5 km array (it was 3 EeV before).

This improvement will provide us with about 5 times more
events in this energy range than what we had before. This
will allow us to augment significantly our sensitivity to
anisotropy searches. In addition, because this new triggering
scheme is less sensitive to individual muons entering the
WCDs, it will allow us to improve significantly our photon
sensitivity. Together with the increased statistics this opens
great perspectives for the cosmogenic photon searches.

At the high energy end, the upgrade of our SD array is
under study to provide us with a detector able to measure

both the muon content and the age of the shower at ground.

This two observables will give us the means to identify the
UHECR composition on an event-by-event basis up to the
highest energies. The collaboration is evaluating several
detector options that can in principle fulfill these ambitious
scientific goals [57]].
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