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We report on mass and mean life measurements of several ground state
b−baryons, using 9.6 fb−1 of data from pp collisions at

√
s = 1.96 TeV,

and recorded with the Collider Detector at Fermilab. Data collected with
triggers designed to collect events with J/ψ → μ+ μ− candidates and
events with hadrons displaced from the beamline are used to measure the
masses and lifetimes of Λb,Ξ

−
b ,Ξ

0
b , and Ω−

b . The first evidence for the
process Ω−

b → Ω0
c π

− is also shown. The results supersede our previous
measurements of these quantities.
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1 Introduction

The quark model has had great success in describing the spectroscopy of hadrons. In
particular, this has been the case for the D and B mesons, where all of the ground
states have been observed [1]. The spectroscopy of c-baryons also agrees well with
the quark model, and a rich spectrum of baryons containing b quarks is predicted [2].
The accumulation of large data sets from the Tevatron and LHC has made possible
the observation of most of the b baryon ground states containing a single heavy quark
[3]-[9] and several excited states [5, 10, 11].

In this paper, we report the measurements of mass and lifetime for several b
baryons. These measurements are made in pp collisions at a center of mass energy
of 1.96 TeV using the Collider Detector at Fermilab (CDF II), and correspond to
an integrated luminosity of 9.6 fb−1. These results supersede previous work by this
collaboration.

The strategy of the analysis presented here is to demonstrate the reconstruction
and property measurements of the Λb, Ξ−,0

b and Ω−
b as natural extensions of measure-

ments that are made on better known b−hadron states obtained in the same data.
All measurements made here are performed on B → J/ψK systems, to provide a
large sample for comparison to the baryon measurements.

2 Reconstruction Methods

The CDF II detector has been described in detail elsewhere [12]. The analysis pre-
sented here is based on events recorded with two different trigger algorithms. The
first is dedicated to the collection of a J/ψ → μ+μ− sample. The second data set
used is triggered by a system designed to collect particle candidates that decay with
lifetimes characteristic of heavy flavor hadrons by selecting events containing tracks
that are displaced from the beamline.

The analysis of the data obtained with the J/ψ trigger begins with a selection of
well-measured J/ψ → μ+μ− candidates. The trigger requirements are confirmed by
selecting events that contain two oppositely charged muon candidates. Both muon
tracks are required to have associated position measurements in at least three layers
of the silicon vertex detector and a two-track invariant mass within 80 MeV/c2 of
the world-average J/ψ mass [1]. This range was chosen for consistency with our
earlier b−hadron mass measurements [13]. This data sample provides approximately
6.5×107 J/ψ candidates, measured with an average mass resolution of ∼ 20 MeV/c2.

The reconstruction of K0
s , K∗(892)0, and Λ candidates uses all tracks with pT >

0.4 GeV/c, that are not associated with muons in the J/ψ reconstruction or trigger
tracks in the hadronic trigger data. Pairs of oppositely charged tracks are combined
to identify these neutral decay candidates, and silicon detector information is not
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used. Candidate selection for these neutral states is based upon the mass calculated
for each track pair, after the appropriate mass assignment for each track and the
flight distance for K0

s and Λ candidates.
For events that contain a Λ candidate, the remaining tracks are assigned the pion

or kaon mass, and Λ π− or ΛK− combinations are identified that are consistent with
the decay process Ξ− → Λ π− or Ω− → ΛK−. Tracks with pT as low as 0.4 GeV/c
are used for Ξ− reconstruction. However, event simulation motivates a requirement
of pT (K−) > 1.0 GeV/c for the K− daughters from Ω− decay.

The Ξ− and Ω− candidates used in the hadronic trigger data set have an additional
fit performed with the three tracks that simultaneously constrains the full final state
vertex and the Λ and Ξ− or Ω− masses of the appropriate track combinations. This
fit provides the best possible estimate of the hyperon momenta and decay positions.
The result of this fit is used to define a helix that serves as the seed for an algorithm
that associates silicon detector hits with the Ξ− or Ω− trajectory that is predicted
by the fit. Candidates with track measurements in at least one layer of the silicon
detector have excellent impact distance resolution (average of 60 μm) for the charged
hyperon track.

The charmed hyperons are used to reconstruct charmed, strange baryons through
the processes Ξ0

c → Ξ− π+, Ξ+
c → Ξ− π+ π−, and Ω0

c → Ω− π+. Charmed hyperon
candidates are required to have a Ξ− or Ω− measured in the silicon detector and at
least one π+ with pT > 2.0 GeV/c and |d| > 100μm. A good fit of the full set of
final state tracks is required that contains Λ and Ξ− or Ω− mass constraints. We also
require pT > 4.0 GeV/c and ct > 100μm for the charmed hyperon candidates.

For all B candidates with a J/ψ in the final state we require pT (B) > 6.0 GeV/c
and the pT (h) > 2.0 GeV/c where h is whatever hadron appears in the final state
with the J/ψ. These requirements reduce combinatorial background. We also require
ct > 100μm and |d| < 100μm, to reduce prompt and poorly reconstructed candidates.
Finally, all final states are required to satisfy a fit that constrains the decay topology
and the mass of the μ+ μ− pair to the nominal mass of the J/ψ. The hadron tracks
do not make use of any silicon detector information. In this way, all decay time
information is derived solely from the muons, and the decay time resolution will be
the same for all B hadrons in this data set.

The hadronic trigger data provides a sample of B baryons through the decay
channels Hb → Hc π

−, where Hb is a b baryon and Hc is a c baryon. The selection
requires c baryon candidates that satisfy appropriate mass ranges and a good final
state fit that constrains the hyperon and charmed hyperon masses. The π− candidates
are required to have an electric charge opposite to the Λ baryon number, and to
be consistent with the trigger by having pT > 2.0 GeV/c and |d| > 100μm. A
requirement of ct > 100μm and |d| < 100μm on the full final state reduces prompt
and poorly reconstructed candidates. The background under the Ξb states is also
reduced by restricting the sample based on the measured decay time of the Ξc to the
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range −2σct < ct(Ξc) < 3cτ0(Ξc) + 2σct where σt is the calculated uncertainty on
the decay time and τ0(Ξc) is the nominal mean life.

3 Particle Properties

The mass and lifetime of the B hadrons will be measured by a fit that bins the
data in decay time(ct), but not in mass. The probability distributions used for the
mass fits contain a Gaussian term for the signal and a polynomial to describe the
background for each time bin. Mean life is calculated by virtue of the fact that the
fractional occupancy in each time bin implies a particular proper flight and resolution
combination. The lower limit of decay time bin n is given by λn = λ1−λ0 ln

(
Nb−n+1

Nb

)
,

where λ0 is the initial value of the mean life used in the fit, and Nb is the number of
time bins. The lower limit of the first bin, λ1, is chosen to be 100 μm to remove the
majority of the prompt background. This method populates the time bins with an
equal number of B candidates based on the initial lifetime estimate.
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Figure 1: The J/ψK0
s mass distributions used for the strange b-meson mass and life-

time measurements. The probability distributions obtained from the fits are overlaid
on the data in dashed red.

For the B meson mass measurements, a single decay time bin is used. For the B
meson mean life measurements, Nb = 4 and λ0 =450 μm are used. An increase in the
number of bins chosen or a variation in the value of λ0 by 10% is found to affect the
measurement by less than 0.5%.

The mass distributions and fit projections obtained for one B meson reference
signal is shown in Fig. 1. The mass and mean life results obtained for the B+ and
B0 are listed in Table 1. Values are given for only the subset of the CDF Run II data
that has not been included in the nominal value estimates [1]. These comparisons of
the unpublished data with the nominal values serve as the calibration reference to
establish the systematic uncertainties on the mass and mean life measurements.

The approach to fitting the mass and mean life of the b−baryons found in the J/ψ
sample is identical to that used for the meson reference signals. The mass distributions
integrated in decay time and the projected fits are shown in Fig. 2.
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Table 1: B Meson Mass and Mean Life Comparisons

Final State Mass (MeV/c2) Mean life (μm)

Nominal Difference Nominal Difference
J/ψK+ 5279.25± 0.17 0.7 ± 0.2 492.0 ± 2.4 −0.1 ± 3.6
J/ψK0∗ 5279.58± 0.17 0.6 ± 0.2 455.4 ± 2.1 3.6 ± 5.1
J/ψK0

s 5279.58± 0.17 −0.5 ± 0.2 455.4 ± 2.1 1.2 ± 6.1
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Figure 2: The J/ψΛ, J/ψΞ−, and J/ψΩ− mass distributions used for the b-baryon
mass measurements. The probability distributions obtained from the fits are overlaid
on the data in dashed red.

The masses of the Ξ−
b and Ξ0

b obtained from the Ξb → Ξc π
− processes are obtained

by fitting the mass distributions. These distributions and projections of the fits
overlaid on the data are shown in Fig. 3.
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Figure 3: The Ξ0
cπ

−, Ξ+
c π

−, and Ω0
cπ

− mass distributions used for the strange b-
baryon mass measurements. The probability distributions obtained from the fits are
overlaid on the data in dashed red.

There is a suggestion of an Ω−
b signal in the Ω0

c π
− mass distribution shown in

Fig. 3. Because this final state has never been observed, the standard significance
test was performed where the fit was made with the null hypothesis and a floating
amplitude. The change in the fit likelihood, Δ2 lnL, was found to correspond to a
single sided fluctuation of a Gaussian distribution of 3.3σ. While this does not meet
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the accepted standard for independent observation of a signal, it indicates a very
low probability of occurence due to a background fluctuation and is evidence for the
process Ω−

b → Ω0
c π

−.
The systematic uncertainties on these mass measurements are similar to those

obtained for the b-mesons. The mass scale uncertainty [13], the choice of resolution
model, and the uncertainty of the rest masses of the daughter particles feed into
the systematic uncertainties. These effects are combined in quadrature for total
systematic uncertainties. It should be noted that momentum scale uncertainty will
drop out for measurements of the mass differences between the Ξ−

b and Ξ0
b .

Systematic uncertainties on the mean life measurements of the B baryons are
taken from the consistency observed in the B meson measurements, where we find
complete consistency with nominal values is determined to within ±6μm, or 1.3%.
Final results for the properties of the B baryons are listed in Table 2.

Table 2: Ξc and B Baryon Mass and Mean Life Results

Final State Mass (MeV/c2) Mean life (ps)
Λb 5620.14 ± 0.31(stat) ± 0.40(syst) 1.565 ± 0.035(stat) ± 0.020(syst)

Ξ−
b (J/ψ Ξ−) 5794.1 ± 2.0(stat) ± 0.40(syst) 1.36 ± 0.15(stat) ± 0.02(syst)
Ξ−

b (Ξ0
c π

−) 5796.5 ± 4.7(stat) ± 0.95(syst) -
Ξ0

b 5791.6 ± 5.0(stat) ± 0.73(syst) -
Ω−

b (J/ψΩ−) 6051.4 ± 4.2(stat) ± 0.50(syst) 1.77+0.55
−0.41(stat) ± 0.02(syst)

Ω−
b (Ω0

c π
−) 6040 ± 8(stat) ± 2(syst) -

4 Conclusions

In conclusion, the full CDF data set has been analyzed to identify the largest possible
sample of ground state B baryons. The mass and mean life properties of these
particles have been measured, and the results compared to very precisely measured
quantities for B mesons obtained in similar final states. The first evidence for the
process Ω−

b → Ω0
c π

− has been shown. The final results of the mass and mean life
measurements are listed in Table 2. The isospin splitting of the Ξ−,0

b states is found
to be M(Ξ−

b )−M(Ξ0
b) = 2.5± 5.4(stat)± 0.6(syst) MeV/c2. These results supersede

previous measurements which were obtained with a smaller data set [7],[8] and are
consistent with recent results from LHCb [9].
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