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I discuss how masses and widths of hadron resonances are extracted
from lattice QCD. Recent lattice results on the light, strange and charm
meson resonances are reviewed. Their properties are revealed by simulat-
ing the corresponding scattering channels ππ, Kπ and Dπ on the lattice
and extracting the scattering phase shifts. In particular we address the
resonances ρ, D∗

0(2400), D1(2430), K∗, κ and K∗

0 (1430).

1. Introduction

Most hadrons are resonances, i.e, they decay extremely fast via the
strong interaction. Yet most of these resonances were studied in lattice
QCD assuming the so-called narrow width approximation, that is ignoring
their strong decay. Up to now only the ρ meson has been simulated properly
as a resonance by several groups and its width was extracted (see [1, 2, 3]
and references therein). Recently the first simulation of charmed resonances
in Dπ scattering was performed [4], while the strange scalar and vector res-
onances were addressed by simulating Kπ scattering [5]. This paper briefly
reviews the main results and methods that were employed. Recent lattice
results of resonances are reviewed in [6].
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2. Meson-meson scattering in a resonant channel on the lattice

Meson resonances are formed in the strong scattering M1M2 → R →
M1M2 in partial wave l. They exhibit a Breit-Wigner-like resonance behav-
ior of δ, amplitude T and σ(s) ∝ sin2 δ(s)

T =
−√

s Γ(s)

s − m2
R + i

√
sΓ(s)

= eiδ(s) sin δ(s) , Γ(s) =
(p∗)2l+1

s
g2 (1)

(p∗)2l+1 cot δ√
s

=
1

g2
(s − m2

R) (2)

where Γ(s) is parametrized in terms of the phase space and the R → M1M2

coupling g. The combination (p∗)2l+1 cot δ/
√

s is linear in s for a single
Breit-Wigner resonance, which allows the extraction of mR and g (and
therefore the width) using a linear fit (2) once the phase shifts δ(s) are
determined from the lattice. So the goal is to simulate the scattering on the
lattice and determine the scattering phase shift δ(s).

For this purpose one computes the correlator Cij(t) = 〈0|Oi(t)Oj(0)|0〉.
We use the interpolators O = M1(~p1)M2(~p2) = q̄1Γ1q

′
1 q̄2Γ2q

′
2 that create

two-meson states with definite momenta, and O = q̄Γq′ that couple well
to the resonances. Both are constructed to have the quantum numbers1 of
the desired channel and total momentum ~P = ~p1 + ~p2. The interpolators O
couple in general to all physical eigenstates n and each of them evolves as

e−Ent in euclidean time, so Cij(t) =
∑

n A
(n)
ij e−Ent.

We calculate the correlators Cij(t) using a powerful distillation method
[7], which enables the calculation of all the necessary Wick contractions.
Our study is based on 280 gauge configurations with a ≃ 0.124 fm and
dynamical Wilson-Clover u/d quarks corresponding to mπ ≃ 266 MeV. A
rather small volume 163×32 makes the distillation method [7] feasible. The
valence charm quark is treated using the Fermilab method described in [4].
The resulting Cij(t) allows the extraction of the few lowest eigen energies
En via the generalized eigenvalue method.

3. Physics information based on the energy spectrum En(L)

The scattering energy levels (black and green in Fig. 1) appear at

E(L) =
√

m2
1 + ~p 2

1 +
√

m2
2 + ~p 2

2 +∆E(L) with discrete ~pi = ~n2π
L

due to the
periodic boundary conditions in space. The energy shift ∆E(L) in the finite
volume is due to the strong interaction of the two mesons. The negative
shift of the lowest level for I = 1/2 s-wave scattering of Kπ, Dπ and D∗π

1 On a finite discrete lattice the interpolators O have to transform according to irre-

ducible representations of the symmetry group related to the center-of-momentum

frame.
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in Fig. 1 indicates attractive interaction. The positive shift for Kπ with
I = 3/2 indicates repulsive interaction. In addition the the scattering levels
shown in black and green, the presence of resonances in I = 1/2 channels
leads to the levels drawn in red and violet. These indicate s-wave resonances
D0(2400) in Dπ, D1(2420) and D1(2430) in D∗π, K0(1430) in Kπ, as well
as p-wave resonances K∗(892), K∗(1410), K∗(1680) in Kπ [4, 5]. We do
not find an additional level due to κ [5], which is in agreement with the
fact that the experimental phase shift does not reach 90◦ below 1 GeV. We
also do not find additional energy levels in I = 3/2 channels, in line with
absence of the exotic resonances in experiment.
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Fig. 1. The energy levels (effective masses of eigenvalues) for Kπ (JP = 0+, 1−),

Dπ (JP = 0+) and D∗π (JP = 1+) scattering with ~P = 0 [5, 4]. Dashed lines

indicate energies of non-interacting scattering states.

4. Phase shifts and resonance parameters

The energy shift in finite volume reveals the attractive or repulsive na-
ture of the interaction. However, it also rigorously renders the phase shift
for the elastic scattering in the infinite volume via the Lüscher’s relation.
In particular, the energy level E(L) for a scattering system with momenta
~P renders the elastic phase shift δ(s) at s = E2− ~P 2 in partial wave l. Note
that the extraction of δ(s) is straightforward only when the partial-wave
mixing due to the discrete symmetry is absent or negligible, which usually
holds well for ~P = 0, but holds rarely for the scattering of two particles
with different mass and ~P 6= 0 [8].
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Fig. 2. Left: the p-wave ππ → ππ phase shift δ with I = 1 [1]. Right: the

corresponding (p∗)3 cot δ/
√

s (2).

The ππ → ρ → ππ was simulated for three different ~P in [1] and five
energy levels lead to resonant phase shift in Fig. 2. The linear fit of the
resulting p∗3 cot δ/

√
s (2) leads to glat

ρππ ≡
√

6πg = 5.13 ± 0.20 and mlat
ρ =

792 ± 10 MeV compared to gexp
ρππ = 5.97 and mexp

ρ = 775 MeV. This is the
only resonance where proper lattice treatment has reached a certain level of
maturity (see [1, 2, 3] and references therein). A particularly detailed and
impressive shape of the resonant phase shift curve was achieved in [3] at a
heavier pion mass mπ ≃ 400 MeV.

Over the past year we performed the first simulation of the Kπ [5], Dπ,
D∗π [4] and ρπ [9] scattering and the corresponding resonances. Since this
involves scattering of two particles with different masses, we considered only
~P = 0 when the mixing of different l is absent or negligible [8].

The energy levels for Kπ scattering in Fig. 1 lead to the phase shifts in
Fig. 3 for s-wave and p-wave with I = 1/2, 3/2. These are in qualitative
agreement with the experimental ones.

Next we concentrate on the charmed resonances that appear in Dπ and
D∗π. The three energy levels for Dπ s-wave scattering in Fig. 1 lead to
the phase shifts [4], and the linear fit (2) over three points leads to m and
Γ (or g) for the broad D∗

0(2400) in Table 1. The analysis of D∗π spectrum
with JP = 1+ is more complicated since there are two nearby resonances in
experiment, as evidenced also by the red and violet levels in Fig. 1. We find
that the red level for D∗π scattering is due to the narrow D1(2420) which
decays only in d-wave in the mc → ∞ limit. In this limit the remaining
three levels are related to s-wave D∗π scattering which is dominated by the
broad D1(2430). A linear fit (2) through these three points leads to the
mass and the width for the broad D1(2430) in Table 1.

The resulting masses and widths of D∗
0(2400) and D1(2430) agree quite

well with the experimental ones. Since D∗
0(2400), located at ≃ 2318 MeV,

is very close to its strange partner D∗
s0(2317), several authors proposed

that D∗
0(2400) has a sizable tetraquark component c̄s̄su. We get mD∗

0
(2400)

near the experimental value without explicitly incorporating the additional
strange valence pair2.

2 The s̄s can not appear as intermediate state in our simulation without dynamical s.
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Fig. 3. The Kπ phase shifts δI

ℓ
in channels l = 0, 1 and I = 1/2, 3/2 as a function

of Kπ invariant mass
√

s. The lattice results are given by the red circles (they

apply for mπ ≃266 MeV) [5], while the other points are experimental phase shifts.

mD∗
0
(2400) − m̄ g D∗

0
(2400)→Dπ mD1(2430) − m̄ g D1(2430)→Dπ

lat[4] 351 ± 21 MeV 2.55 ± 0.21 GeV 381 ± 20 MeV 2.01 ± 0.15 GeV
exp 347 ± 29 MeV 1.92 ± 0.14 GeV 456 ± 40 MeV 2.50 ± 40 GeV

Table 1. The charmed resonance masses (with respect to m̄ ≡ mD+3mD∗

4
) and the

couplings g, which parametrize the widths Γ = g2p∗/s. The experimental couplings

g are derived from total widths.

The compilation of the D meson spectrum in Fig. 4 shows quite good
agreement with experiment [4]. The masses of broad resonances D∗

0(2400)
and D1(2430) are extracted as explained above. Other four low-lying JP =
0−, 1−, 1+, 2+ states are stable or very narrow, so they were simulated using
O = c̄Γu and m = E (~P = 0) is employed like in all previous simulations.
This narrow-width approximation is applied also for the excited states in
JP = 0−, 1−, 2− channels, which are compared to the states observed by
BaBar in 2010 [10]; unfortunately these are not yet confirmed by any other
experiment.

The scattering lengths for Kπ, Dπ and D∗π were also extracted in [5, 4].

In conclusion, ρ is the only resonance that was treated properly by sev-
eral lattice groups up to now. We presented the first results of the strange
and charmed resonances based on the simulation of the corresponding scat-
tering channels.
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Fig. 4. Energy differences m − 1
4
(mD + 3mD∗) for D mesons on lattice [4] and in

experiment; the reference mass is m̄ = 1
4
(mD +3mD∗) ≈ 1971 MeV in experiment.

Magenta diamonds give masses for states simulated as resonances [4]. Masses

extracted as energy levels on a finite lattice are displayed as blue crosses [4].
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