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Abstract

The top-Higgs system, consisting of top quark (LH doublet, RH singlet) and Higgs boson

kinetic terms, with gauge fields set to zero, has an exact (modulo total divergences) symmetry

where both fermion and Higgs fields are shifted and mixed in a supersymmetric fashion. The full

Higgs-Yukawa interaction and Higgs-potential, including additional ∼ 1/Λ2 NJL-like interactions,

also has this symmetry to O(1/Λ4), up to null-operators. Thus the interaction lagrangian can be

viewed as a power series in 1/Λ2. The symmetry involves interplay of the Higgs quartic interaction

with the Higgs-Yukawa interaction and implies the relationship, λ = 1
2g2 between the top–Yukawa

coupling, g, and Higgs quartic coupling, λ, at a high energy scale Λ >∼ few TeV. We interpret

this to be a new physics scale. The top quark is massless in the symmetric phase, satisfying the

Nambu-Goldstone theorem. The fermionic shift part of the current is ∝ (1 − H†H/v2), owing to

the interplay of λ and g, and vanishes in the broken phase. Hence the Nambu-Goldstone theorem

is trivially evaded in the broken phase and the top quark becomes heavy (it is not a Goldstino).

We have mt = mh, subject to radiative corrections that can in principle pull the Higgs into

concordance with experiment.
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I. INTRODUCTION

The Higgs boson can be viewed as a “pseudo-dilaton” in a particular limit [1]. There

is a fundamental distinction between a “scale invariant Higgs field” and a “dilatonic Higgs

field.” A scale invariant Higgs field has a vanishing mass term, but can have a nonvanishing

gauge, quartic and Yukawa couplings. To qualify as a (pseudo) dilatonic Higgs boson, the

Higgs potential must be (approximately) flat. Consider the pure Higgs lagrangian (no gauge

fields):

L0 = ∂μH
†∂μH − λ

2
(H†H − v2)2 (1)

As usual, the groundstate has a minimum for:

〈
H i

〉
= θi where θi = (v, 0) (2)

where θi is an arbitrary orientation in gauge space and can be rotated under SU(2)L×U(1).

In the limit of small λ, the Higgs potential plays the analogue role of an “applied external

magnetic field” to a spin system, pulling 〈H i〉 to the minimum VEV, v. If we then take

λ→ 0 the lagrangian acquires a “shift symmetry,”

δH i = θiε −→ δ ∂μH
†∂μH = 0 (3)

The alignment, θi, is held fixed and the shift is parameterized by the variable ε. The Noether

current is then:

Jμ =
δL0

δ∂με
= θ†∂μH +H†∂μθ (4)

We see that θ is a defining part of the current. If we view θ as co-rotating with H under the

global SU(2) × U(1) transformations, the charge
∫
d3x J0 then commutes with the gauge

group.

In the broken phase of the theory the current looks more dilatonic:

Jμ →
√

2v∂μh (5)

The dilatonic nature of the Higgs implies that fields that acquire masses proportional to v

are “scale invariant” in the sense of spontaneous scale breaking. That is, we can perform

an ordinary scale transformation which would normally shift mass terms, but we can then

undo this by a compensating shift in h. To see this, consider the top quark mass term:

gψLtRH + h.c. −→ mttt

(
1 +

h√
2v

)
(6)
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Under an ordinary infinitesimal scale transformation we have t(x) → (1 − ε)3/2t(x′) and

h(x) → (1 − ε)h(x′) where xμ = (1 + ε)x′μ, d4x = (1 + ε)4d4x′. Hence the action transforms

as:

∫
d4x mttt(x)

(
1 +

h(x)√
2v

)
→ →

∫
d4x′

(
(1 + ε)mttt(x

′) +mttt(x
′)
h(x′)√

2v

)
(7)

The latter expression exhibits the fact that under ordinary scale transformations the d = 4

Higgs-Yukawa interaction is scale invariant, while the d = 3 mass term is not invariant.

However, with the dilatonic shift symmetry we can compensate the rescaled mass term

by a shift in the Higgs-dilaton field:

h(x′) → h(x′) −
√

2vε (8)

and we see that:

∫
d4x′

(
(1 + ε)mttt(x

′) +mttt(x
′)
h(x′)√

2v

)
→

∫
d4x′

(
mttt(x

′) +mttt(x
′)
h(x′)√

2v

)
(9)

Hence, the simultaneous application of the scale transformation and Higgs shift symmetry

allows us to maintain the symmetry of the top quark mass term. The scale symmetry can

be viewed as spontaneously broken with the Higgs boson playing the role of the Nambu-

Goldstone mode. The same invariance applies to the the gauge fields, W and Z. Higgs

self-interactions that involve nonzero λ would not be invariant under scale transformations

with dilatonic shifts in h, and the symmetry is broken by scale anomalies (running couplings).

II. GENERALIZE TO A “SUPER-DILATATION”

The Higgs boson is then a (pseudo) dilaton if the shift transformation is a (approximate)

symmetry of the action. Fundamentally it stems from the exact shift or modular symmetry

of the gaugeless Higgs kinetic term:

δH i = θiε −→ δ ∂μH
†∂μH = 0 (10)

A key point we wish to emphasize is that ε is the infinitesimal parameter of the transforma-

tion, while the orientation, θi, is held fixed. θi defines a “ray” and the shift moves the field

along this direction in field space. We take θi to have the same mass dimension as the Higgs,

i.e., dimensions of mass and it is a normalized isospinor, θ†θ = v2, where we conventionally
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choose the alignment θi = (v, 0). Eq.(10) is a symmetry of the gaugeless Higgs boson kinetic

terms, ∂H†∂H . In such a theory the shift symmetry is exact.

We now propose a generalization of dilatation symmetry for the Higgs boson that involves

a “super”-symmetric relationship between the top and Higgs fields [2]. The shift in the Higgs

boson field is now promoted to an operator. This symmetry is exact in the top, with bottom-

left, and Higgs, kinetic terms in the gaugeless limit (up to total divergences). Consider the

top and Higgs kinetic terms of the standard model with gauge fields set to zero:

LK = ψLi∂/ ψL + tRi∂/ tR + ∂H†∂H (11)

We define the infinitesimal transformation:

δψia
L = θia

L ηε− i
∂/H iθa

R

Λ2
ε; δψL ia = θL iaηε+ i

θRa∂/H
†
i

Λ2
ε;

δtaR = θa
Rηε− i

∂/H†i θ
ia
L

Λ2
ε; δtRa = θRaηε+ i

θLia∂/H
i

Λ2
ε;

δH i =
θRaψ

ia
L + tRaθ

ia
L

Λ2
ε; δH†i =

ψLaiθ
a
R + θLait

a
R

Λ2
ε. (12)

where i (a) is an isospin (color) index. η is a relative normalization factor that we determine

subsequently.

It is readily seen that eq.(12) is an invariance of eq.(11) up to total derivatives:

δ(ψLi∂/ ψL) =
(ψLθR) · ∂2H

Λ2
ε+ h.c.+ t.d.

δ(tRi∂/ tR) =
(θLtR) · ∂2H

Λ2
ε+ h.c.+ t.d.

δ(∂H†∂H) = −(ψLθR + θLtR) · ∂2H

Λ2
ε+ h.c. + t.d.

hence, δLK = 0 + t.d. (13)

The symmetry of the gauge free kinetic terms makes no use of equations of motion or on-

shell conditions. At this stage, the shifts in ψL and tR by θL,R proportional to η play no

role, but will be essential with the Higgs-Yukawa interaction and Higgs mass term. Indeed,

shifting ψLi∂/ ψL → ψLi∂/ θL yields a total divergence provided we have switched off the local

gauge fields.

This transformation exploits the interplay of the quantum numbers of ψL, tR and H . It

resembles a scalar supermultiplet transformation of component fields [3], where the Higgs

field is treated as a superpartner of ψL. We emphasize that this is not a representation of
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the supersymmetry algebra (there is no “F” auxillary field, [3]; this is essentially a scalar

supermultiplet transformation with fixed F = 0 and the superparameters replaced by θε).

With the assignment of scales of the θL,R and the presence of Λ the commutators of subse-

quent transformations for different θL,R cannot close. Also, the θL,R carry flavor and color

quantum numbers, and the failure of the algebra to close into a superalgebra is presumably

a supersymmetric extension of the Coleman-Mandula no-go theorem. In fact, this is a U(1)

symmetry with the transformation parameter, ε, for fixed background values of θL,R. As

such, the commutator trivially vanishes on the fields: [δε′, δε](ψ,H, tR) = 0

We presently turn to the full lagrangian of the top-Higgs system in the standard model

with gauge fields turned off:

LH = iψL∂/ ψL + itR∂/ tR + ∂H†∂H

+g(ψLtRH + h.c.) −M2
HH

†H − λ

2
(H†H)2 (14)

From eq.(12) we compute the transformations:

δ(−M2
HH

†H) = − ε

Λ2
M2

H(ψLθR + θLtR) ·H + h.c (15)

δ(−λ
2
(H†H)2) = − ε

Λ2
λ(ψLθR + θLtR) ·HH†H + h.c. (16)

δ(gψLtRH + h.c.) = gηε(ψLθR + θLtR)H + g2 ε

2Λ2
(θRψL + tRθL) · (H†H†H)

+ g
ε

Λ2
ψLtR(θRψL + tRθL)

+ig
2ε

Λ2
ψLγμ

τA

2
θL

(
H†

↔
∂μ τA

2
H

)
+ ig

ε

2Λ2
ψLγμθL

(
H†

↔
∂μ H

)

−ig ε
Λ2
θRγμtR

(
H†

↔
∂μ H

)
+ h.c. + t.d. (17)

where we use the isospin Fierz identity, [τA]ij[τ
A]kl = 2δilδkj − δijδkl, and:

↔
∂μ= 1

2
(
→
∂μ −

←
∂μ)

. and we have also applied the fermionic equations of motion:

i∂/ tR + gψL ·H† = 0 i∂/ ψL + gtRH = 0 (18)

and eq.(17) follows [2].

Notice in eq.(17) we have generated higher dimension operator terms of the form:

gε

Λ2
ψLtR(θRψL + tRθL) + i

2gε

Λ2
ψLγμ

τA

2
θL(H†

↔
∂μ τA

2
H)

+i
gε

2Λ2
ψLγμθL(H†

↔
∂μ H) − i

gε

Λ2
θRγμtR(H†

↔
∂μ H) + h.c.+ t.d. (19)
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In analogy to the “bottoms up” derivation of a nonlinear chiral lagrangian (see section (3)),

these terms can be cancelled by adding higher dimension operators to the original lagrangian

of the form:

Ld=6 =
κ

Λ2
(ψLtRtRψL) +

2κ

Λ2
(ψLγμ

τA

2
ψL)(H†i

↔
∂μ τA

2
H)

+
κ

2Λ2
(ψLγμψL)(H†i

↔
∂μ H) − κ

Λ2
(tRγμtR)(H†i

↔
∂μ H) (20)

where we will presently relate the coupling constant, κ, to MH , Λ and g below.

We thus obtain the effective lagrangian,

LH = ψLi∂/ ψL + itR∂/ tR + ∂H†∂H

+g(ψLtRH + h.c.) −M2
HH

†H − λ

2
(H†H)2

+
κ

Λ2
(ψLtRtRψL) +

2κ

Λ2
(ψLγμ

τA

2
ψL)(H†i

↔
∂μ τA

2
H)

+
κ

2Λ2
(ψLγμψL)(H†i

↔
∂μ H) − κ

Λ2
(tRγμtR)(H†i

↔
∂μ H) (21)

Performing the super-dilatation transformation of eq.(12) we now demand that:

δLH = O
(

1

Λ4

)
(22)

The generated O(1/Λ4) terms can be compensated by adding additional 1/Λ4 terms to the

lagrangian. By continued application of eq.(12) we would generate a power series of contact

interactions that are scaled by ∼ 1/Λ2n.

First we see that the transformation of the Higgs mass term of eq.(21), from eqs.(15–17),

cancels against the first term of the transformed Higgs-Yukawa interaction, provided:

gη =
M2

H

Λ2
(23)

This establishes the normalization factor, η. It also establishes the relative sign (we assume

Λ2 positive). If we’re in the symmetric (broken) phase, M2
H positive (negative), then we

have gη > 0 ( gη < 0). We have the freedom of choosing arbitrary η since the defining

kinetic term invariance involves only ε.

One might think we can now take Λ2 to be arbitrarily large compared to M2
H by adjusting

|η| << 1. However, the second term of eq.(17) must also cancel against the transformation

of the first κ term appearing in eq.(21). This requires that:

ηκ = −g, or, using eq.(23):
κ

Λ2
= − g2

M2
H

(24)
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This is a striking result: a seesaw relation between the weak scale and Λ-scale terms. In

the d = 6 operators we have a Nambu-Jona-Lasionio component. The Nambu-Jona-Lasinio

attractive interaction corresponds to κ > 0 , and we see in eq.(24) that the super-dilatation

is then consistent only if M2
H < 0. Moreover, to make η small requires taking κ large.

Finally, the most interesting relationship, which is the analogue of the Goldberger-

Treiman relationship in a chiral lagrangian (see section 3), arises from the cancellation of the

∼ ε(ψLθR + θLtR) ·HH†H terms of eqs.(16) and (17) under the super-dilatation symmetry:

0 = (λ− 1

2
g2)

ε

Λ2
(ψLθR + θLtR) ·HH†H + h.c (25)

or,

λ =
1

2
g2 (26)

Note that his transformation does not involve η.

The λ = g2/2 relationship refers to the coefficient of the D = 6 operator, (θLtR)·HH†H+

h.c. We therefore assume that it applies at the scale Λ. The low energy relationship between

the couplings g2 and λ then depends upon the renormalization group running from Λ to

vweak ≈ 175 GeV. If we ignore the RG running then eq.(26) would hold at the weak scale,

and implies the supersymmetric relationship m2
h = 2λv2

weak = m2
t in the broken phase. This

is an improvement over the usual NJL result, m2
h = 4m2

t .

Some comments on the structure of these higher dimension operators are in order. Note

that we can Fierz rearrange the first term of eq.(20):

(ψ
a

LtRa)i(tRbψ
b)i → −(ψiLγμ

λA

2
ψi

L)(tRγ
μλ

A

2
tR) + O(∞/N ) (27)

where N = 3 is the number of colors. This term is a pure Nambu-Jona-Lasinio interaction

as arises in topcolor [4, 9] in the form of a (color current)×(color current). Indeed, massive

Yang–Mills boson exchange for a boson of mass M2 and momentum exchange q2 < M2 pro-

duces the negative sign for (current)×(current) interactions. A positive sign for the first term

of eq.(20) is the attractive sign for the Nambu-Jona-Lasinio model, and we thus see that the

attractive sign corresponds to the correct (negative) sign for topgluon exchange. However,

we see that the isospin (current)×(current) interaction (second term of eq.(20)) then has

the wrong sign (positive) for a gauge boson exchange. We will discuss this “frustration of

signs” further in Section IV.A.
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Since all of the higher dimension d = 6 operators are of the form (current)×(current),

they preserve the chirality of the fermions. That is, the terms of eq.(20) contain no cross

terms of the form ψLHtR(H†H)p. They thus admit the discrete symmetry, ψL → (−1)NψL

and tR → (−1)N+1tR. Operators of mixed chirality can therefore be excluded, or suppressed,

on symmetry grounds.

III. ANALOGY TO A CHIRAL LAGRANGIAN

For comparison, we quickly review a familiar derivation of a pion chiral lagrangian from

the “bottoms-up.” Consider the kinetic terms:

LK = ψLi∂/ ψL + ψRi∂/ ψR +
1

2
∂μπ∂

μπ (28)

We’ll consider the RH-chiral symmetry:

δψL = 0

δψR = iθψR δψR = −iθψR

δπ = fπθ (29)

and we demand the lagrangian is invariant under this global transformation:

δLK = 0 (30)

The RH-chiral current is:

− δLK

δ ∂μθ
= ψRγμψR − fπ∂μπ (31)

and we assume fπ is “determined from experiment,” e.g., π → μν (of course, in the real

world this is the left-handed current).

Consider the interactions consisting of a massive “nucleon” coupled to pion:

LV = Mψψ − igπψγ5ψ = MψLψR − igπψLψR + h.c. (32)

We perform the RH-chiral transformation transformation:

δLV = (iθM − igfπθ + gπfπθ)ψLψR + h.c. (33)

so:

δLV = 0 −→ g =
M

fπ
(34)
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which is the Goldberger-Treiman relation.

However, we must cancel the “higher order term” ∝ πθψLψR. We thus include an O(π2)

term:

LV →M

(
1 − iπ

fπ
+ c

π2

f 2
π

)
ψLψR + h.c. (35)

Now:

δLV → M

(
iθ − i

fπθ

fπ

+
πθ

fπ

+ 2c
π

f 2
π

fπθ + ic
π2

f 2
π

fπθ

)
ψLψRh.c. (36)

so:

δLV = 0 −→ g =
M

fπ

, c = −1

2
(37)

But, now we must cancel higher order term ∝ π2θψLψR which implies an O(π3) interaction,

and so-forth.

We can sum the resulting power series and we find, iteratively, the solution:

LV = MψLUψR + h.c. U = exp(iπ/fπ) (38)

whence,

L = ψLi∂/ ψL + ψRi∂/ ψR +
f 2

π

2
∂μU

†∂μU +MψLUψR + h.c. (39)

and we have obtained the“nonlinear σ-model lagrangian.”

Our present strategy is similar. We begin with the super-dilatational invariance of the

top-Higgs kinetic terms. We then analyze the transformation of the Higgs-Yukawa, Higgs

mass and quartic interactions. We demand overall invariance of the lagrangian. We thus

find the “Goldberger-Treiman” relationship, λ = g2/2, which implies mt = mh in the broken

phase. This induces higher dimension operators. Ultimately, we expect to sum the tower of

operators, though in the present case we expect that these arise via new dynamics, such as

heavy recurrences of composite Higgs bosons and vector–like top quarks.

IV. CURRENT STRUCTURE AND THE NAMBU-GOLDSTONE THEOREM

The critical aspect of our construction is that the operator shift of δH in the quartic

Higgs interaction is cancelling against the super-rotation (i.e.,the “twist”) of δψ in the

Higgs-Yukawa interaction. Moreover, the pure fermionic shift in δψ ∼ ηεθ, in the Higgs-

Yukawa interaction, i.e., proportional to η, cancels against the δH shift in the Higgs mass

term. This ties the transformations together into a single structure.
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The Nambu-Goldstone theorem for a fermionic shift δψ ∼ ηεθ, which would naively imply

a massless top quark (a “Goldstino”), is evaded in the broken phase. How does our theory

evade the existence of a zero-mode associated with the fermionic shift? Naively, this would

seem to prohibit a massless top quark. In fact, this happens in a subtle way. One must

carefully construct the currents given our use of equations of motion in δ(gψLtRH + h.c.).

We therefore wish to clarify the the relationship to the Nambu-Goldstone theorem in the

present set up.

We consider, for technical simplicity, the simpler “minimal” transformation defined by

θL = 0:

δψia
L = −i∂/H

iθa
R

Λ2
ε; δψL ia = i

θRa∂/H
†
i

Λ2
ε; (40)

δtaR = θa
Rηε; δtRa = θRaηε; (41)

δH i =
θRaψ

ia
L

Λ2
ε; δH†i =

ψLaiθ
a
R

Λ2
ε. (42)

The parameter η is still fixed by the symmetry interplay of the Higgs mass term and Yukawa

interaction as in eq.(23),

gη =
M2

H

Λ2
=
λv2

Λ2
(43)

Consider the top and Higgs system of the standard model with gauge fields set to zero:

LH = LK + g(ψLtRH + h.c.) −M2
HH

†H − λ

2
(H†H) (44)

LK = ψLi∂/ ψL + tRi∂/ tR + ∂H†∂H (45)

It is readily seen that eqs.(40–42) is a global invariance of eqs.(45) up to total derivatives.

We presently allow ε to be a local function of spacetime ε(x) (note that the derivatives in

eq.(40) act only upon H and not upon ε(x)). We have:

δ(ψLi∂/ ψL) =
(ψLθR) · ∂2H

Λ2
ε+

(ψLγμ∂/HθR)

Λ2
∂με+ h.c.+ t.d.

δ(tRi∂/ tR) = i(tR∂/ θR)ηε+ i(tRγμθR)η∂με+ h.c. + t.d.

δ(∂H†∂H) = −(ψLθR) · ∂2H

Λ2
ε+

(ψLθR) · ∂μH

Λ2
∂με+ h.c.+ t.d. (46)

The kinetic terms thus lead to a current:

JK
μ =

δLK

δ∂με
= i(tRγμθR)η +

(ψLγμ∂/HθR)

Λ2
+

(ψLθR)

Λ2
∂μH (47)
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The symmetry of the gauge free kinetic terms makes no use of equations of motion or on-

shell conditions. However, the symmetry of the full action, as we have emphasized, involves

a cancellation of the shift of eqs.(42) in the Higgs quartic interaction against the “twist”

of eq.(40) in the Higgs-Yukawa interaction. In calculating the transformation of the Higgs-

Yukawa interaction, however, we make use of an integration by parts and discard total

divergences (and subsequently use the fermion equations of motion). This integration by

parts in the “twist” of eq.(40) causes the derivative to act upon the parameter ε(x):

δ(−M2
HH

†H) = − ε

Λ2
M2

H(ψLθR) ·H + h.c (48)

δ(−λ
2
(H†H)2) = − ε

Λ2
λ(ψLθR) ·HH†H + h.c. (49)

δ(gψLtRH + h.c.) = gηε(ψLθR)H + g2 ε

2Λ2
(θRψL + tRθL) · (H†H†H)

+ g
ε

Λ2
(ψLtR)(θRψL) − ig

ε

Λ2
θRγμtR

(
H†

↔
∂μ H

)
+ h.c.+ t.d.

−i g

2Λ2
θRγμtR(H†H)∂με (50)

The last term in eq.(50) shows explicitly that the result of the integration by parts leads to

an additional term ∝ ∂με. This, in turn, modifies the current, which now becomes:

Jμ =
δLH

δ∂με
= i(tRγμθR)

(
η − gH†H

2Λ2

)
+

(ψLγμ∂/HθR)

Λ2
+

(ψLθR)

Λ2
∂μH (51)

Using the relationship of eq.(43) and λ = g2/2, the current can be written:

Jμ =
δLH

δ∂με
= iη(tRγμθR)

(
1 − H†H

v2

)
+

(ψLγμ∂/HθR)

Λ2
+

(ψLθR)

Λ2
∂μH (52)

The modifcation of the current occurs in the first term which is associated with the fermionic

“shift”-symmetry of tR. Again, this arises from the crucial linkage of the δH shift in the

quartic Higgs interaction to the δψL shift in the Higgs-Yukawa interaction.

Note that, in the broken phase where 〈H〉 = v the modifcation of the current has the

effect of “turning off” the fermionic shift. Indeed, we will now see that this has a remarkable

effect in evading the Nambu-Goldstone theorem in the broken phase, and permitting the

top quark to be massive.

Consider the two-point function of our current of eq.(52) with tR:

S(y) =

∫
d4xeiq·x ∂μ 〈0|T ∗Jμ(x) tR(y) |0〉 (53)
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(T ∗ implies anti-commutation in the ordering of fermion fields). Formally, with ∂μJμ = 0,

we have, from the ∂0 acting upon the T ∗ ordering a δ(x0 − y0), and:

S(y) =

∫
d3x eiq·x 〈0| {J0(x), tR(y)} |0〉

=

∫
d3x e−i�q·�x 〈0| {J0(�x), tR(�y)}e.t. |0〉

= 〈0| {Q, tR(�y)} |0〉 (54)

where the charge operator Q is:

Q =

∫
d3x J0(�x). (55)

In the symmetric phase of the standard model we have the Higgs VEV, 〈H〉 = 0, and we

can neglect all terms in the current that involve H . The charge operator then involves only

the first term in JK
μ = iηtRγμθR, whence it generates a shift in the fermion field:

〈0| {Q, tR(�y)} |0〉 = ηθR (56)

On the other hand we have:

S(y) =

∫
d4x eiq·x ∂μ 〈0|T ∗itR(x)γμθRη tR(y) |0〉

= −
∫

d4x eiq·x i∂μγμSF (x− y)θRη

=
q2 + q/m

q2 −m2
θRη

∣∣∣∣
q→0

(57)

In the q2 → 0 limit the consistency of eq.(57) with eqs.(54, 56) requires that the fermion

mass satisfy m = 0. This is the fermionic Nambu-Goldstone theorem and it informs us

that any fermionic action which has a pure fermionic shift symmetry, must correspond to a

massless fermion. This is, indeed, the case in the symmetric phase in which the top quark

is massless and 〈H〉 = 0. Naively we might conclude that the top quark is forced to be a

Goldstino and remain massless, even in the broken phase.

However, we have seen that the current is modified in a significant way in the present

case:

Jμ = iη(tRγμθR)

(
1 − H†H

v2

)
+ O

(
1

Λ2

)
(58)

In the broken phase, when 〈H〉 = v 
= 0, this implies that the pure fermionic shift operator

in the current “turns off:”

Jμ = 0 + O
(

1

Λ4

)
(59)
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This is a consequence of the interplay between the quartic interaction and the Higgs-Yukawa

interaction in our construction. It implies that there can exist dynamical situations in which

a Goldstino is massless in a symmetric phase, but acquires mass in a broken phase of a theory.

The underlying fermionic shift, δψ = ηθ is intact, but the current is modified dynamically

to evade the naive Nambu-Goldstone theorem.

Indeed, the symmetry yields λ = g2/2 in both phases of the Standard Model. However,

the fermionic shift part of the current is nontrivially modified by the quartic-Yukawa inter-

play and is ∝ (1−H†H/v2). It thus vanishes in the broken phase with 〈H〉 = v. Therefore,

the top quark becomes massive in the broken phase in the usual way, with the relationship

mh = mt. This is consistent with the Nambu-Goldstone theorem that would otherwise

naively force the top quark to be a massless Goldstino. This relationship λ = g2/2 is the

analogue of a Goldberger-Treiman” relationship. It holds at a high scale, Λ, and is subject

to renormalization group and higher dimension operator effects that can bring the physical

masses into concordance with m2
h ≈ m2

t/2.

V. UV-COMPLETION

The effective lagrangian we obtain from the minimal transformation of eq.(??) is simpler:

LH = ψLi∂/ ψL + itR∂/ tR + ∂H†∂H

+g(ψLtRH + h.c.) −M2
HH

†H − λ

2
(H†H)2

+
κ

Λ2
(ψLtRtRψL) − κ

Λ2
(tRγμtR)(H†i

↔
∂μ H) (60)

The frustrated (current)×(current) signs are now absent given that we have banished the

isospin interaction. We retain the relationships of eqs.(23,24,26).

Note the structure of the higher dimension operators. One of these is a Nambu-Jona-

Lasinio four-fermion interaction, as expected in topcolor citetopc. The other is a current-

current interaction of the Higgs with the top quark. With Λ sufficiently large, κmust become

large in accord with the seesaw relationship of eq.(24).

This is suggestive of a dynamics in which a boundstate recurrence of the Higgs boson,

composed of tt is generated via the NJL interaction [8? ]. The Higgs-top interaction can

likewise generate a composite Dirac fermion that is composed of ∼ H†tR with quantum
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numbers of of the left-handed top quark [? ]. The Dirac fermion has a RH component that

is an s-wave, ∼ H†tR, and a LH component that is a p-wave, ∼ H†i∂/ tR/Λ.

We believe the tower of operators ∼ 1/Λ2n may be determined, and the dynamical model

admitting our super-dilatation may be understood as a full solution to this dynamics. This

may be facilitated by introducing the composite fields explicitly as auxilliary fields.

VI. CONCLUSIONS

While the usual superalgebra of SUSY does not permit the Higgs to be the superpartner

of the (t, b) quarks, the symmetry we present here does accomplish this. We emphasize that

the “super”-dilatation symmetry is not a conventional superalgebra, i.e., it is not a grading

of the Lorentz Group, and is not associated with a nontrivial nonabelian closed superalgebra

(at least not in our present exploratory formulation). The symmetry is a bosonic sibngle

parameter, ∼ U(1), invariance, and closes trivially.

Our symmetry is remniscent of a “reparameterization invariance,” e.g., as occurs in heavy

quark effective field theory (HQET) [5–7]. In the latter case one considers an M → ∞
limit for a heavy quark and constructs a field theoretic lagrangian for a given four-velocity

“supersector,” vμ. The lagrangian takes the form of a series expansion in higher dimension

operators weighted by powers of 1/M . The leading terms in the theory display heavy-spin

symmetry (e.g., degenerate 0− and 1− mesons). The reparameterization invariance is a

residual symmetry that constrains the full operator structure and relates the coefficients of

the terms in the lagrangian to higher orders of 1/M . The reparameterization invariance is

essentially the vestige of the underlying hidden Lorentz invariance [7].
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