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Abstract—Data center networks are evolving toward the use of 
40GE between access and aggregation layers, and 100GE at the 
core layer. With such high data rates, network traffic monitoring 
and analysis applications, particularly those involved in traffic 
scrutiny on a per-packet basis, require both enormous raw 
compute power and high I/O throughput. Many monitoring and 
analysis tools are facing extreme performance and scalability 
challenges as 40GE/100GE network environments emerge. 
Recently, GPU technology has been applied to accelerate general 
purpose scientific and engineering computing. The GPU 
architecture fits well with the features of packet-based network 
monitoring and analysis applications. At Fermilab, we have 
prototyped a GPU-accelerated architecture for network traffic 
capturing, monitoring, and analyzing. With a single Nvidia 
M2070 GPU, our system can handle 11 million+ packets per 
second without packet drops. In this paper, we will describe our 
architectural approach in developing a generic GPU-assisted 
packet capture and analysis capability.   

Index Terms—Network monitoring, GPU, multicore, 
manycore, high-speed networks. 

I. INTRODUCTION

Network traffic monitoring & analysis is the process of 
capturing network traffic and inspecting it closely to determine 
what is happening in the network. Since the inception of 
computer networks, traffic monitoring & analysis has been an 
indispensable tool in network operations & management, 
capacity planning, and performance troubleshooting. The 
exponential growth of data intensive applications is driving the 
need for higher-performance networks. Within the data center, 
server performance growth, coupled with virtualization 
capabilities, has fueled 10GbE adoption on the host end. In 
turn, this has put strain on data center backbone networks, 
paving the way for deployment of 40GE and 100GE. At such 
high data rates, network traffic monitoring and analyzing 
applications, particularly those involved in traffic scrutiny on a 
per-packet basis, require enormous raw compute power and 
high I/O throughputs. These applications face extreme 
performance and scalability challenges. 

To date, two major computing platforms have been used for 
network traffic monitoring & analysis. The first one is 
dedicated hardware based on NPU (network processor unit) 
and/or ASIC (application-specific integrated circuits) 
technologies. The major drawback of this approach is that 
NPUs and ASICs have poor programmability and poor 
scalability, and high development costs. The other platform is 

the general-purpose CPU (central processing unit) that is 
capable of running many types of applications. There is little 
doubt that CPUs can be used for network traffic monitoring & 
analysis. With recent advances in multicore technologies, a 
single CPU can provide multiple cores to process network 
traffic in parallel. Researchers have made effective use of 
multicore systems in network traffic monitoring & analysis. 
However, we argue that CPU is not the optimum-computing 
platform for network traffic monitoring & analysis applications 
at high-performance networks because the CPU architecture 
does not fit them well. 

Recently, GPUs have been widely applied to accelerate 
general purpose scientific and engineering computing. The 
massive array of GPU cores offers an order of magnitude 
higher raw computation power than CPUs. GPU's data-parallel 
execution model and ample memory bandwidth can effectively 
hide memory access latency and effectively boost I/O intensive 
applications with inherent data parallelism. In addition, the 
CUDA and OpenCL programming frameworks provide GPU 
with ease of programmability. 

At Fermilab, we have prototyped a GPU-accelerated 
network traffic monitoring & analysis system, which analyzes 
network traffic on a per-packet basis. In this paper, we will 
describe our architectural approach in developing a generic 
GPU-assisted packet capture and analysis capability.   

II. A GPU-ACCELERATED NETWORK TRAFFIC MONITORING
AND ANALYSIS SYSTEM 

Our GPU-based network monitoring & analysis application 
runs in user mode, to take advantage of the friendly GPU 
programming framework (e.g., CUDA or OpenCL). As shown 
in Figure 1, it consists of four types of logical entities: Traffic 
Capture, Preprocessing, Monitoring & Analysis, and Output 
Display. 

• Traffic Capture. It captures network traffic and moves
them from wire to the CPU domain. Traffic capture
aims to capture packets without loss, even at high
packet rates.

• Preprocessing. It processes the captured network traffic
and copies the packets from the CPU domain to the
GPU domain.

• Monitoring & Analysis. It performs network
monitoring & analysis with GPUs. We implemented a
GPU-accelerated library for network traffic monitoring
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and analysis. The library consists of various CUDA 
kernels, which can be combined in various ways to 
perform intended monitoring & analysis operations. 

• Output Display. Network monitoring & analysis results 
are displayed or stored.  

 
Figure 1 System Architecutre 

A logical entity runs on a worker thread. For each type of 
logical entity, one or multiple worker threads are spawned. On 
a multicore system, each worker thread is tied to a specific core 
to maximize overall performance. When the system is in 
operation, these worker threads run cooperatively to perform 
an intended task. For the same batch of network traffic, these 
worker threads run in a pipeline mode with the sequence 
of ”Traffic Capture → Preprocessing → Monitoring & 
Analysis → Output Display.” For different batches of network 
traffic, these worker threads run in parallel to maximize the 
overall performance. 

Experiments show that our system can achieve extremely 
high performance. The contribution of our work is threefold:  

(1) We demonstrate that GPU can significantly accelerate 
network traffic monitoring & analysis at high-speed networks. 
With a single Nvidia M2070 GPU, our system can handle 11 
million+ packets per second without packet drops.  

(2) We design and implement a generic I/O architecture to 
move network traffic from the wire to the GPU domain. Our 
I/O architecture allows network traffic to be captured and 
copied to the GPU domain without packet loss. Previous 
studies [1, 2] revealed that the costs of packet capturing derive 
mainly from three aspects: dynamic per-packet memory 
allocations and de-allocations of ring buffers, system call 
overheads, and the cost of moving packets from ring buffers to 
applications. Our packet I/O engine builds on existing packet-
capture techniques, such as pre-allocated large packet buffers, 
packet-level batch processing, and memory mapping-based 
zero-copy techniques. Our packet I/O engine works as follows. 
It divides a NIC receive ring into descriptor segments. Each 
descriptor segment consists of multiple receive packet 
descriptors (e.g., 1024). The packet I/O engine also pre-
allocates a number of empty large packet buffer chunks. A 
packet buffer chunk consists of multiple fixed-size cells, with 
each cell corresponding to a ring buffer. To capture packets, 
each descriptor segment in the receive ring will be attached 
with a pre-allocated packet buffer chunk; each cell in the 
attached packet buffer chunk is sequentially tied to the 
corresponding packet descriptor in the descriptor segment. Our 
packet I/O engine provides operations to allow a user space 
application to capture packets. The application can access the 

operations through the ioctl interface. Once an attached packet 
buffer chunk is filled with network packets, it will be 
“captured” to a user space application. To reduce the capture 
cost, all packet buffer chunks are mapped into the application’s 
process space. Therefore, an attached packet buffer chunk can 
be moved to user space via pointer passing; no copying is 
required. When an attached packet buffer chunk is moved to 
user space, the corresponding descriptor segment will be 
attached with a new “free” packet buffer chunk. In the user 
space, the data in a captured packet buffer chunk is finally 
processed. Subsequently, the chunk will be recycled for future 
use. Experiments show that our packet I/O engine achieves 
better performance than Netmap [2] and the I/O engine of 
PacketShader [1].  

(3) We implement a GPU-accelerated library for network 
traffic capturing, monitoring, and analysis. The library consists 
of various CUDA kernels, which can be combined in various 
ways to perform monitoring & analysis tasks. For example, 
Figure 2 illustrates the mechanism of our packet-filtering 
kernel. For high-speed network monitoring and analysis, 
advanced packet-filtering capabilities at wire speed are 
necessary so that we can monitor and analyze only those 
packets that are of interest to us. Packet filtering involves 
establishing a set of packet filter rules. If a packet matches the 
rules, the packet will be accepted; otherwise, it will be 
dropped. Because the Berkeley Packet Filter (BPF) [3] is the 
most widely used packet filter, we use BPF as the packet filter. 
The richness and expressiveness of the BPF syntax allows us to 
filter various types of network traffic. 
 

 
Figure 2 Packet Filtering Kernel 

 
In this poster, we described our architectural approach in 

developing a generic GPU-assisted network traffic monitoring 
and analysis capability. Previously, we have been using GPU 
to analyze network flow records [4]. This project is the next 
step in our research into network monitoring with GPUs. 
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