
A GPU-Accelerated Network Traffic Monitoring and
Analysis System

Wenji Wu, Phil DeMar
Core Computing Division, Fermilab

PO Box 500, MS-368, Batavia, IL 60510, USA
{wenji, demar}@fnal.gov

Abstract—Data center networks are evolving toward the use of
40GE between access and aggregation layers, and 100GE at the
core layer. With such high data rates, network traffic monitoring
and analysis applications, particularly those involved in traffic
scrutiny on a per-packet basis, require both enormous raw
compute power and high I/O throughput. Many monitoring and
analysis tools are facing extreme performance and scalability
challenges as 40GE/100GE network environments emerge.
Recently, GPU technology has been applied to accelerate general
purpose scientific and engineering computing. The GPU
architecture fits well with the features of packet-based network
monitoring and analysis applications. At Fermilab, we have
prototyped a GPU-accelerated architecture for network traffic
capturing, monitoring, and analyzing. With a single Nvidia
M2070 GPU, our system can handle 11 million+ packets per
second without packet drops. In this paper, we will describe our
architectural approach in developing a generic GPU-assisted
packet capture and analysis capability.

Index Terms—Network monitoring, GPU, multicore,
manycore, high-speed networks.

I. INTRODUCTION

Network traffic monitoring & analysis is the process of
capturing network traffic and inspecting it closely to determine
what is happening in the network. Since the inception of
computer networks, traffic monitoring & analysis has been an
indispensable tool in network operations & management,
capacity planning, and performance troubleshooting. The
exponential growth of data intensive applications is driving the
need for higher-performance networks. Within the data center,
server performance growth, coupled with virtualization
capabilities, has fueled 10GbE adoption on the host end. In
turn, this has put strain on data center backbone networks,
paving the way for deployment of 40GE and 100GE. At such
high data rates, network traffic monitoring and analyzing
applications, particularly those involved in traffic scrutiny on a
per-packet basis, require enormous raw compute power and
high I/O throughputs. These applications face extreme
performance and scalability challenges.

To date, two major computing platforms have been used for
network traffic monitoring & analysis. The first one is
dedicated hardware based on NPU (network processor unit)
and/or ASIC (application-specific integrated circuits)
technologies. The major drawback of this approach is that
NPUs and ASICs have poor programmability and poor
scalability, and high development costs. The other platform is

the general-purpose CPU (central processing unit) that is
capable of running many types of applications. There is little
doubt that CPUs can be used for network traffic monitoring &
analysis. With recent advances in multicore technologies, a
single CPU can provide multiple cores to process network
traffic in parallel. Researchers have made effective use of
multicore systems in network traffic monitoring & analysis.
However, we argue that CPU is not the optimum-computing
platform for network traffic monitoring & analysis applications
at high-performance networks because the CPU architecture
does not fit them well.

Recently, GPUs have been widely applied to accelerate
general purpose scientific and engineering computing. The
massive array of GPU cores offers an order of magnitude
higher raw computation power than CPUs. GPU's data-parallel
execution model and ample memory bandwidth can effectively
hide memory access latency and effectively boost I/O intensive
applications with inherent data parallelism. In addition, the
CUDA and OpenCL programming frameworks provide GPU
with ease of programmability.

At Fermilab, we have prototyped a GPU-accelerated
network traffic monitoring & analysis system, which analyzes
network traffic on a per-packet basis. In this paper, we will
describe our architectural approach in developing a generic
GPU-assisted packet capture and analysis capability.

II. A GPU-ACCELERATED NETWORK TRAFFIC MONITORING
AND ANALYSIS SYSTEM

Our GPU-based network monitoring & analysis application
runs in user mode, to take advantage of the friendly GPU
programming framework (e.g., CUDA or OpenCL). As shown
in Figure 1, it consists of four types of logical entities: Traffic
Capture, Preprocessing, Monitoring & Analysis, and Output
Display.

• Traffic Capture. It captures network traffic and moves
them from wire to the CPU domain. Traffic capture
aims to capture packets without loss, even at high
packet rates.

• Preprocessing. It processes the captured network traffic
and copies the packets from the CPU domain to the
GPU domain.

• Monitoring & Analysis. It performs network
monitoring & analysis with GPUs. We implemented a
GPU-accelerated library for network traffic monitoring

FERMILAB-CONF-13-035-CD

and analysis. The library consists of various CUDA
kernels, which can be combined in various ways to
perform intended monitoring & analysis operations.

• Output Display. Network monitoring & analysis results
are displayed or stored.

Figure 1 System Architecutre

A logical entity runs on a worker thread. For each type of
logical entity, one or multiple worker threads are spawned. On
a multicore system, each worker thread is tied to a specific core
to maximize overall performance. When the system is in
operation, these worker threads run cooperatively to perform
an intended task. For the same batch of network traffic, these
worker threads run in a pipeline mode with the sequence
of ”Traffic Capture → Preprocessing → Monitoring &
Analysis → Output Display.” For different batches of network
traffic, these worker threads run in parallel to maximize the
overall performance.

Experiments show that our system can achieve extremely
high performance. The contribution of our work is threefold:

(1) We demonstrate that GPU can significantly accelerate
network traffic monitoring & analysis at high-speed networks.
With a single Nvidia M2070 GPU, our system can handle 11
million+ packets per second without packet drops.

(2) We design and implement a generic I/O architecture to
move network traffic from the wire to the GPU domain. Our
I/O architecture allows network traffic to be captured and
copied to the GPU domain without packet loss. Previous
studies [1, 2] revealed that the costs of packet capturing derive
mainly from three aspects: dynamic per-packet memory
allocations and de-allocations of ring buffers, system call
overheads, and the cost of moving packets from ring buffers to
applications. Our packet I/O engine builds on existing packet-
capture techniques, such as pre-allocated large packet buffers,
packet-level batch processing, and memory mapping-based
zero-copy techniques. Our packet I/O engine works as follows.
It divides a NIC receive ring into descriptor segments. Each
descriptor segment consists of multiple receive packet
descriptors (e.g., 1024). The packet I/O engine also pre-
allocates a number of empty large packet buffer chunks. A
packet buffer chunk consists of multiple fixed-size cells, with
each cell corresponding to a ring buffer. To capture packets,
each descriptor segment in the receive ring will be attached
with a pre-allocated packet buffer chunk; each cell in the
attached packet buffer chunk is sequentially tied to the
corresponding packet descriptor in the descriptor segment. Our
packet I/O engine provides operations to allow a user space
application to capture packets. The application can access the

operations through the ioctl interface. Once an attached packet
buffer chunk is filled with network packets, it will be
“captured” to a user space application. To reduce the capture
cost, all packet buffer chunks are mapped into the application’s
process space. Therefore, an attached packet buffer chunk can
be moved to user space via pointer passing; no copying is
required. When an attached packet buffer chunk is moved to
user space, the corresponding descriptor segment will be
attached with a new “free” packet buffer chunk. In the user
space, the data in a captured packet buffer chunk is finally
processed. Subsequently, the chunk will be recycled for future
use. Experiments show that our packet I/O engine achieves
better performance than Netmap [2] and the I/O engine of
PacketShader [1].

(3) We implement a GPU-accelerated library for network
traffic capturing, monitoring, and analysis. The library consists
of various CUDA kernels, which can be combined in various
ways to perform monitoring & analysis tasks. For example,
Figure 2 illustrates the mechanism of our packet-filtering
kernel. For high-speed network monitoring and analysis,
advanced packet-filtering capabilities at wire speed are
necessary so that we can monitor and analyze only those
packets that are of interest to us. Packet filtering involves
establishing a set of packet filter rules. If a packet matches the
rules, the packet will be accepted; otherwise, it will be
dropped. Because the Berkeley Packet Filter (BPF) [3] is the
most widely used packet filter, we use BPF as the packet filter.
The richness and expressiveness of the BPF syntax allows us to
filter various types of network traffic.

Figure 2 Packet Filtering Kernel

In this poster, we described our architectural approach in

developing a generic GPU-assisted network traffic monitoring
and analysis capability. Previously, we have been using GPU
to analyze network flow records [4]. This project is the next
step in our research into network monitoring with GPUs.

Reference:

[1] S. Han et al. PacketShader: a GPU-accelerated software router, In Proc.

ACM SIGCOMM’10.
[2] Luigi Rizzo, Netmap: a novel framework for fast packet I/O, In Proc.

USENIX ATC’12.
[3] S. McCanne et al. The BSD packet filter: A new architecture for user-

level packet capture. In Proc. USENIX Winter 1993.
[4] W Wu et al. G-NetMon: A GPU-accelerated network performance

monitoring system for large scale scientific collaborations. In IEEE
LCN’11, 2011.

...

1. Traffic Capture 2. Preprocessing GPU Domain

Traffic Monitoring &
Analysis Kernels

Output

User Space

3. Monitoring & Analysis

4. Output Display
Packet
Buffer

Incoming Packets

NIC

Packet
Buffer Output

...

Capturing

Captured Data

1

raw_pkts []

filtered_pkts []

filtering_buf []

scan_buf []

index

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

index

index

0 1 2 3

Filtering
1

Scan
2

Compact
3

p2p1 p3 p5p4 p6 p8p7

0 1 1 0 0 1 0

0 1 1 2 3 3 3 4

p1 p3 p4 p7

x x xx

