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Abstract position s; to a final onesy) to the Qure rotation of new

Fermilab Booster has two transverse dampers which iformalized vectog(s) = [n(s), P(s)]
dependently suppress beam instabilities in the horizontal
and vertical planes. A suppression of the common mode [ (52) ] = {
signal is achieved by digital notch filter which is based on P(s2)

subtracting beam positions for two consecutive turns. Su%hereulg — 4(s2) — 9(s1) andi(s) is a betatron phase
system operates well if the orbit position changes Sumé\dvance
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ciently slow. Unfortunately it is not the case for FNAL 5 e
Booster where the entire accelerating cycle consists of Y(s) = _f
about 20000 turns, and successful transition crossing re- ) B(3)

quires the orbit drifts up to about J@m/turn, resulting in
excessive power, power amplifier saturation and loss of stRamper System

bility. To suppress this effect we suggest an improvement A general transverse damper is an active feedback sys-
of the digital filter which can take into account fast orbittem consisting of pickup station which measures the beam
changes by using bunch positions of a few previous turngosition, and a kicker which is located downstream and
To take into account the orbit change up\eth order poly-  damps the betatron oscillations of the beam as a whole by
nomial in time the system requiréd’ + 3) turns of “pre-  applying an appropriate kick (see Fig. 1).

history”. In the case of sufficiently small gain the damping

rate and the optimal digital filter coefficients are obtained (K)

analytically. Numerical simulations verify analytical the- ¢
ory for the small gain and predict a system performance
with gain increase.

INTRODUCTION

Consider a paraxial transverse motion of the particle
with equilibrium energy in a circular accelerator. For fur-
ther calculations we will be neglecting a coupling between
transverse planes and consider only one of them for sim-
plicity. Neglecting nonlinear effects, in an approxima-
tion of linear optics, the dynamics of a particle can be de-
scribed by the “time” evolution of the betatron state-vector,
{(s) = [q(s),p(s)]", where the variableis the path length Figure 1: Schematic plot of the one turn transformation of

along the closed orbit and plays the role of timés the the betatron state-vector in a lattice with damper.
particle deviation in considered transverse direction with

respect to the closed orbit, apd= dq(s)/ds is canoni-  For fyrther considerations we will denote@sand¢’
cally conjugated momentum. the normalized betatron-state vector on tixh turn at
. The can.omcal transformation to the so-called normakne |gcations of the pickup and the kicker respectively,
ized coordinategp, q) — (P, 7): as Mpk(p1) and Myp(p2) the transport matrices between
pickup and kicker and between kicker and pickup, where
n(s) = a(s)/v/B(s), . p1,2 are phase advances corresponding to those matrices,
_ YRy als and asip,, the change of particle momentum applied at the
Ps) = p(s)V/B(s) +als) 5(3)’ n-th turn by kicker. The above determines the betatron tune
Ho = pi1 + fl2.
where3(s) is a beta-function and(s) = —1 dj(s)/ds, Thereby, a one-turn map that recursively defines a new

is performed in order to reduce the motion (from an initiaktate-vector at the pickup location can be written as, [1]:
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Figure 2: Schematic diagram representing the work of dig- QHO OHOJ[O QHQj’QQAO

ital filter. Correction algorithm usef turns of prehistory Xodok X-d-(k-1) X g Xk2 Xk1 XK Xkat

(blue circles) in order to calculate the change in momentum

opn, Which will be appliedd turns later (for this diagram Figure 3: Schematic diagram representing the work of dig-
d = 2) after the current turni{-th turn shown with a black ital filter for K turns with single erroneous measurement
filled circle). ((—d)-th turn shown with a red circle).

DAMPING DYNAMICSFOR SMALL GAIN  Emittance Growth

In most general form the the angle correction algorithm To estimate the emittance growth excited by noise of the
which is based oiC previous measurements is given by: pickup measurements, we will keep only the heating term,
while damping term will be omitted. If only one measure-

5o ’Czl A (Gt St ment is erroneous, let sdyyy, then summing the effect of
n n— n— K turns one obtains
\/BPBK P
_ d\ Lipok
whereg is the dimensionless gaifg; is an error of mea- 2 = (20— 2ga oo €07) €%,

surement introduced by pickup &th turn, A; are the co- i
efficients which define the properties of digital filer,is where I_Eq. (2) was use_d 0 f|n_d the sum. One can see that
very single errobn; will contribute IC turns multiplying

an integer WhICh determ!ne the _delayln turns after Whlcﬁwe effect (see Fig. 3). That yields an increase of the emit-

the correction to be applied (typicalty= 0, 1,2 depend- tance due to a single kick

ing on the system), an@p x denote a beta functions at the

pickup and the kicker locations respectively. The schemati 2527

diagram of the algorithm is shown in Fig. 2. de = 5
For further simplification one can introduce a complex

normalized variable = n — i P, which allow to rewrite \yhere in addition to the averaging over initial phases and

matrix Eq. (1) as amplitudes (operataf. . .)), we performed averaging over

the kick amplitudes (operat¢r. .)), and

_ 5
— 250 [(Rga)® + (S ga)?] =2 |gd|25i,

Zny1 = €2
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k=0 . .
is the rms error of a smgle measurement. As one can see

wheredn; = dq;/+/ e is the renormalized error, aftlz is the emittance growth does not depends on the choice of
areal part of.. Below we will consider the beam dynamicscoefficientsA;.

in a presence of damper for the case of small gain.
DESIGN OF THE DIGITAL FILTER

Damping Rate In general the digital filter should not be sensitive to the
Temporarily omitting the heating terndp;, and taking equilibrium orbit offset relative to the geometrical cante
into account that the contribution of the term is aver- of pickup. Otherwise, the system attempts to correct this
aged out for the case of small gain, the last equation caifset which leads to increased voltage on the plates of the

be solved by the use of the first-order perturbation theorkicker and inefficiency of the algorithm. Itis usually calle
Looking for the solution in the form,, = z ¢"*", where g notch filter condition and it gives a constraint on coeffi-
p = o + iga andgy is @ damping rate presumed to begjentsA;:

K1

> A =0

k=0

small, finally gives

However, it is insufficient if the beam orbit is changing
fast. For example, in FNAL Booster, successful transition
As one can see, the imaginary part of the damping ratossing with high intensity beam requires fast change of
should vanish in order to have critically damped systenequilibrium orbit in time. The present digital notch filter
i.e. Sgqg = 0. This imposes an additional restriction onis not able to effectively suppress beam oscillations adoun
coefficientsA4;. transition.

K—-1
gq = zg e~ Hmtpod) Z Ake—iuok_ )
k=0
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The filter which would not be sensitive to the orbit
change up tdV-th order polynomiald;,’ o n'V) requires at
leastC = (N + 2) coefficients. It is easy to show, that they

are related to the binomial coefficients and up to a commaon
factor Number of missing turns

d 0 0

Table 1: Parameters of the FNAL Booster damper system
Horizontal Vertical

A= (-DF"C*, k=0, N+1. Betatron frequency
. . . o .Y 6.75 6.83
An addlt!onal constraint which optimizes the damping, Fractional part of tune
Sga =0, gives {40} = 110 — 6 x 360° 270° 208.8
K—1 Pickup-kicker phase advance
> Ay cos(pok + dp) = 0, {p1} = p1 — 6 x 360° 67.5 288.5
k=0

wheredu = 1 + pod. That increases the required number
of turns tokl = (N + 3). If minimum possible number of
coefficients is used, one can write matrix equation

M- [A07A17"'7AN+2]T =0

with the solution
Ay = (-1 {C’,ﬁvﬂ sin <¥ po + Op + N%)
+C,ivfllsin (%uo—l—&u—i—Ng)} ,
wherek = 0,..., N + 2, and matrixM is determined by

Eq. 3. A common factorit1, in front of all A; must be
added in order to havi& g, > 0.

Numerical Example for the FNAL Booster

The parameters of the Booster damper system are listed
in Table 1. A numerical example of design of the digital
filter which suppresses effect of orbit offset, and, itsdine
and quadratic changes with time is presented in Fig. 4. The
real and imaginary part of the gaipy, as a function of
particle frequencyy, for horizontal and vertical degrees
of freedom is shown in top figure. Optimal values of the
coefficients for the digital filterd;, as a function of Booster
betatron frequencyy,, for horizontal (middle figure) and
vertical (bottom figure) degrees of freedom are presented
as well. All calculations were performed for parameters
listed in Table 1.
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