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Chameleon fields, which are scalar field dark energy candidates, can evade fifth force constraints
by becoming massive in high-density regions. However, this property allows chameleon particles to
be trapped inside a vacuum chamber with dense walls. Afterglow experiments constrain photon-
coupled chameleon fields by attempting to produce and trap chameleon particles inside such a
vacuum chamber, from which they will emit an afterglow as they regenerate photons. Here we discuss
several theoretical and systematic effects underlying the design and analysis of the GammeV and
CHASE afterglow experiments. We consider chameleon particle interactions with photons, Fermions,
and other chameleon particles, as well as with macroscopic magnetic fields and matter. The afterglow
signal in each experiment is predicted, and its sensitivity to various properties of the experimental
apparatus is studied. Finally, we use CHASE data to exclude a wide range of photon-coupled
chameleon dark energy models.

I. INTRODUCTION

Though the existence of the cosmic acceleration has
been confirmed repeatedly, its cause remains a mystery.
The simplest explanation, a cosmological constant Λ, is
completely consistent with the data [1–4], but leads to
more questions. Why is Λ some 120 orders of magni-
tude below the Planck density? If some new physics can-
cels this energy density, then why isn’t the cancellation
complete? Several answers have been proposed [5–12],
with the simplest among them reducing at low energies
to a single effective scalar field tunneling among the large
number of local minima of its potential. Beyond these
specific models, it is worthwhile to ask whether generic
low-energy effective theories, possibly responsible for the
cosmic acceleration, would predict any effects detectable
in laboratory experiments.
A single scalar field “dark energy” is the simplest dy-

namical generalization of Λ, but most “natural” models
mediate unscreened fifth forces which have been excluded
over a large range of scales [13]. Thus, unless these mod-
els are prevented by symmetry [14, 15] from coupling
to matter, they must possess a mechanism for screening
fifth forces locally. Chameleon theories are scalar-tensor
theories with potentials chosen to make their effective
masses larger in higher-density regions of the universe,
allowing them to “hide” from fifth force constraints [16–
22]. Symmetron theories [23–25] screen their fifth forces
through a restoration of symmetry at high densities,
while Galileons [26, 27] have non-canonical kinetic terms
which reduce their effective matter couplings.
Chameleons were the first of these screened theories to

be discovered, and are likely the best-studied. If they
couple to photons as expected [28], then the very ef-
fect which enables them to evade fifth force constraints
also allows chameleons produced through photon oscil-
lation to be trapped inside a vacuum chamber. Photon
regeneration from such chameleons could produce a de-
tectable afterglow [29–31] which has been constrained by
the GammeV and GammeV-CHASE (hereafter CHASE)

experiments [31–35]. The goal of the current work is to
study the behavior of chameleon particles in afterglow
experiments. Specific examples are based upon CHASE,
and constraints use CHASE data, but we aim to provide
a general discussion of the design and analysis of after-
glow experiments applicable to future experiments of this
form.
Afterglow experiments rely on two effects: oscillation

and reflection. The rate at which a chameleon particle
passing through a classical, macroscopic magnetic field
oscillates into a photon, and vice versa, has been com-
puted semiclassically [34, 36]. Although the smooth vari-
ation of the magnetic field inside an afterglow experiment
could lead to the adiabatic suppression of oscillation, we
show that the quantum measurement of particle content
made by glass windows inside the magnetic region al-
most completely mitigate this suppression. Thus the
chameleon production rate and the photon regeneration
rate may be computed.
Meanwhile, the reflection of a chameleon particle from

a homogeneous region of high density is simply a mat-
ter of energy conservation; a particle with a given energy
cannot enter a region of space where its effective mass
exceeds its total energy. We consider a real solid as a
lattice of atomic nuclei surrounded by a nearly homo-
geneous electron cloud and show that such a solid may
be approximated as homogeneous for the purpose of de-
termining whether chameleons reflect. Such reflection
allows chameleons to be “bottled” in a vacuum cham-
ber with dense walls, where they remain until regener-
ating photons. Moreover, we show that averaging over
photon polarizations washes out the dependence of the
afterglow signal on the potential-dependent chameleon-
photon phase, which was calculated by [37]. Thus the
predicted afterglow signal is relatively robust with re-
spect to the chameleon potential at high densities.
Finally, we predict the afterglow signal for CHASE us-

ing a Monte Carlo simulation which we cross-check
against an analytic approximation improving upon [34].
This prediction is shown to be unaffected by chameleon
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scattering from atoms inside the laboratory vacuum, ro-
bust with respect to surface roughness in the chamber
walls, and relatively insensitive to chamber properties
such as the reflectivity of the walls and the geometry of
the apparatus. CHASE data are analyzed using the pro-
file likelihood method [38]. The model-independent con-
straints of [32] are reproduced and elaborated upon, then
extended to a wider variety of chameleon models such as
dark energy models. We then place CHASE constraints
in context by comparing them to other chameleon con-
straints as well as to forecasts.
The paper proceeds as follows. After introducing

photon-coupled chameleon theories in Sec. II, we study
chameleon particle interactions with Fermions, photons,
and other chameleon particles in Sec. III. Section IV looks
at chameleon particle reflection from barriers of mat-
ter. The computation of [34] is corrected and improved
upon in Sec. V, which uses simple approximations for the
chameleon initial conditions and the magnetic field. A
more accurate model of the magnetic field, and the effects
of windows inside the magnetic field region, are studied
in Sec. VI. Sec. VII compares GammeV and CHASE. A
Monte Carlo simulation of CHASE is used in Sec. VIII
to compute decay and afterglow rates as well as to study
the sensitivity of the afterglow signal to properties of the
vacuum chamber. Sec. IX presents the data analysis, dis-
cusses systematic uncertainties, and uses CHASE data to
constrain several chameleon field models. We conclude in
Section X.

II. BASICS OF CHAMELEON PHYSICS

A. Action and effective potential

We study photon-coupled scalar chameleon theories
with actions S = Sφ + Sγ + Sm of the following form:

Sφ =

∫

d4x
√−g

[

1

2
M2

PlR− 1

2
∂µφ∂

µφ− V (φ)

]

(1)

Sγ =

∫

d4x
√−g

[

−1

4
exp

(

βγφ

MPl

)

FµνF
µν

]

(2)

Sm =

∫

d4x
√−g

[

Lm

(

exp

(

2βmφ

MPl

)

gµν , ψ
i
m

)]

. (3)

Here, Lm is the Lagrangian density for matter fields ψi

moving along geodesics of the metric exp(2βmφ/MPl)gµν .
This is equivalent to a coupling between φ and the trace
of the matter stress tensor Tµν . Since φ will vary by much
less than MPl/βm and MPl/βγ in cases of interest, the
precise functional forms of the couplings to matter and
photons are not important. Expanding exp(βγφ/MPl)
and exp(2βmφ/MPl) to linear order in the expressions
for Sγ and Sm respectively, we find the usual photon and
matter actions plus linear couplings to the chameleon
field.
In the presence of an electric field ~E(~x) and a mag-

netic field ~B(~x) as well as a nonrelativistic matter den-

sity ρ(~x) = −T µµ , these couplings give the scalar field an
effective potential

Veff(φ, ~x) = V (φ) +
1

2

βγφ

MPl

(

| ~B|2 − | ~E|2
)

+
βmφ

MPl
ρ (4)

excluding terms suppressed by higher powers of βφ/MPl.
The scalar field equation of motion is then

∂µ∂µφ =
∂Veff
∂φ

= V,φ+
βγ

2MPl

(

| ~B|2 − | ~E|2
)

+
βmρ

MPl
. (5)

B. Chameleon and thin-shell effects

Consider a static matter density ρ(~x, t) = ρ(~x) ≫
| ~B|, | ~E|. The scalar equation of motion (5) reduces to

∇2φ = V,φ +
βm
MPl

ρ(~x). (6)

If V,φ and its derivatives are negligible, then (6) is sim-
ilar in form to the Poisson equation ∇2Ψ = ρ(~x)/(2M2

Pl)
for the gravitational potential Ψ. The requirement that
φ and Ψ remain finite as |~x| → ∞ implies that φ =
2βmMPlΨ+ constant. As the size and density of the mat-
ter distribution sourcing φ and Ψ increases, these fields
also grow. This regime of negligible V, φ is known as
the linear regime of the chameleon since the equation of
motion is linear.
Now suppose that, as φ grows beyond a certain point,

V,φ < 0 begins to increase in magnitude rapidly and
nonlinearly with φ. Then V,φ will partially cancel the
matter source on the right hand side of (6), slowing
the growth of the field φ. For a sufficiently large and
dense object, φ will approach its bulk solution defined by
V,φ(φbulk) + βmρ/MPl = 0, turning off the source alto-
gether. This is known as the nonlinear regime; nonlin-
earities in the equation of motion (6) are essential to de-
termining the behavior of the field. The nonlinear regime
is characterized by a rapid growth in the effective mass

meff = V
1/2
,φφ of the field. Since a large mass decreases

the range of the force mediated by φ, the field is able
to “hide” from fifth force constraints, an effect known as
the chameleon effect.
Next, consider an object of constant density ρ0. The

change in the field from its background value, φ(~x) −
φ∞, will be approximately 2βmMPl(Ψ(~x) − Ψ∞) in the
linear regime and will saturate at φbulk(ρ0)− φ∞ in the
nonlinear regime. We know that the nonlinear regime
has been reached at a point ~x inside the object when

|φbulk(ρ0)− φ∞| ≪ 2βmMPl|Ψ(~x)−Ψ∞|. (7)

Since the source on the right hand side of (6) vanishes
in the nonlinear regime, the field φ outside the object is
effectively sourced only by the portion of the object that
is in the linear regime. That is, the field “sees” only a
thin outer shell of a sufficiently large and dense object.
Such an object is said to be in the nonlinear regime or to
have a thin shell.
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C. Power law and dark energy potentials

In order to provide concrete examples, we study
chameleon potentials of the power law form

V (φ) = g |φ|n , (8)

with g > 0 and either n < 0 or n > 2. Given our
convention βm > 0, the sign σn = signum(φ) is pos-
itive for n < 0 and negative for n > 2. Eq. (8) is
useful as a large-field approximation to the potential
M4

Λ exp(κMN
Λ /φ

N ) ≈M4
Λ+κM4+N

Λ φ−N frequently used
in the literature, in which MΛ = 2.4 × 10−3 eV is the
dark energy scale and κ is a dimensionless constant. We
refer to the power-law-plus-constant model

Vde(φ) =M4
Λ + g |φ|n , g =

{

λ/4! for n = 4,
κM4−n

Λ for n 6= 4,
(9)

where κ and λ are dimensionless constants, as
“chameleon dark energy.” We will assume κ = 1 for
n 6= 4 unless stated otherwise; such a model uses the
same energy scale MΛ in the constant and φ-dependent
terms of the potential.
The field which minimizes the effective potential (4) in

a bulk of matter density ρmat and electromagnetic field

Lagrangian density ρL,EM = 1
2βγM

−1
Pl (| ~B|2 − | ~E|2) is

φbulk = σn

(

βmρmat + βγρL,EM

|n|gMPl

)
1

n−1

. (10)

Since ρmat ≫ ρL,EM in almost all cases, φbulk is typi-
cally a function of ρmat alone. Increasing ρmat causes the
magnitude of φ to decrease for n < 0 and to increase for
n > 2.
Differentiating V , we obtain V,φ = nσng|φ|n−1, which

is always negative as appropriate to a chameleon theory.
The effective mass m2

eff = V,φφ(φbulk) is found by differ-
entiating once again:

meff(φbulk) =
√

n(n− 1)g

(

βmρmat + βγρL,EM

|n|gMPl

)

n−2
2n−2

.

(11)
This increases with density if n < 0 or n > 2.

D. Chameleon-photon oscillation

Consider the passage of a chameleon particle through
a region of constant matter density ρmat and external

magnetic field ~B0, with no electric field. Variation of the
action (2) with respect to the electromagnetic field leads
to

∂µ

(

exp

(

βγφ

MPl

)

Fµν
)

, (12)

with the other two of Maxwell’s equations unchanged.
Oscillation between chameleon particles and photons can

be described by perturbing about the background fields.
Writing these perturbations in terms of a dimension-
less chameleon amplitude ψφ and a dimensionless pho-

ton amplitude ~ψγ in the same direction as the mag-

netic field perturbation, we have (−∂2/∂t2 − ~k2)~ψγ =

kβγB0M
−1
Pl k̂ × (x̂× k̂)ψφ for a plane wave with momen-

tum ~k = kk̂. We have assumed without loss of gener-

ality that ~B0 = B0x̂. Here, k̂ and x̂ are unit vectors.
In the relativistic, weak-mixing approximation, this is
solved by [34, 36]

~ψγ(t) = −ie−ikt−
im2

eff t

4k
2kβγB0

m2
effMPl

sin

(

m2
efft

4k

)

~a(k̂) (13)

Pγ↔φ =
∣

∣

∣

~ψγ

∣

∣

∣

2

= C2 sin2
(

m2
efft

4k

)

∣

∣

∣
~a(k̂)

∣

∣

∣

2

(14)

~a(k̂) = k̂ × (x̂× k̂) (15)

C = 2kβγB0M
−1
Pl m

−2
eff . (16)

Here, Pγ↔φ(t) is the probability that a particle begin-

ning in a pure chameleon state ~ψγ(0) = 0 at time t = 0
will be a photon when measured at time t. C is some-
times written in terms of the “mixing angle” ̟, with
C = sin(2̟). Note that |~a|2 is zero for a plane wave
travelling parallel to the magnetic field and one for a
wave perpendicular to the field. In the low-mass limit,

for a wave with ~k ⊥ ~B0, the oscillation probability sim-
plifies to Pγ↔φ ≈ β2

γB
2
0t

2/(4M2
Pl). The probability for a

particle beginning in a pure photon state to oscillate into
a chameleon is also given by (14).

E. An idealized afterglow experiment

A chameleon particle with energy ω will be excluded
by energy conservation from a region in which its effec-
tive mass meff ≫ ω. (We will study this exclusion in
greater detail in Sections III and IV.) Consider an evac-
uated chamber whose internal mass density is ρvac and
whose walls have a density ρmat. If meff(φbulk(ρvac)) ≪
ω ≪ meff(φbulk(ρmat)), then the particle will propate
freely inside the chamber, but will not be able to pen-
etrate its walls. That is, the chameleon particle will be
trapped inside the chamber. We refer to the condition
ω ≪ meff(φbulk(ρmat)) as “chameleon containment.”
Afterglow experiments rely on oscillation and contain-

ment to produce, trap, and detect chameleon scalar fields.
Figure 1 shows a simple, idealized afterglow experiment.
An evacuated cylindrical chamber has metal walls and
two glass windows. Matter densities in the walls and
windows are high enough that the chameleon contain-

ment condition is satisfied. A large magnetic field ~B0

inside the chamber points in a direction perpendicular to
the cylinder axis.
In the production phase of the experiment, shown in

Fig. 1 (a), photons are streamed through the chamber
via the windows. The background magnetic field al-
lows some of them to oscillate into chameleons. Since
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FIG. 1: An idealized afterglow experiment. (a): Produc-
tion phase. Photons stream through chamber via entrance
and exit windows, occaisionally oscillating into chameleon
particles which are trapped inside. (b): Afterglow phase.
The photon source is turned off and a detector is uncov-
ered. Chameleon particles oscillate back into photons, which
emerge from the chamber and reach the detector.

these chameleon particles are trapped, a population of
chameleons builds up inside the chamber. In the after-
glow phase, Fig. 1 (b), the photon source is turned off
while the magnetic field is maintained. Chameleon parti-
cles propagating in this magnetic field oscillate back into
photons. These regenerated photons may escape from
the chamber through the windows, leading to an “after-
glow” of photons from the chamber.
In order to predict the afterglow signal expected for a

given chameleon model in such an experiment, we must
compute the rate Γdec at which the chameleon population
decays by photon regeneration, as well as the rate Γaft

at which each chameleon particle produces detectable af-
terglow photons. (We assume that photon regeneration
is the dominant chameleon loss mode; we will consider
another possibility in Sec. III D.) Given these rates, the
expected afterglow signal is shown in [34] to be

Faft(t) =
FγPγ↔φΓaft

Γdec

(

1− e−Γdectprod
)

e−Γdect (17)

during the afterglow phase, t > 0. Here Fγ is the rate at
which photons are streamed through the chamber during
the production phase, and tprod is the duration of the
production phase.
Sections V and VIII present accurate calculations of

Γdec and Γaft for realistic afterglow experiments. Here
we can compute very rough estimates for our idealized
experiment from Fig. 1. Note that these estimates will
not even be correct at the order-of-magnitude level; ex-
perimental constraints must be based on the accurate cal-
culations of Sec. VIII. If the total chamber length is ℓtot,
then the total chameleon-photon conversion probability
at low meff , averaging over all angles, will be ∼ Pγ↔φ =
β2
γB

2
0ℓ

2
tot/(4M

2
Pl) to within a few orders of magnitude.

The time taken for a relativistic chameleon particle to
travel between the windows, again averaging over angles,
will be of order ℓtot. The decay rate will be the conver-
sion probability per unit time, ∼ β2

γB
2
0ℓtot/(4M

2
Pl). The

fraction of these photons reaching a detector of size rdet
outside the chamber will be of order (rdet/ℓtot)

2. For
ℓtot ∼ 1 m and rdet ∼ 1 cm, we would therefore expect

the afterglow rate to be about four orders of magnitude
less than the decay rate.

III. INTERACTIONS OF CHAMELEON

PARTICLES

The goal of this section is to compute the cross section
for a chameleon particle to interact with other particles
which it would encounter in the diffuse gas inside the
vacuum chamber. In particular, we are interested in the
chameleon-atom scattering cross section. The chameleon
particle can interact directly with the proton and electron
which make up a hydrogen atom. It can also scatter from
the static chameleon field sourced by the mass density of
the atom. We shall see that the latter effect is dominant,
and that the cross section is approximately the square of
the proton radius, so that chameleon-atom scattering is a
negligible effect in an afterglow experiment. We conclude
with a discussion of interactions between two chameleon
particles.

A. Scattering from Fermionic point-particles

Consider a scalar particle of fixed mass mφ scattering
from a Fermion of mass mF. The matter coupling from
(3), with−T µµ = mFψ̄ψ, implies a Yukawa interaction be-
tween the scalar and the Fermion with coupling constant
gF = βmmF/MPl. Assuming that βm ≪ 1019, this will
be small for nucleons and lighter Fermions. Since the s-
and t-channel Feynman diagrams have two vertices, the
cross section σφψ→φψ will be suppressed by four powers
of gF.

Chameleon-photon oscillation is strongly suppressed
for nonrelativistic chameleons, since the chameleon and
photon do not remain in phase. Thus we are interested
in the case mφ ≪ pφ, where pφ is the chameleon momen-
tum. Furthermore, chameleons in afterglow experiments
are produced by lasers and detected in photomultiplier
tubes, so we expect pφ ∼ 1 eV, much less than the masses
of electrons and nucleons. The limit applicable to after-
glow experiments is mφ ≪ pCM ≪ mF, where pCM ∼ pφ
is the particle momentum in the center-of-mass frame.
To lowest order the cross section is

σφψ→φψ =
g4F

24πm2
F

. (18)

For a proton or neutron, treated as a point particle,
this is 6g4F × 10−34 m2 with gF = 4 × 10−19βm ≪ 1. At
fixed βm, σφψ→φψ scales as m2

F, so the cross section for
an electron is smaller by six orders of magnitude. Since
electrons and nucleons are present in roughly equal num-
bers, we may neglect the scattering between chameleons
and electrons treated as point particles.
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B. Chameleon scattering from background

chameleon field

Given a static matter density ρ0(~x) (assuming negligi-

ble | ~B| and | ~E|) with corresponding static solution φ0(~x),
we can linearize the equation of motion (5) about φ0.
With φ(~x, t) = φ0(~x) + δφ(~x, t) we find

(

�−meff(~x)
2
)

δφ = 0. (19)

This tells us that, as the effective mass meff(~x) =
meff(φ0(~x)) = V,φφ(φ0(~x))

1/2 varies with position, the

total energy E = (p2 +m2
eff)

1/2 of a chameleon particle
remains constant.
As a chameleon particle approaches an object with a

thin shell, nonlinearity in V,φ causes meff to rise sharply.
Energy conservation prevents a chameleon particle of en-
ergy E from entering a region in which meff > E; such a
particle will bounce off of the object. Thus an object of
density ρ0 with a thin shell will scatter chameleon par-
ticles with energies less than meff(φbulk(ρ0)). Although
tunneling is possible, it is negligible for macroscopic ob-
jects such as the glass windows used in afterglow experi-
ments.
The scattering of chameleon particles from the back-

ground field φ0 of a massive object is used by after-
glow experiments to trap chameleon particles. An evac-
uated chamber with a “vacuum” of density ρvac allows
chameleon particles of energy E > meff(φbulk(ρvac)).
These same particles will bounce from the chamber walls,
of density ρmat, if the containment condition

E < meff(φbulk(ρmat)) (20)

is satisfied. In GammeV-CHASE ρvac ∼ 10−14 g/cm3

and ρmat ∼ 1 g/cm3. This difference of fourteen orders of
magnitude means that chameleon particles with a large
range of potentials can be trapped inside the vacuum
chamber.

C. Scattering from atoms

We have studied chameleon scattering from pointlike
Fermions as well as extended matter distributions. An
atom is both. Here, we model the proton and the electron
cloud as uniform-density spheres of radius rP = 0.83 fm
and rBohr = 0.529 Å, respectively, in a laboratory vac-
uum of density ρvac = 10−14 g/cm3. We compare the
resulting cross sections to those obtained in Sec. III A.
In our approximation, the electron cloud, with

mass melec = 511 keV/c2, has a density ρelec =
3melec/(4πr

3
Bohr) = 1.5 × 10−3g/cm3. Defining the

gravitational potential to be zero at infinity, we have
Ψelec(0) = −ρelecr2Bohr/(4M

2
Pl) = −1.9 × 10−47 at the

center of the cloud. The proton has mass mprot =
938 MeV/c2, mean density ρprot = 7.0× 1014g/cm3, and
gravitational potential Ψprot(0) = −2.2 × 10−39. The
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FIG. 2: Minimum value of the matter coupling βm required
for the electron cloud and the proton, respectively, to have
thin shells, in the case of a chameleon dark energy V (φ) =
M4

Λ +M4−n
Λ |φ|n. (Top): n > 2. (Bottom): n < 0.

electron cloud and the proton, respectively, will have thin
shells only if

|φbulk(ρelec)− φ∞| < 2βmMPl|Ψelec(0)|. (21)

|φbulk(ρprot)− φ∞| < 2βmMPl|Ψprot(0)|. (22)

Recall that an object with a thin shell represents a large
perturbation to the background chameleon field, from
which incident chameleon particles may scatter.
Consider power law potentials of the form (8). If n > 2,

then the left hand sides of (21, 22) will be dominated
by |φbulk|. For chameleon dark energy, V (φ) = M4

Λ +

M4−n
Λ |φ|n, the thin shell condition becomes

βm >

(

ρ

|n|M3
ΛMPl

)
1

n−2
(

MΛ

2MPl|Ψ|

)
n−1
n−2

(23)

with the density ρ and gravitational potential Ψ appro-
priate to each object. Figure 2 (Top) shows the minimum
values of βm necessary for each object to have a thin
shell. If n < 0, then the left hand sides of (21, 22) will
be dominated by the background field value |φ∞|. As-
suming that the vacuum chamber containing the atom
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is much larger than the chameleon Compton wavelength
meff(φbulk(ρvac))

−1 at the vacuum density ρvac, the thin
shell condition is just (23) with ρ = ρvac. Fig. 2 (Bot-
tom) shows the minimum βm required for a thin shell in
the n < 0 case.

Colliders already exclude βm & 1015 for similar
chameleon models [28]. In the remaining parameter
space, the electron cloud will only have a thin shell when
n is tuned to be very close to zero, −10−2 . n < 0,
and we do not consider this case further. The proton
does have a thin shell in a substantial fraction of the
allowed parameter space. Thus a chameleon particle in-
cident upon a hydrogen atom will pass right through the
electron cloud, which represents only a small perturba-
tion to the background mass, and will interact solely with
the proton.

In order to find the background chameleon field φ0(r)
due to the proton, we solve (6) for the spherical tophat
density distribution by which we approximate the pro-
ton. Since the boundary conditions φ′0(0) = 0 and
limr→∞ φ(r) = φ∞ are defined at different r, we solve (6)
numerically using the shooting method: we guess a value
of φ0(0), solve to find the field at large r, and refine
our guess. Since scattering will be important only when
the proton has a thin shell, meff(φbulk(ρprot))r ≫ 1, we
focus on this regime. We immediately run into numer-
ical difficulties due to the exponential sensitivity of the
large-r field to the central value. This sensitivity can
be seen by linearizing φ0(r) = φbulk(ρprot) + δφ(r) in-
side the proton, resulting in ∇2δφ = m2

eff,protδφ with

meff,prot = meff(φbulk(ρprot)). The linearized equa-
tion has the one-parameter family of solutions δφ(r) =
F sinh(meff,protr)/(meff,protr), valid as long as |δφ| ≪
|φbulk(ρprot)|. Although this linear approximation will
be inapplicable at the proton’s surface, r = rP, it will be
valid for r < rP−∆r for some ∆r. In the thin shell case,
we can choose m−1

eff,prot ≪ ∆r ≪ rP, begin our numerical
solution at rP −∆r using the linear approximation, and
apply the shooting method to F rather than φ(0).

Figure 3 shows the result of this calculation for a
chameleon dark energy with n = −1 and βm = 1012. For
this model, φbulk(ρprot) = 2.5× 10−16 eV and meff,prot =
9.9 × 1016 eV, implying a Compton wavelength of
m−1

eff,prot = 2.4×10−9rP. Choosing ∆r ≈ 10−2rP, we find

using the shooting method that log(F/φbulk(ρprot)) =
−8.58 × 109. At r = rP − ∆r, log |δφ/φbulk(ρprot)| =
−8.17 × 109, well within the regime of validity of the
linearized equation of motion.

This numerical result is consistent with theoretical ex-
pectations. Since the effective mass inside the proton
deviates from meff,prot for r > rP − ∆r, the proton has
a thin shell of thickness . ∆r, which includes a frac-
tion ≈ 3∆r/rP of its mass. The surface gravitational

potential of this mass shell is Ψshell = − 3mprot∆r

8πM2
Plr

2
P

=

−4.5 × 10−41, or of order 1% of the total gravitational
potential. Then 2βm|Ψshell| = 0.2 eV, of the order of
φ∞ = φbulk(ρvac) = 0.07 eV. Therefore this shell alone is
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FIG. 3: Chameleon field and effective mass for a proton,
approximated as a uniform-density ball of mass mprot =
938 MeV/c2 and radius rP = 0.83 fm. The potential V (φ)
is that of a chameleon dark energy with n = −1 and a matter
coupling βm = 1012. A vertical dotted line shows the surface
of the proton.

enough to saturate the chameleon field inside the proton.

Suppose that a chameleon particle approaches the pro-
ton from large r with an energy Eφ ∼ 1 eV char-
acteristic of a laser oscillation experiment. Evidently
from Fig. 3, the effective mass will rise to equal Eφ at
r ≈ rP − ∆r ≈ rP. Thus the incoming chameleon par-
ticle will scatter off of a background chameleon “ball”
of radius approximately rP, implying a cross section
of 4πr2P. In our coupling constant regime of interest,
βm . 1015, for which gF ≪ 1, this will be much larger
than σφψ→φψ ∼ g4F/m

2
prot ∼ g4Fr

2
P from (18). There-

fore, the cross section for chameleon-hydrogen scatter-
ing is dominated by semiclassical scattering of chameleon
particles by the background chameleon potential of the
proton, which is well-approximated by a hard sphere of
radius rP. This is true for any chameleon model for which
the proton, but not the electron cloud, has a thin shell.

For laser oscillation experiments such as GammeV-
CHASE, chameleon-atom scattering has a negligible ef-
fect on the chameleon afterglow signal. The chameleon-
atom scattering rate for a vacuum density of ρvac =
10−14 g/cm3 made up almost entirely of hydrogen atoms
is σn = 4πr2Pρvac/mprot = 1.6× 10−5Hz, or of order one
scattering event per chameleon per 1012 passes through
a 10 meter chamber. Thus we expect atom scattering to
correct our predicted afterglow signal at the 10−12 level.
Incidentally, even if the electron cloud also had a thin
shell, and we replaced rP in the above expression by the
Bohr radius, the rate would go up by (rBohr/rP)

2 ∼ 1010.
Thus atom scattering would still only be a percent-level
effect.
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D. Chameleon fragmentation

Fragmentation is the process by which one chameleon
particle interacts with another to produce more than two
chameleon particles. Since photomultiplier tubes are sen-
sitive only to energies of order 1 eV, repeated fragmen-
tation would result in a population of chameleon parti-
cles with too little energy to produce detectable photons.
Thus fragmentation lowers the signal expected in after-
glow experiments.
Let the cross section for chameleon fragmentation be

σfrag. The fragmentation rate of chameleons at an inital

energy of ω, Γfrag = N
(ω)
φ σfrag/Vvac ≡ N

(ω)
φ sfrag, depends

on the number N
(ω)
φ of chameleons at that energy as well

as on the volume Vvac of the vacuum chamber; sfrag is
the cross section per unit volume.

Next we compute N
(ω)
φ as a function of time for a

typical afterglow experiment. At initial time −tprod,
the number of chameleon particles is zero. During the
production phase, −tprod < t ≤ 0, photons of energy
ω ∼ 1 eV are streamed through the vacuum chamber
at a rate Fγ , which is about 8.8 × 1018 Hz in CHASE.
Each of these has a probability Pγ↔φ of oscillating into a
chamelelon particle. At time t = 0, the photon source is
turned off, and the population of detectable chameleons

decreases from its peak of N
(ω)
φ (0) due to photon regen-

eration (with a rate Γdec) as well as fragmentation. At
t > 0, the afterglow phase of the experiment, a detector
outside the chamber can look for evidence of chameleon-
photon oscillation.

The evolution of N
(ω)
φ is described by

dN
(ω)
φ

dt
= FγPγ↔φΘ(−t)− ΓdecN

(ω)
φ − sfragN

(ω)
φ

2
(24)

where Θ is the step function. In the production phase
t ≤ 0,

N
(ω)
φ =

2FγPγ↔φ sinh
(

Γtot(t+tprod)
2

)

Γtot cosh
(

Γtot(t+tprod)
2

)

+ Γdec sinh
(

Γtot(t+tprod)
2

)

(25)
where Γ2

tot ≡ Γ2
dec + 4FγPγ↔φsfrag. In the afterglow

phase t > 0,

N
(ω)
φ =

N
(ω)
φ (0)

(

1 +
sfragN

(ω)
φ

(0)

Γdec

)

eΓdect − sfragN
(ω)
φ

(0)

Γdec

. (26)

At times much smaller than the decay time, 0 <
t ≪ Γ−1

dec, the chameleon population is approximately

N
(ω)
φ (0)/(1 + (sfragN

(ω)
φ (0) + Γdec)t); fragmentation will

dominate over decay if sfragN
(ω)
φ (0) ≫ Γdec. Since the

fragmentation rate decreases with N
(ω)
φ , decays via pho-

ton regeneration will eventually come to dominate, lead-

FIG. 4: Fragmentation processes in φ4 chameleon models.

ing to a chameleon population of N
(ω)
φ (0)e−Γdect/(1 +

sfragN
(ω)
φ (0)/Γdec).

Thus far our discussion has used the purely phe-
nomenological parameter σfrag. For the particular case
of φ4 theory, we can estimate the fragmentation cross
secton from processes such as those in Figure 4 using di-
mensional analysis, σfrag = αfragλ

4/ω. Here αfrag ≪ 1
is a dimensionless numerical factor resulting from an in-
tegral over the four-body phase space of outgoing parti-
cles. We assume αfrag = 1 in order to be conservative;
as we shall see in Section IX, CHASE constraints are
not competitive with Casimir force constraints for this
potential, so a lengthy numerical calculation of αfrag is
unwarranted. This order-of-magnitude calculation shows
that fragmentation cannot be neglected in CHASE for
λ & 0.001.

In principle, any potential of the forms (8,9) can be ex-
panded in Taylor series about the expectation value φbulk
of the field in a given matter density. Consider chameleon
dark energy with n = −1. The ℓ-th order term in the

series for ℓ > 4, (−1)ℓM5
Λφ

−(ℓ+1)
bulk (φ − φbulk)

ℓ ≡ vℓ(φ −
φbulk)

ℓ, which describes a process in which two chameleon
particles fragment into ℓ−2, should contribute a quantity
σℓ ∼ |vℓ|2ω2ℓ−10 = (MΛ/ω)

10(ω/φbulk)
2ℓ/φ2bulk to σfrag,

by dimensional analysis. The prefactor (MΛ/ω)
10 ∼

10−30 in CHASE. However, for typical parameter val-
ues, φbulk can be less than ω, implying that σℓ → ∞ as
ℓ → ∞. The same is true for other n < 0; φbulk is typ-
ically within several orders of magnitude of the energy
scale MΛ in the potential.

The underlying problem is that chameleon theories are
low-energy effective field theories whose cutoff energies
can be below the particle energy ω ∼ 1 eV in an afterglow
experiment. A proper calculation of the fragmentation
cross section would require a more fundamental theory,
but UV completions of chameleon theories are not yet
well-understood [39], so such a calculation is beyond the
scope of this paper. Henceforth we neglect chameleon
fragmentation for all potentials other than λ

4!φ
4.



8

IV. REFLECTION FROM A BARRIER

A. A barrier as a lattice of atoms

Section III B showed that a chameleon particle of en-
ergy E will be excluded by, and will therefore reflect
from, a region in which the effective chameleon mass is
greater than E. For a homogeneous object of density ρ0
which satisfies the nonlinearity condition (7), this reflec-
tion condition becomes meff(φbulk(ρ0)) > E.
However, ordinary matter is not homogeneous, and ho-

mogeneity is not necessarily a good approximation in the
case of a nonlinear field such as the chameleon. Mota and
Shaw, in references [21, 22], considered matter as a cu-
bic lattice of homogeneous spheres of radius r0, with a
lattice spacing d0 ≫ r0. Since the spheres approximate
atomic nuclei, we expect r0 ∼ 1 fm and d0 ∼ 1 Å. The
mean density ρ0 =M0d

−3
0 of such matter depends on the

mass M0 of each sphere as well as the spacing d0, but
is independent of r0. Suppose that at some large value
of r0 one sphere considered individually is in the linear
regime of a chameleon theory. As r0 is decreased beyond
a certain point, the sphere will acquire a thin shell, and
the chameleon will effectively “see” only a fraction of it.
Thus the nonlinear chameleon theory will be sourced by
a density smaller than the mean density ρ0, and its mass
will be smaller than meff(φbulk(ρ0)). Refs. [21, 22] ap-
proximate the actual chameleon mass inside such matter
as the lesser of meff(φbulk(ρ0)) and

mcrit ≈
√

3|n− 1|d−1
0 (r0/d0)

q(n)/2, (27)

with q(n) = min(1, n−4
n−1 ), for a power law or chameleon

dark energy potential.
Well inside the nonlinear regime, when the fraction

of each nucleus seen by the chameleon is much less than
melec/mprot ∼ 10−3, the chameleon will effectively ignore
the nuclei and be sourced by the approximately homoge-
neous gas of electrons making up the solid. This gas has a
density ρ0,e = ρ0(melec/mprot)(Z0/A0) where Z0 and A0

are, respectively, the atomic number and mass number
of the atoms making up the lattice. Even a highly non-
linear chameleon field should have a mass no lower than
meff(φbulk(ρ0,e)). Thus we approximate the chameleon
mass in such a lattice by

mlattice ≈ max
[

meff(φbulk(ρ0,e)),

min(mcrit, meff(φbulk(ρ0)))
]

. (28)

Figure 5 (Top) shows mlattice as a function of the mat-
ter coupling βm for several power law dark energies.
Three regimes are seen for each model. At low βm the
chameleon effectively sees a homogeneous solid, and the
mass corresponds to the bulk field value expected for such
a solid. At intermediate βm the mass flattens out as a
greater portion of each atomic nucleus is “hidden” be-
hind a thin shell. At the largest βm, the homogeneous
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FIG. 5: Chameleon mass in matter, modelled as a lattice of
spherical nuclei in a homogeneous gas of electrons. In each
plot, the horizontal dotted line shows m = ω = 2.33 eV, the
chameleon energy in CHASE. (Top) Approximate chameleon
mass. (Bottom) Critical mass of refs. [21, 22], the mass above
which the inhomogeneous nature of the matter becomes ap-
parent to the chameleon field.

electron gas dominates the density seen by the chameleon
field, causing the chameleon mass to rise with βm once
again.

In each case, the mass required for chameleon contain-
ment, meff = ω = 2.33 eV in the case of CHASE, lies in
the low-coupling regime. Figure 5 (Bottom) generalizes
this conclusion to chameleon dark energy models of ar-
bitrary n. Thus we are justified in treating the chamber
wall as a homogeneous solid of density ρ0 for the purpose
of testing the containment condition.

B. Phase change due to reflection

Let there be a vacuum ρ = 0 in the region x ≥ 0
and a constant density ρmat at x < 0. This is a simple
model for a planar slab thick enough that the chameleon
reaches its bulk value. Given this density and a power
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law potential, (6) is solved in the region x ≥ 0 by

φ0(x) = φsurf

(

1 +
√

g/2|n− 2|φ
n−2
2

surf x
)− 2

n−2

(29)

φsurf = (1− 1/n)φbulk(ρmat) (30)

meff(x) = meff,surf

(

1 +
|n− 2|meff,surf x
√

2n(n− 1)

)−1

(31)

meff,surf =

√

g(n− 1)n−1

nn−3

(

−βmρmat

ngMPl

)
n−2
2n−2

, (32)

where a subscript “surf” denotes the value of a function
at the surface x = 0.
We wish to find solutions to (5) representing plane

wave perturbations to φ0(x) far away from the wall,
φ − φ0 ∝ e−iωt when x ≫ 0. With the definition
φ(x, t) = φ0(x) + e−iωtδφ(x), (19) reduces to

δφ′′(x) =

(

ℓ2

(x+ ℓω/meff,surf)2
− 1

)

ω2δφ, (33)

with the length ℓ = ω−1
√

2n(n− 1)/|n− 2| of order the
wavelength of the plane wave. This is solved by

δφ = x̃1/2 (c1Jα(x̃) + c2Yα(x̃)) (34)

x̃ = ω(x+ ℓω/meff,surf) (35)

α2 = ω2ℓ2 + 1/4 (36)

where Jα and Yα are, respectively, Bessel functions of the
first and second kind, of order α. At the surface of the
wall, x = 0, so x̃ = ℓω2/meff,surf . We expect ωℓ ∼ 1 while
ω/meff,surf ≪ 1, so x̃ ≈ 0 at the wall. Thus the coefficient
of the irregular Bessel function must be small, c2 ≪ c1.
Far from the wall, δφ will therefore be dominated by the
regular Bessel function:

δφfar(x) ≈ c1
√
ωxJα(ωx) ∝ c1 sin(ωx− πα/2 + π/4).

(37)
Writing this perturbation as the difference of an incoming
wave and an outgoing wave with a V (φ)-dependent phase
shift ξV , in the relativistic limit ω = k, we have

δφ(x) ∝ e−iωx − e+iωx−iξV

= −2ie−iξ/2 sin(ωx− ξV /2). (38)

Equating the above to (37) gives the phase shift for
potentials (8,9),

ξφn = π

(

α− 1

2

)

= π

(∣

∣

∣

∣

3n− 2

2n− 4

∣

∣

∣

∣

− 1

2

)

, (39)

which we note is independent of the energy ω of the in-
coming particle. In a real experiment particles will ap-
proach the wall with a range of incident angles. Suppose
now that the incoming chameleon wave has a nonzero
angle of incidence, and let the xy plane be the plane of
reflection. Since the y momentum ky is unaffected by
the reflection, we may factor out eikyy as well as the time

dependence: φ(x, t) = φ0(x) + eikyy−iωtδφ(x). Defining
kx = (ω2 − k2y)

1/2, we see that ω in (33) is replaced by
kx. Since (39) is independent of ω, we have shown that
the phase shift for power law and chameleon dark en-
ergy potentials is independent of incident angle as well
as energy.
More generally, if meff(x)

2 = meff(φ0(x))
2 = A(x +

D)−2 for some constants A and D, as in (31), then the
chameleon reflection phase ξV = π((A + 1/4)1/2 − 1/2)
will be independent of incident angle and energy. Since
d2

dx2φ0(x) = d
dφV (φ) in the vacuum, we have m2

eff =

d2

dφ2V (φ) = d
dφ

d2

dx2φ0 = d3φ0

dx3 /
dφ0

dx = A(x + D)−2. This

will be satisfied if dφ0/dx ∝ (x + D)ζ for ζ satisfy-
ing ζ(ζ − 1) = A, that is, if φ0(x) ∝ (x + D)ζ+1 or
φ0(x) ∝ log(x+D) up to an additive constant. Substitu-

tion into d2

dx2φ0(x) =
d
dφV (φ) then implies V (φ) = gφn or

V (φ) = g exp(φ/M), up to additive constants, for con-
stants g, n, and M . Thus we have extended our re-
sult about the independence of ξV on incident angle and
energy to exponential potentials. Incidentally, choosing
ζ = −1, for an exponential potential

V (φ) = g exp(φ/M) + const., (40)

results in the phase shift

ξexp(φ) = π. (41)

However, for more general potentials, the phase ξV will
depend on the incident angle and energy. A chameleon
particle with greater momentum kx perpendicular to
the wall will approach closer to the wall, allowing it to
probe a different region of the potential V (φ) than a
lower-kx particle. Although exact solutions do not ex-
ist for general potentials, we can compute φ0(x) numer-

ically using d2

dx2φ0(x) = d
dφV (φ). Given φ0(x) we may

find meff(x) and then solve numerically for δφ(x) using
d2

dx2 δφ(x) = (meff(x)
2 − k2x)δφ(x). Comparison of the ze-

ros of this numerical δφ(x) to those of (38) is used to
find the phase shift ξV ; far from the wall, it will con-
verge to a constant. Fig. 6 (Top) applies this technique
to the n = −1 power law model, verifying the energy-
independence of ξV shown in (39). Furthermore, the
phase values converge to ξφ−1 = π/3 from (39), shown
as a dotted line.
An interesting example is the “exponential-inverse”

potential V (φ) = M4
Λe

MΛ
φ , which is frequently used in

the literature. At low energies, φ ≫ MΛ and the po-
tential will approximate the n = −1 chameleon dark en-
ergy, eq. (9); at high energies, it will differ from (9).
Fig. 6 (Bottom) shows the phase shift for several differ-
ent chameleon energies. As expected, for ω < MΛ =
2.4 × 10−3 eV, the potential approaches the n = −1
chameleon dark energy, and the resulting chameleon
phase approaches ξφ−1 = π/3. At larger energies ξV dif-
fers substantially from π/3.
In the limit that the wall in an actual afterglow ex-

periment is smooth, the afterglow rate will be dominated
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FIG. 6: Chameleon reflection phase ξV vs. distance from
wall, with βm = 1012 and ρmat = 1 g/cm3. (Top) n = −1
chameleon dark energy (9), V (φ) = M4

Λ(1 + MΛ/φ). (Bot-
tom) potential V (φ) = M4

Λ exp(MΛ/φ). In both cases, the
dotted line shows ξV = π/3, the expected phase in the x → ∞
limit for n = −1 chameleon dark energy.

by chameleon particles bouncing with grazing incidence,
kx/ω . radius / length ∼ 10−3 ⇒ kx . 10−3 eV. Thus
the exponential-inverse model from Fig. 6 can reasonably
be approximated as an n = −1 chameleon dark energy
(9) for the purpose of computing the phase, although this
approximation should worsen at larger βm.

For potentials inconsistent with this power law ap-
proximation, it is necessary to compute numerically the
chameleon reflection phase ξV as a function of the in-
cident angle, the coupling βm, and the parameters of
the potential. Although simple, this calculation is time-
consuming and must be repeated for each new potential.
In the absence of a compelling reason for choosing a dif-
ferent potential, we restrict ourselves henceforth to the
potentials (8,9,40).
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FIG. 7: Norms and arguments of the complex amplitude re-
flectivities Aref,S and Aref,P . Colored lines assume the param-
eters n1 = 1.6, ñ1 = 3.2, and fvis = 0.82 appropriate to the
CHASE chamber walls. Dotted lines show the reflectivities
in the thin-skin case; the two amplitudes are equal and real.
See the text for a discussion of the conventions used here. In
brief, our S and P directions differ from the standard def-
inition, and our phases are normalized so that ξS = ξP at
normal incidence.

C. Reflection and absorption of photons

The standard treatment of photon reflection from a
conductive medium adds an imaginary component to the
index of refraction of the medium, n1− iñ1. Assume that
the incident wave propagates through a medium whose
index of refraction n0 ≈ 1 is purely real. For stainless
steel like that in the CHASE chamber walls, n1 = 1.6
and ñ1 = 3.2. These quantities imply a mean reflection
probability of f̄ref = 0.65. The actual measured value is
f̄ref = 0.53, or 18% lower; the unpolished chamber walls
are less reflective than polished stainless steel. We model
this discrepancy by assuming that 18% of the chamber
wall is obscured and perfectly absorbing. Thus we mul-
tiply the computed reflection probabilities by a visibility
correction factor fvis = 0.82.
The complex index of refraction implies that the pho-

ton reflection occurs over a skin depth δ1 = ω−1ñ−1
1 .

This introduces a phase shift which depends on the po-
larization direction as well as the incident angle. Fig. 7
plots the amplitude reflectivities Aref,P ≡ |Aref,P |eiξP
and Aref,S ≡ |Aref,S |eiξS for the P and S polarizations,
respectively, as a function of incident angle. (Recall that
we keep track of the magnetic field component of the

photon, ~ψγ ∝ δ ~B, so that our P and S polarizations
are switched with respect to standard conventions.) The
norm of the amplitude reflectivity is the square root of
the reflection probability, and the complex phase is the
phase shift of the photon due to reflection. In our con-
vention, this phase shift is measured relative to that of
a chameleon particle with Dirichlet boundary conditions
and no additional phase shift; that is, our conventions for
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From [34].

the photon phase shift differ from standard conventions
by π.
Reflection becomes perfect in the thin-skin limit ñ1 →

∞. Aref,P and Aref,S both approach unity in this
case. Ref. [34] implicitly used this approximation, set-
ting fvis = 0.53 to match the observed reflection prob-
ability. Fig. 7 shows that, with this value of fvis and
ñ1 = 106, the thin-skin limit of that reference is repro-
duced. Henceforth we use the values n1 = 1.6, ñ1 = 3.2,
and fvis = 0.82.
We will see that this polarization-dependence of the

photon phase makes Γaft nearly independent of ξV . The
afterglow rate is dominated by particles bouncing at graz-
ing incidence, for which ξS and ξP differ by ≈ π. Aver-
aging over polarizations washes out the dependence on
additional phases such as ξV .

V. CHAMELEON-PHOTON OSCILLATION:

ANALYTIC CALCULATION

A. Decay and afterglow rates

Scalar-photon oscillation was studied in [36] and ap-
plied to afterglow experiments in [34]. Although [34] did
not include the photon polarization-dependent reflectiv-
ities just described,the data analysis in [32] did incor-
porate this effect. Here we summarize the calculation
of [34] and add a photon polarization-dependence to the
reflectivity and phase shift.
Figure 8 shows a cylindrical oscillation chamber with

windows at the ends and a magnetic field region (shaded)
offset from the windows. The coordinate system used is
identical to that of [34]. The origin lies at the center of
the entrance window. The z axis is the cylinder axis of
the vacuum chamber, with the unit vector ẑ chosen to
point in the direction from the entrance window to the
exit. x̂ is a unit vector in the direction of the external
magnetic field ~B0, orthogonal to the cylinder axis, and
ŷ = ẑ × x̂.
Consider a particle beginning in a pure chameleon state

at the center of the entrance window. This simplifies the

probem considerably by maintaining cylindrical symme-
try. Ref. [34] shows that, for m2

eff ≪ 4πω/R, where ω
is the particle energy and R the chamber radius, aver-
aging over initial positions on the entrance window may
be neglected for the purpose of computing the afterglow
rate. Although a particle beginning at the center of the
entrance window is more likely to reach the detector out-
side the chamber, this is a purely geometrical effect for
which we can correct quite easily.
Since the total momentum of the chameleon particle

is k, there is a two-parameter family of initial conditions
beginning at the center of the entrance window. We pa-
rameterize the initial conditions by the angle θ between

k̂ and the z axis, cos(θ) = k̂ · ẑ, and the angle ϕ between

the x axis and the projection of k̂ onto the xy plane,

cos(ϕ) = k̂ · x̂/|k̂ − (k̂ · ẑ)ẑ|. (Recall that the x and z
axes are specified by the background magnetic field and
the cylinder axis, respectively.) Let θ and ϕ be specified
for a particle. Then the total number N(θ) of bounces
inside the chamber, the first bounce nL(θ) inside the re-

gion with magnetic field ~B0, and the final bounce nR(θ)
in the B0 region depend on θ but not ϕ by symmetry. For
the path shown in Fig. 8, nL = 2, nR = 5, and N = 6.
As shown in ref. [34], the photon amplitude at the exit
of the B0 region is found by summing up the contribu-
tions from each segment inside the B0 region shown in
Fig. 8, properly accounting for photon absorption and
chameleon-photon phase shifting at each bounce.
Eq. (13) gives the contribution of each segment to

the photon amplitude. Up to a phase factor, this is

C sin(m2
efft/(4k))~a(k̂), with t the time spent inside the

B0 region and ~a expressed in the basis of S and P polar-
ization states; recall that ~a and C are defined by (15, 16).
Since each segment in Fig. 8 beginning and ending in-
side the B0 region has the same value of t by symmetry,
only three values of t are necessary: the time tL taken by
the particle between B0 region entry and bounce nL; the
time tM between two bounces inside the B0 region; the
time tR between bounce nR and the B0 region exit. We
define sL = sin(tL), sM = sin(tM), and sR = sin(tR), so
that

sL = sin

(

m2
eff(znL − ℓ1)

4k cos θ

)

(42)

sM = sin

(

m2
effR

2k sin θ

)

(43)

sR = sin

(

m2
eff(ℓ1 + L− znR)

4k cos θ

)

(44)

where zn is the z value of the nth bounce, ℓ1 is the dis-
tance from the entrance window to the beginning of the
B0 region, ℓ2 is the distance from the end of the B0 re-
gion to the exit window, and L is the length of the B0

region.
Chameleon-photon phase shifts come from three dif-

ferent sources: a potential-dependent chameleon phase
shift ξV due to reflection from the walls, computed in
Sec. IVB; a photon polarization-dependent phase shift
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due to a nonzero skin depth during reflection, com-
puted in Sec. IVC; and a phase shift during propagation
ξpropagation(t) through the B0 region due to a chameleon-
photon mass difference, computed in [34] and included in
the time-dependent phase factor in (13). ξpropagation(t)
must be computed over the time intervals tL, tM, and tR
defined earlier, leading to

ξL =
m2

eff

4k cos θ

((

nL − 3

2

)

∆z − ℓ1

)

(45)

ξM =
m2

effR

k sin θ
(46)

ξR =
m2

eff

4k cos θ

((

nR +
1

2

)

∆z − ℓ1 − L

)

(47)

where ∆z = 2R cot θ is the z distance between bounces.
Following the convention of [34], we redefine the complex
reflectivities to include ξM and the chameleon phase shift
ξV :

AP = Aref,P exp(iξM + iξV ) (48)

AS = Aref,S exp(iξM + iξV ). (49)

Next, we compute the components of ~a(k̂) in the ba-

sis of S and P polarization states. ~a and k̂ are constant

between bounces. Let k̂n be the particle direction before

the nth bounce, and let ~an = ~a(k̂n); thus a subscript 1
denotes initial values. We have ~a1 = (1−sin2 θ cos2 ϕ)x̂−
(sin2 θ sinϕ cosϕ)ŷ−(sin θ cos θ cosϕ)ẑ. A bounce from
the chamber wall switches the sign of the z compo-
nent of ~a while leaving the x and y components un-
changed: ~a2 = ~a1 − 2(~a1 · ẑ)ẑ. Thus ~an will equal ~a1
for odd n and ~a2 for even n. Since the plane of inci-

dence for each bounce is spanned by ẑ and k̂1, we define

the S polarization direction by Ŝ = (ẑ × k̂1)/|ẑ × k̂1|;
this remains the same during all bounces. For each n,

the set (Ŝ, P̂n, k̂) must be orthonormal, with P̂n the
P polarization direction before the nth bounce. We

choose the sign of P̂n such that Ŝ × P̂n = k̂n. With
these definitions we find Ŝ = −(sinϕ)x̂ + (cosϕ)ŷ and

P̂1 = −(cos θ cosϕ)x̂ − (cos θ sinϕ)ŷ + (sin θ)ẑ; P̂2 has

the same x and y components as P̂1, but its z compo-
nent has the opposite sign. Finally, since Ŝ has no z
component, and since the z components of ~a and P̂ both
change after a bounce, we have aS = ~an · Ŝ = − sinϕ
and aP = ~an · P̂n = − cos θ cosϕ independent of n. Thus
~an = aSŜ + aP P̂n.

We proceed to compute the photon amplitude at the
exit of the B0 region step by step. Immediately be-
fore the first bounce in the B0 region, nL, the pho-
ton amplitude is due entirely to the oscillation which
took place between the entrance of the B0 region and
the first bounce. Up to a constant phase factor, it is
CsL(aSŜ + aP P̂n). The bounce from the chamber wall

rotates the amplitude to the new basis (Ŝ, P̂2) and mul-
tiplies the individual components by the reflection fac-
tors AS and AP . Immediately after the bounce, the

amplitude is ~ψ
(n+

L )
γ = CsLeiξL(aSASŜ + aPAP P̂nL+1).

As the particle approaches bounce nL + 1, further os-
cillation adds CsM~anL+1 to the amplitude. Immedi-

ately after bounce nL + 1 the amplitude is ~ψ
(nL+1+)
γ =

CaS(sLeiξLA2
S+sMAS)Ŝ+CaP (sLeiξLA2

P+sMAP )P̂nL+2.
Repeating this procedure for each of the nB = nR−nL+1
bounces inside the B0 region, we find

~ψ
(n+

R)
γ = CaS

(

sLe
iξLAnB

S + sM

nB−1
∑

n=1

AnS

)

Ŝ

+CaP
(

sLe
iξLAnB

P + sM

nB−1
∑

n=1

AnP

)

P̂nR+1. (50)

Finally, we add the contribution CsReiξR~anR+1 due to
oscillation between bounce nR and the exit of the B0

region, leading to

~ψ(B exit)
γ = (51)

CaS
(

sLe
iξLAnB

S + sM
AS −AnB

S

1−AS
+ sRe

iξR

)

Ŝ

+CaP
(

sLe
iξLAnB

P + sM
AP −AnB

P

1−AP
+ sRe

iξR

)

P̂nR+1

∣

∣

∣

~ψ(B exit)
γ

∣

∣

∣

2

= (52)

C2a2S

∣

∣

∣

∣

sLe
iξLAnB

S + sM
AS −AnB

S

1−AS
+ sRe

iξR

∣

∣

∣

∣

2

+(S → P )

where (S → P ) denotes the preceding terms with S re-
placed by P.
After exiting the magnetic field region, the particle

bounces from the walls N − nR more times. This mul-
tiplies the S and P components of ~ψγ by AN−nR

S and

AN−nR

P , respectively. No further oscillation occurs. Once
the particle reaches the end of the chamber, the exit
window performs a quantum-mechanical measurement of
particle content. Since photons pass through the window
while chameleons reflect, the chameleon-photon super-
position is collapsed into one of those two states. The
probability that this measurement results in a photon is
~ψ∗
γ · ~ψγ evaluated at the exit window. Assuming that

a photon produced by a chameleon with initial condi-
tions (θ, ϕ) will reach the detector outside the cham-
ber as an afterglow signal, the expected number of after-

glow photons generated by this particle is ~ψ∗
γ · ~ψγ in the

small-mixing-angle limit. The time taken by the particle
to reach the exit window from the entrance is ℓtot sec θ,
where ℓtot = ℓ1+L+ ℓ2 is the total chamber length. The
contribution of this particle to the detectable afterglow
rate Γaft is the expected photon number over the time,

|(~ψ(B exit)
γ · Ŝ)AN−nR

S |2 cos(θ)/ℓtot + (S → P ).
Only a small fraction of the photons produced emerge

from the chamber and reach the detector. Most are either
absorbed in the walls or exit the chamber but miss the
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detector. In order to find the total decay rate Γdec of
the population of chameleon particles in the chamber, we
must account for all of these photons. Since oscillation
stops after the B0 region exit, and since we already have

|~ψγ |2 at that point, we need only compute the probability
of photon absorption inside the B0 region. At bounce n,
the absorption probability is given by the difference in

photon probabilities before and after the bounce, P(n)
abs =

|~ψ(n−)
γ |2 − |~ψ(n+)

γ |2. Computing the photon amplitudes
as above, we find

P(n)
abs = C2a2S(1− |AS |2)

∣

∣

∣

∣

sLe
iξLAn−nL

S + sM
1−An−nL

S

1−AS

∣

∣

∣

∣

2

+(S → P ). (53)

The total absorption probability is the sum over all n
from nL to nR:

P(B exit)
abs = C2a2S(1− |AS |2)

[

s2L
1− |AS |2nB

1− |AS |2

+
s2M

(

nB − 1−A
nB
S

1−AS
− 1−(A∗

S)
nB

1−A∗

S

+ 1−|AS|
2nB

1−|AS |2

)

(1 −AS)(1−A∗
S)

+sLsM
(1−AnB

S )eiξL + (1− (A∗
S)
nB )e−iξL

(1 −AS)(1−A∗
S)

−sLsM
1− |AS |2nB

1− |AS |2
(

e−iξL

1−AS
+

eiξL

1−A∗
S

)

]

+(S → P ). (54)

The contribution to Γdec of this particle with initial (θ,
ϕ) is found by dividing the total conversion probability

by the time, (|~ψ(B exit)
γ |2 + P(B exit)

abs ) cos(θ)/ℓtot.

Finally, we average over angles in order to obtain the
decay rate Γdec and the afterglow rate Γaft:

Γdec =
1

2π

∫

Ω
2

d2Ω

(

P(B exit)
abs +

∣

∣

∣

~ψ(B exit)
γ

∣

∣

∣

2
)

cos θ

ℓtot
(55)

Γaft =
1

4π

∫

Ω
2

d2Ω
∣

∣

∣
(~ψ(B exit)
γ · Ŝ)AN−nR

S

∣

∣

∣

2

Pdet(θ)
cos θ

ℓtot

+(S → P ). (56)

where Ω/2 is the half-sphere with 0 ≤ θ < π/2 and
0 ≤ ϕ < 2π. Here, Pdet(θ), the probability that the par-
ticle will reach the detector, is a geometric factor which
will be computed in Sec. VB. The extra factor of 2 in
the decay rate is due to the fact that particles travelling
in the negative z direction, away from the exit window,
contribute to the decay rate but not to the afterglow rate.
Examining the integrands, we see that the only quantities
which depend on ϕ are a2S and a2P ; each term in the inte-
grand contains one of these multiplying a ϕ-independent
quantity. Thus the integrals over ϕ may easily be per-
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FIG. 9: (Top) GammeV apparatus and (Bottom) CHASE ap-
paratus (side views, not to scale). Note that CHASE has no
section 2 (ℓ3 = 0) and has glass windows dividing the B0

region into three partitions. Values for these parameters are
given in Table I.

formed using

〈

a2S
〉

ϕ
=

1

2π

∫ 2π

0

a2Sdϕ =
1

2
(57)

〈

a2P
〉

ϕ
=

1

2π

∫ 2π

0

a2Pdϕ =
1

2
cos2 θ. (58)

B. Geometric factor Pdet(θ)

References [32, 34] describe the geometry of the
CHASE experiment. Diagrams of both experiments are
shown in Fig. 9 with numerical values given in Table I.
Note that, in CHASE, ℓ3 = 0; there is no second cham-
ber section. Henceforth we set ℓ3 = 0 and R1 = R2 = R.
Outside of the oscillation chamber, a distance ℓ4 beyond
the exit window, is a lens with radius rlens and focal
length ℓ5. At the focal point of the lens is positioned
a photomultiplier tube (PMT) whose accepting area has
radius rPMT.
We will see in Sec. VII that the CHASE B0 region

is divided by glass windows into three partitions. This
smoothes out sharp features in the oscillation rate during
the production phase of the experiment. However, we
will postpone a discussion of these partitions until that
section, neglecting them for now.
The previous discussion assumed that the initial

chameleon particle started out at the center of the en-
trance window. In the limit that the oscillation length
4πω/m2

eff is small compared with the cylinder radius, or
meff . 0.01 eV in GammeV, the dominant errors in-
troduced by this approximation are purely geometrical.
Thus we only need to compute them once, independent
of the chameleon model.
The simplest geometric effect arises from the fact that

the lens and detector are centered on the z axis, which
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quantity GammeV CHASE

ℓ1 2.36 m 1.61 m

L 6.0 m 6.0 m

ℓ2 1.16 m 1.74 m

ℓ3 2.51 m N/A

ℓ4 2.03 m 0.64 m

ℓ5 0.10 m 0.10 m

Zwin,1 N/A 2.61

Zwin,2 N/A 2.91

R1 2.38 cm 3.175 cm

R2 1.75 cm N/A

rwin N/A 1.27 cm

rlens 2.54 cm 2.54 cm

rPMT 2.5 mm 2.5 mm

t0 1006 sec 120 sec

∆t 3616 sec 600− 3600 sec

f̄ref 0.53 0.53

k ≈ ω 2.33 eV 2.33 eV

B 5.0 Tesla 5.0 Tesla

Vpump 0.026 m3 0.014 m3

TABLE I: Properties of the GammeV and CHASE experi-
ments, including the dimensions shown in Fig. 9.

is where particles start out in our approximation. This
artificially enhances the probability that a regenerated
photon will reach the detector.

A more subtle geometric effect gives particles in our
approximation a different radial probability distribution
from the average particle. The volume of cylindrical
shell at a distance r = (x2 + y2)1/2 from the z axis,
∆V = 2πℓtotr∆r, increases with r. Thus a homoge-
neous, isotropic gas of chameleon particles will have a
radial probability distribution P (r) ∝ r. However, con-
sider a particle beginning at the center of the entrance
window; without loss of generality, assume θ > 0 and
ϕ = 0. At the first bounce, and all subsequent odd-
numbered bounces, x = R. At the second bounce, and
all subsequent even-numbered bounces, x = −R. The
path taken by this particle, when projected onto the xy
plane, will bounce back and forth between the same two
points. Following [34] we call these “2-point paths.” All
r values are equally likely along such a path, implying
that the radial probability distribution P (r) = constant.
Therefore, compared with the average particle, the par-
ticles which we consider spend more time at low r and
are more likely to reach the detector. Incidentally, in
the case of GammeV, particles beginning at r = 0 are
R1/R2 times more likely to enter the second section of
the chamber because of this effect.

We can account for both of these geometric effects
at once by properly normalizing our afterglow rate in-
tegrand. The fraction of 2-point paths reaching the de-

tector is found by integrating over solid angles,

f2−point =
1

4π

∫

Ω
2

d2ΩΘdet(θ)

=
1

2

∫ π
2

0

sin θ dθΘdet(θ), (59)

where Θdet is one if the path reaches the detector and zero
otherwise. For the CHASE geometry we find f2−point =
1.57× 10−4. We do a similar calculation for the average
particle, whose radial position rex and direction (θex, ϕex)
at the exit window are appropriate to a homogeneous,
isotropic distribution:

favg =
1

πR2

1

4π

∫ R

0

2πrex drex

∫ π
2

0

sin θex dθex

×
∫ 2π

0

dϕexΘdet(rex, θex, ϕex). (60)

For the CHASE geometry favg = 9.84 × 10−5. Thus,
when we restrict our calculation to chameleon particles
beginning at the center of the exit window, we increase
our afterglow rate by a factor of f2−point/favg = 1.59.
We correct for this by normalizing Pdet(θ) in (56):

Pdet(θ) =
favg

f2−point
Θdet(θ). (61)

In the case of GammeV, we include an extra factor of
R2/R1 to account for the increased probability of reach-
ing the second chamber section. This simple, model-
independent normalization turns out to be reasonably
accurate. The properly normalized afterglow rate cal-
culated for 2-point paths differs by 6% from that calcu-
lated for the “3-point paths” of [34] and by 8% from a
Monte Carlo calculation with arbitrary initial conditions.
This applies at low masses meff ≪ (4πω/L)1/2, or about
0.001 eV in GammeV.
Unfortunately there is no equivalent procedure for cor-

recting the decay rate. We will see that the 2-point de-
cay rate disagrees with the Monte Carlo calculation of
Sec. VIII by about 40%. However, the experimental up-
per bounds on the photon coupling βγ are extremely in-
sensitive to the decay rate; at low βγ , the decay time

Γ−1
dec is much larger than the duration of the experiment.

Furthermore, to the extent that Γdec matters, using the
2-point calculation is a conservative approximation; (55)
computed using 2-point paths overestimates the decay
rate, hence underpredicts the signal.
Both the decay rate (55) and the afterglow rate (56)

depend on βγ and B0 only through the prefactor C2.
Thus Γdec, Γaft ∝ β2

γB
2
0 . The rates need only be com-

puted at one value of the photon coupling and magnetic
field; a simple rescaling can be used to find the rates at
other values of these two parameters. Figure 10 plots
these rates as a function of chameleon mass in the 2-
point computation. Both rates are approximately inde-
pendent of mass when meff ≪ 10−3 eV and scale as m−4

eff
at meff ≫ 10−3 eV, consistent with the mass scaling of
(14).
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FIG. 10: Two-point afterglow and decay rates for B0 =
5 Tesla, βγ = 1012, and ξV = 0, for the CHASE afterglow
experiment (unpartitioned).

VI. THROUGH THE MAGNETIC FIELD

A. The real magnetic field

Thus far we have treated the magnetic field as a
“tophat” function suddenly increasing from zero to its
peak value and then dropping again. We have assumed
a magnetic field Btophat(z) = B0Θ(z − ℓ1)Θ(ℓ1 + L− z),
where Θ(z) is the step function. The real GammeV and
CHASE magnetic field falls off from its peak value over
a distance ∆zf ≈ 5 cm in a way that is well approxi-
mated by Btanh(z) = B0T∆zf (z−ℓ1)T∆zf (ℓ1+L−z) with
T∆zf (z) = (1+tanh(z/∆zf+1))/2. For models with oscil-
lation length ℓosc = 4πk/m2

eff ≫ ∆zf , or meff ≪ 0.01 eV
in GammeV and CHASE, this difference is negligible; the
field is effectively a tophat function.
Larger-mass chameleons, however, will see a slowly-

varying magnetic field in these falloff regions. Their
oscillation probabilities will differ from tophat function
approximations. In the extreme case that ℓosc ≪ ∆zf
the spatial variation of the magnetic field will represent
an adiabatic perturbation. A particle which begins in a
chameleon state and experiences an adiabatically evolv-
ing magnetic field will return to a pure chameleon state

once the magnetic field evolves back to zero. Thus ~ψγ = 0
in the adiabatic limit.
Since our integrated solution (13) is not valid for a

varying field Btanh, the preceding equation of motion
must be integrated numerically. Figure 11 shows the
results for several chameleon masses, assuming a parti-
cle trajectory along the ẑ axis. For comparison, arrows
to the right of the plot show the final probabilities ex-
pected from the tophat approximation (14). Note that
the tophat approximation is excellent for masses up to
the dark energy scale of ≈ 2 × 10−3 eV, and is valid up
to a factor of order unity at twice that scale. However, for
meff & 0.01 eV, B0(z) rises and falls slowly enough to rep-

 1e-22

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 0  1  2  3  4  5  6  7  8  9

|ψ
γ|2

distance from entrance [m]

chameleon mass               
5e-4 eV
1e-3 eV
2e-3 eV
5e-3 eV
1e-2 eV

FIG. 11: Photon amplitude vs. z for a magnetic field
B0 = 5 Tesla with falloff length ∆zf = 5 cm. A coupling
βγ = 1012 is assumed. Arrows at the right show expected os-
cillation probabilities for a tophat magnetic field. Low-mass
chameleons effectively see a tophat field while chameleons
with meff & 0.01 eV see a nearly adiabatic evolution of the
field.
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FIG. 12: Oscillation probability vs. chameleon mass for the
real magnetic field Btanh(z) and the tophat approximation.
βγ = 1012 is assumed.

resent an adiabatic evolution of the background, and the
oscillation probability is less than the tophat prediction
by some four orders of magnitude. Figure 12 shows the
oscillation probability for Btanh(z) and Btophat(z) over
a range of chameleon masses. As expected, chameleons
with meff & 0.01 eV see a nearly adiabatically varying
magnetic field.

B. Window in magnetic field region

Adiabatic suppression of oscillation can be substan-
tially reduced by causing a sudden change in the back-
ground chameleon field inside the B0 region. This is



16

 1e-19

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1  1.5  2  2.5  3

|ψ
γ|2

distance from entrance [m]

B
 e

n
tr

a
n
c
e

w
in

d
o
w

meff(vacuum)

5e-4 eV
1e-3 eV
2e-3 eV
5e-3 eV
1e-2 eV

 1e-19

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 0  1  2  3  4  5  6  7  8  9

|ψ
γ|2

distance from entrance [m]

B
 e

n
tr

a
n
c
e

w
in

d
o
w

meff [eV]

5e-4
1e-3
2e-3
5e-3
1e-2

FIG. 13: Photon amplitude vs. z for a magnetic field B0 =
5 Tesla with falloff length ∆zf = 5 cm, assuming photon cou-
pling βγ = 1012. Vertical dotted lines show the locations of
the window and the beginning of the B0 region. Arrows at
the right show expected oscillation probabilities for a tophat
magnetic field, assuming that a measurement is made at the
window. (Top) Oscillation probability for a particle beginning
at the entrance window and measured at the interior window.
(Bottom) Oscillation probability for a second particle begin-
ning on the interior window is added to the probability due
to the first particle.

accomplished by placing a glass window inside that re-
gion. Close to the surface of this window, the background
chameleon field (29) and mass (31) change on distance
scales of order meff(φbulk(ρmat))

−1. By the containment
condition this must be less than the wavelength ∼ k−1,
which is in turn much smaller than ℓosc.
Since an increase in the chameleon mass sharply

decreases the chameleon-photon oscillation probabil-
ity (14), the two are effectively decoupled near the
window. Thus the sudden change in the background
chameleon field due to the window does not lead to
any sudden changes in the oscillation amplitude. Fig-
ure 13 (Top) shows the numerically computed amplitudes
for a range of masses up to the location of a window
placed one meter inside the B0 region. Arrows at the
right show the corresponding probabilities for a tophat

magnetic field. The tophat approximation is clearly bet-
ter here than in Fig. 12. Of course, the smooth tran-
sition at the entrance to the B0 region still has some
effect on transition probabilities. Since it adds a few ex-
tra centimeters to the length of the B0 region, it shifts
the locations of the features in the afterglow rate seen in
Fig. 10. Also, some of the suppression due to the smooth
transition remains. This is best seen in the plot for the
meff = 5 × 10−3 eV chameleon in Fig. 13 (Top), which
has a final photon amplitude about 40% less than the
tophat prediction.
Section V began with a particle in a pure chameleon

state immediately after measurement by the entrance
window of the vacuum chamber. In the case of a win-
dow in the interior of the B0 region, a particle can also
begin in a pure chameleon state on the surface of the win-
dow. By the homogeneity and isotropy of the chameleon
population we expect that for every particle incident on

the window from low z with momentum ~k there will be
another leaving the window on the other side with the
same momentum. In order to compute the total oscilla-
tion probability due to both partitions of the magnetic
field, we must also consider the oscillation due to this
second particle. Fig. 13 (Bottom) shows this combined
probability, which once again agrees well (with errors at
the∼ 10% level at high masses) with the tophat magnetic
field calculation.

C. Interior windows in CHASE

CHASE uses two interior windows, the first 1.0 m in-
side the B0 region and the second after another 30 cm.
Each window is 1 inch in diameter. Figure 14 (Top) com-
pares the resulting oscillation probability to its tophat
approximation. The adiabatic suppression of oscillation
by many orders of magnitude seen in Fig. 12 is not in
evidence here. However, some suppression remains, as
shown in Fig. 14 (Bottom). The points in that figure
use probabilities averaged in bins of width 10% in meff

in order to average out features due to different effec-
tive B0 region lengths. This averaging shows that the
oscillation probability for the tanh field is 30% lower
than the tophat approximation at high masses. Since

βγ ∝ P1/2
γ↔φ, this implies that constraints on βγ found

using the tophat approximation will overestimate actual
constraints by ≈ 15% for meff & 0.01 eV.
A more accurate numerical computation would also

consider:

• a range of particle directions k̂, since a particle not
propagating parallel to the ẑ axis would see an ef-
fective magnetic field falloff length larger than ∆zf ;

• a range of particle frequencies within the ≈ 1 cm
linewidth of the laser;

• reflections from the chamber walls inside the B0

region, leading to partial measurements of particle
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content.

Each of these corrections will serve to smooth out fea-
tures in the oscillation probabilities in Fig. 14. Since nu-
merically computing the probability for each path used
in a calculation such as that in Section V would be pro-
hibitive, and since adiabatic suppression is only impor-
tant in the least interesting region meff & 0.01 eV of our
parameter space, we have retained the tophat magnetic
field approximation in our computations of decay and af-
terglow rates. Thus we expect that our constraints will
overestimate actual constraints on βγ at the ten percent
level, or approximately the thickness of the line used to
plot constraints in Figure 25 of Section IXD.

VII. ENHANCEMENTS IN CHASE

The GammeV chameleon experiment was similar to
the idealized afterglow experiment discussed in Sec. II E.
CHASE made major improvements to the vacuum sys-
tem and the detector, as well as adding data runs with

lower magnetic field values and partitioning the magnetic
field region into sections. In this section we discuss each
of these improvements.

A. Vacuum system

The range of chameleon potentials probed depends on
the density ratio between the vacuum and the walls of the
vacuum chamber. A chameleon particle will be trapped
inside the vacuum chamber if the containment condition
(20) is satisfied for E = 2.33 eV and ρmat equal to the
lowest density in the chamber walls. Meanwhile, an os-
cillation experiment will only be sensitive to chameleons
below some mass mmax at the density ρvac of the cham-
ber vacuum, since massive chameleons mix very weakly
with photons.
Here we study power law and chameleon dark energy

potentials (8,9) in order to find the range of exponents
n for which some region of the (βγ , βm, g) parameter
space is accessible to a given afterglow experiment. Note
that our goal in this section is not to compute actual
constraints, but only to provide a simple estimate of the
range of potentials which may be probed. It will be useful
for this purpose to neglect ρL,EM, since a greater total
density inside the chamber degrades constraints. This
assumption is equivalent to βγ ≪ βm.
For potentials (8,9), assuming negligible ρL,EM,

eq. (11) for the chameleon mass implies that meff ∝
ρ
(n−2)/(2n−2)
mat . Requiring that meff(φbulk(ρmat)) > E

(containment) and meff(φbulk(ρvac)) < mmax (mixing),
we find

n− 2

2n− 2
>

log(E/mmax)

log(ρmat/ρvac)
. (62)

Now we must consider n > 2 and n < 0 chameleons
separately. If n > 2 and ρmat/ρvac ≤ (E/mmax)

2, then
the containment and mixing conditions cannot both be
satisfied; the experiment is insensitive to these models.
If n > 2 and ρmat/ρvac > (E/mmax)

2 then

n > 2
log(ρmat/ρvac)− log(E/mmax)

log(ρmat/ρvac)− 2 log(E/mmax)
. (63)

That is, for n satisfying this condition, the experiment
will be able to probe some region of the (βγ , βm, g) pa-
rameter space. If n < 0 and E/mmax < ρmat/ρvac ≤
(E/mmax)

2 then

n > −2
log(ρmat/ρvac)− log(E/mmax)

2 log(E/mmax)− log(ρmat/ρvac)
. (64)

If ρmat/ρvac > (E/mmax)
2 then all n < 0 can be probed

by the experiment.
GammeV used a turbomolecular pump in combination

with a roughing pump. Since any chameleon particle
entering the roughing pump would be scooped out of
the chamber, GammeV was sensitive only to chameleons
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massive enough to bounce from the P = 1.9× 10−3 torr
gas at the intake of that pump. Thus the lowest-
density “wall” in GammeV had ρmat = 4× 10−9 g/cm3.
The vacuum density was ρvac = 2 × 10−13 g/cm3 and
mmax ≈ 10−3 eV [31]. Thus GammeV was completely
insensitive to potentials with n > 2 and could probe only
−0.77 < n < 0.
CHASE maintained a vacuum of ρvac = 3.7 ×

10−14 g/cm3 using ion pumps and cryo-pumping on the
4 Kelvin walls of the magnet bore. This vacuum system
did not allow chameleons to escape from the chamber,
meaning that the lowest-density regions of the chamber
wall were the entrance and exit windows, made of BK7
glass, with density ρmat = 2.51 g/cm3. Although the ex-
perimental sensitivity to high-mass chameleons depended
on the photon coupling, mmax ∼ 0.01 eV is a reasonable
approximation. With this approximation, CHASE can
probe n < 0 and n > 2.5. However, we note that
ρmat ∼ ρL,EM in CHASE, so the range of potentials
probed will be smaller when βγ > βm. For example,
when βγ/βm = 103ρmat/ρL,EM, CHASE is sensitive to
n < 0 and n > 2.8.

B. Multiple magnetic fields

In order to extend constraints on the photon coupling
to lower values, an afterglow experiment would need to
use a large magnetic field and collect data over a long
time period, as was done by GammeV. However, the
afterglow signal (17) falls off exponentially with a rate
Γdec ∝ β2

γB
2
0 . Thus increasing B0 makes the experiment

insensitive to chameleon models with large photon cou-
plings. Since the signal falls off rapidly, collecting data
for a longer time does not help.
CHASE used short runs with low magnetic fields to

supplement the high-B0, long-duration runs. For each
photon polarization, data were collected in two long runs
of B0 = 5.0 Tesla and filling times of tprod = 5 hours.
Short data runs of tprod = 10 minutes each were con-
ducted for magnetic fields of B0 = 2.2 T, 1.0 T, 0.45 T,
0.20 T, 0.089 T, and 0.050 T. Additionally, seven calibra-
tion runs were carried out with tprod = 10 minutes and
B0 = 0 to allow for further study of backgrounds.
These low-B0 runs extended constraints to models with

larger βγ . Figure 15 shows the afterglow signal Faft(t)
from (17) for various magnetic fields and photon cou-
plings. The narrower, light blue shaded region represents
the time window used for the short runs. The larger, yel-
low shaded region is the extra observation time in the
long runs. A detailed analysis of the data, properly ac-
counting for statistical and systematic uncertainties, will
be provided in Sec. IX. Here, Fig. 15 roughly approxi-
mates CHASE constraints by assuming that an afterglow
signal of at least 1 Hz two minutes after the laser is turned
off will be detected by the experiment. Thus a curve in
Fig. 15 entering the shaded regions will be detected.
At the lowest βγ in Fig. 15, the chameleon is detectable

only in the 5 Tesla run. By βγ = 1013 several other runs
can also probe the chameleon. Meanwhile, the decay time
Γ−1
dec in the 5 Tesla run is less than the observation time,

so that a decline in Faft is apparent. At βγ = 1014 the
signal in the 5 Tesla run falls off so rapidly that it is no
longer observable, and CHASE constraints are due en-
tirely to the short runs. By βγ = 1016, Γdec is so large,
even in the low-B0 runs, that none of the runs can de-
tect the chameleon signal. Since collider constraints [40]
already exclude βγ & MPl/(1TeV) = 2 × 1015, further
CHASE runs at still lower magnetic fields are unneces-
sary.

C. Interior windows

As described in Sec. VIC, the magnetic field region
in CHASE is divided into three partitions by interior
windows. In addition to reducing the adiabatic suppres-
sion of oscillation rates, these windows fill in some of the
gaps in the constraints due to destructive interference
during the production phase. Without the partitions,
the afterglow signal (17) contains a factor of Pγ↔φ due
to chameleon production as photons stream through the
chamber. Pγ↔φ vanishes when m2

eff = 4nπk/L for any
integer n. This corresponds to maximal destructive inter-
ference in oscillation; the chameleon amplitude produced
in one part of the chamber exactly cancels that from an-
other.
Figure 16 shows the chameleon production probabil-

ity per photon, Pγ↔φ, as a function of effective mass,
with and without partitions in the magnetic field re-
gion. Without partitions, the probability has several ze-
ros near the dark energy mass scale of 2.4 × 10−3 eV.
The partitions push the first zero of Pγ↔φ from meff =
9.8 × 10−4 eV to 7.6 × 10−3 eV, eliminating the sharp
features in the predicted signal in the region of the dark
energy scale. In fact, suppressing destructive interference
was the original reason for inclusion of interior windows
in the chamber. The benefits of these windows for mit-
igating adiabatic suppression of chameleon production
were discovered only later.

D. Detector

The dominant source of systematic uncertainty in
GammeV was instability in the photomultiplier tube used
to detect afterglow photons [31]. The dark rate seen
in the PMT had large fluctuations on time scales of
1 minute. As a result, constraints on chameleons had
to be obtained by averaging the signal reported by the
PMT over long times. Even the time-averaged rate had
a substantial uncertainty; averaging over a large num-
ber of hour-long intervals resulted in a mean dark rate of
115 Hz with a standard deviation of 12 Hz.
CHASE used a PMT with a lower mean dark rate,

30 Hz, which was much more stable with time. More-
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over, the PMT was modulated by a shutter with a period
of 30 sec and a duty cycle of 0.5, allowing minute-scale
variations in the dark rate to be monitored in real time.
Fortunately the dark rate of the CHASE PMT remained
stable. Nevertheless, the experiment was designed to de-
tect any such instability and to subtract its effects from
the signal.

VIII. CHAMELEON-PHOTON OSCILLATION:

MONTE CARLO SIMULATION

Section V computed the afterglow rate Γaft and de-
cay rate Γdec per chameleon particle. That calculation,
which assumed a simplified set of initial conditions, was
fast and accurate for a GammeV-like experiment. Its
extension to the CHASE geometry was found to be ac-
curate to a factor of ∼ 2 over most of the mass range,
makeing it useful when designing broad features of the
CHASE geometry. However, it was inadequate for data
analysis for several reasons.

1. The assumption that the chameleon particle’s ini-
tial position on the entrance window is irrelevant

breaks down when the oscillation length 4πk/m2
eff

of the theory becomes smaller than the chamber
radius, corresponding to a mass of meff ≈ 0.01 eV.

2. Even at low chameleon masses, the calculation of
Sec. V is inaccurate for nontrivial chamber geome-
tries such as the interior windows in CHASE.

3. That calculation cannot include random systematic
effects such as diffuse reflection from the chamber
walls.

Thus a Monte Carlo simulation of CHASE was used to
compute the afterglow signal and to estimate the effects
of random systematics in the CHASE analysis [32].

A. Particle paths

Relaxing the restrictions on the initial conditions used
in Sec. V, the decay and afterglow rates are given by

Γdec =
1

4πAwin

∫

win

d2x

∫

Ω

d2ΩPdec
cos θ

ℓtot
(65)

Γaft =
1

4πAwin

∫

win

d2x

∫

Ω

d2ΩPaft
cos θ

ℓtot
(66)

Pdec = P(B exit)
abs +

∣

∣

∣

~ψ(B exit)
γ

∣

∣

∣

2

(67)

Paft =
∣

∣

∣
(~ψ(B exit)
γ · Ŝ)AN−nR

S

∣

∣

∣

2

Pdet + (S → P ), (68)

where the d2x integrals are carried out over the surfaces
of the windows and the d2Ω integrals over the unit sphere

of k̂ values. Here Awin is the total surface area of the win-
dow surfaces inside the chamber. The probabilities Paft

and Pdec are oscillation probabilities along particle paths
which are completely determined by their initial positions
and directions. A Monte Carlo calculation of these rates
replaces the integrals with sums over particle paths with
randomly chosen initial conditions. In the limit that the
number of particles simulated becomes large, the Monte
Carlo rates will approach the actual rates.
A particle in a pure chameleon state can result from

any quantum-mechanical measurement of particle con-
tent at a glass window, including the entrance and exit
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windows as well as the interior windows of CHASE. Thus
we initialize each particle by randomly choosing a lo-
cation on one of the window surfaces, with probability
proportional to surface area. When computing the de-
cay rate, the initial particle direction is chosen randomly
from a uniform distribution as appropriate to an isotropic
chameleon population. Although this would also be cor-
rect for the afterglow calculation, photons emerging from
the chamber at most of these directions would not reach
the detector. This would cause the Monte Carlo calcu-
lation of Γaft to converge very slowly. Instead we choose
particle directions from a distribution that is uniform
over the portion of the unit sphere with θ < θ0 = 0.1
and zero elsewhere. Since this probability distribution
covers a fraction fθ = (1 − cos θ0)/2 of the unit sphere,
we must multiply our result by fθ to obtain Γaft.

Once an initial position and direction have been cho-
sen, the particle is propagated in that direction until it
encounters a wall or window. At a chamber wall, the
particle direction is changed and its photon momentum
corrected to account for absorption and phase shifting,
as described in Sec. IV. The particle is then propagated
forward once again until a window or another wall is
encountered. At a window, the particle content is mea-
sured. Continuing to follow the chameleon particle af-
ter this point would constitute a double-counting, since
the chameleon position and direction immediately after
this bounce from the window is within the allowed set
of chameleon initial conditions. For this chameleon path,
Pdec is the probability that the particle is a photon at the
window plus the total probability of absorption during
collisions with chamber walls. In order to compute Paft,
we must compute not just the photon amplitude at this
window but the probability that the photon will escape
from the chamber and reach the detector. The factor
|AS |2(N−nR) in (66) is the probability of escape without
absorption in the walls, and the factor Pdet is the proba-
bility of detection. Thus we must also keep track of the
photon which may result from quantum measurement at
a window. Figure 17 shows a few sample paths used by
the Monte Carlo calculation to compute the afterglow
rate (Left) and the decay rate (Right).

From Fig. 17 it is evident that simulated paths used
in the decay rate computation bounce many more times
from the chamber walls than paths used to compute the
afterglow rate. This is because paths which bounce many
times have large angles θ with respect to the cylinder axis;
thus photons resulting from such paths are less likely to
emerge from the CHASE chamber and to reach the de-
tector. Figure 18 shows the fractional contributions to
the total afterglow and decay rates from paths with dif-
ferent numbers of wall bounces. As expected, afterglow is
dominated by paths with very few bounces; a third of the
paths bounce exactly twice, while over 90% bounce be-
tween 1 and 5 times. A path with only two bounces must
have an angle less than 2R/(13ℓtot) = 0.020, or about 1◦.
Thus the afterglow rate is dominated by paths reflecting
from the chamber walls at grazing incidence. In con-
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FIG. 17: Typical particle paths used in the Monte Carlo sim-
ulation of CHASE. (Top) Paths used to compute Γaft. The
red path (with “+” symbols showing bounces from chamber
walls) begins on an interior window and ends on the exit win-
dow. The green path (with “×” symbols denoting bounces)
begins on the entrance window and ends on the exit window.
The blue path (with “*” symbols denoting bounces) begins
on the entrance window and ends on an interior window; the
subsequent dotted line denotes the photon which may result
from the quantum measurement at the interior window. (Bot-
tom) Paths used to compute Γdec. The red path (“+”) begins
on an internal window and ends on the entrance window, while
the green path (“×”) begins on the exit window and ends on
an interior window. Since a larger range of directions is al-
lowd in the decay rate computation, the typical path bounces
from chamber walls much more frequently than those used in
the afterglow computation.

trast, paths contributing to the decay rate reflect at a
large range of angles. Their contributions to the total
rate do not fall off until the number of bounces is around
ℓtot/R ≈ 300.

B. Tests of the Monte Carlo simulation

In the limit that the number Nparticles of particles sim-
ulated becomes large, the Monte Carlo computations of
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FIG. 18: Contributions to (Top) afterglow and to (Bot-
tom) decay rates from paths vs. number of wall bounces per
path. The afterglow rate receives no contributions from paths
bouncing more than 9 times, since these emerge from the
chamber at too great an angle to reach the CHASE detector.

Γaft and Γdec should converge to constant values. This
convergence can be studied by changing the random num-
ber seed used by the simulation at fixed Nparticles. The
scatter in the resulting rates should be smaller at larger
Nparticles. Figure 19 shows that the rates do indeed con-
verge, in the sense that the standard deviation of several
rate calculations with different random number seeds be-
comes small. The decay rate Γdec has converged to 0.5%
by Nparticles = 105 and the afterglow rate has converged
to 1% by Nparticles = 106. Since most of the simulated
afterglow paths do not reach the detector, even with the
restricted set of initial conditions used, Nparticles must be
an order of magnitude larger in the afterglow calculation
in order for the rates to converge to the percent level.
Henceforth we use Nparticles = 105 for the Γdec computa-
tion and Nparticles = 106 for the Γaft computation.

We have shown that the Monte Carlo computation of
Γaft and Γdec is precise. Next we show that it is accu-
rate. The 2-point calculation of Sec. V found these rates
exactly for a chamber with no interior windows and a
restricted set of initial conditions, namely, that the par-
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FIG. 19: Convergence of the Monte Carlo simulated rates
as the number of particles simulated is increased. For each
particle number Nparticles, each point represents a different
random number seed used in the Monte Carlo simulation.
βγ = 1012, meff = 10−4 eV, and B0 = 5 Tesla are assumed.

ticles begin at the center of the entrance window. The
same conditions can be imposed on the Monte Carlo cal-
culation for the sake of comparison. Fig. 20 shows Γaft

and Γdec computed using the two methods. Evidently
both rates are accurate at the ≈ 1% level across the full
range of chameleon masses.
Figure 21 shows the afterglow and decay rates per

chameleon particle, computed with no restrictions on the
initial particle position, and including the interior win-
dows. In Section IX we will use such Monte Carlo calcula-
tions with appropriate values of the potential-dependent
phase ξV in order to determine CHASE constraints.

C. Diffuse reflection

Thus far we have assumed perfectly specular reflection
of particles from the CHASE chamber walls; that is, the
angle of incidence equals the angle of reflection. Sup-
pose instead that a fraction fdiff of bounces resulted in
perfectly diffuse reflection, in which all directions were
equally likely for the reflected particle. This could result
from a rough surface whose local normal vector could dif-
fer substantially from that of a perfect cylinder. Given

an incident direction k̂I and a randomly chosen reflected

direction k̂R, the effective local normal vector is propor-

tional to k̂R − k̂I .
Figure 22 shows the change in afterglow and decay

rates when the fraction of diffuse reflections is increased.
For this computation we allow all initial directions for
afterglow paths, rather than requiring that θ < θ0 = 0.1
as before. The qualitative effect at fdiff ≪ 1 is that dif-
fuse reflection increases the afterglow rate and slightly
decreases the decay rate. This is because such diffuse
reflection is most important for particles with large θ,
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FIG. 20: (Top) Γaft and Γdec for the 2-point (2pt) calcula-
tion of Sec. V as well as the Monte Carlo (MC) calculation
with all particles required to start at the center of the en-
trance window. In both calculations, the chamber has no
interior windows. βγ = 1012 and B0 = 5 Tesla are assumed.
(Bottom) Fractional difference between the 2-point and Monte
Carlo calculations.

which bounce many times but do not reach the detec-
tor. Diffuse reflection gives such a particle a nonzero
chance of reaching the detector, thereby increasing the
afterglow rate. Since increasing Γaft and decreasing Γdec

both improve CHASE constraints, henceforth we make
the conservative assumption that fdiff = 0.

D. Sensitivity to chamber properties

The geometry of the CHASE experiment is illustrated
in Figure 9, with numerical quantities listed in Table I.
The length L of the magnetic field region, as well as its
offsets ℓ1 and ℓ2 from the entrance and exit windows,
respectively, affect the afterglow and decay rates. The
same is true of the reflectivity of the chamber walls. Such
properties may be important to the design of future af-
terglow experiments, so it is instructive to consider their
effects on the CHASE rates.
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FIG. 21: Afterglow and decay rates computed using the
Monte Carlo simulation. Particles are allowed to begin at
any position on a window surface. ξV = 0, βγ = 1012, and
B0 = 5 Tesla are assumed.
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FIG. 22: Fractional change in afterglow and decay rates
vs. fraction fdiff of diffuse reflection. Rates for six different
random number seeds are shown.

Figure 23 (Top) shows how Γaft and Γdec change when
the lengths ℓ1, L, and ℓ2 are varied relative to their
CHASE values. As expected, increasing L from low val-
ues causes Γaft and Γdec to grow as L2. Particularly for
the afterglow rate, this growth levels off as destructive
interference during oscillation becomes important and as
each particle must bounce from the walls a greater num-
ber of times before reaching the exit window. Mean-
while, increasing ℓ1 and ℓ2 cause the chamber volume to
increase without adding volume to the magnetic field re-
gion. This means that each particle spends less time in
the B0 region, hence the oscillation rate is smaller. In-
creasing ℓ2 also has the effect of making particles bounce
more between the B0 region and the exit window, further
suppressing Γaft. However, varying ℓ1 and ℓ2 by factors
of two in either direction only changes Γdec by about 10%
and Γaft by at most 25%. Thus CHASE constraints will
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FIG. 23: (Top) Afterglow rates (thin lines) and decay rates
(thick lines) as the lengths ℓ1, L, and ℓ2 are varied relative
to their CHASE values in Table I. (Bottom) Afterglow and
decay rates vs. the mean wall reflectivity f̄ref in the thin-skin
limit ñ1 → ∞. In both plots, meff = 10−4 eV and ξV = 0
have been assumed.

be relatively insensitive to the chamber geometry.

An additional consideration is the volume occupied
by the vacuum system. Suppose that the cylindri-
cal chamber considered above is only a fraction fvol of
the total volume available to chameleon particles. For
CHASE fvol = 0.68. Since the distribution of chameleon
particles is homogeneous, only a fraction fvol of the par-
ticles will be in the chamber at any given time, with the
remainder inside the vacuum system. Thus the rates Γdec

and Γaft computed earlier in this section must be mul-
tiplied by fvol. Constraints presented in Sec. IX include
this factor.

The mean reflectivity f̄ref is varied in Figure 23 (Bot-
tom). Since the photon skin depth and the visibility fac-
tor fvis discussed in Sec. IVC are specific to the material
of the chamber wall, Fig. 23 (Bottom) makes the simpli-
fying assumption of zero skin depth. This is equivalent
to ñ1 → ∞ and fvis = f̄ref in the notation of Sec. IVC.
Around the CHASE value of f̄ref = 0.53, the afterglow
and decay rates scale approximately linearly with f̄ref .

We note that the 7.5% measurement uncertainty in f̄ref
will lead to ≈ 10% uncertainties in Γaft and Γdec. Since

βγ ∝ F
1/4
aft at low βγ , a 10% uncertainty in Γaft implies

a 2.5% uncertainty in the CHASE upper bound on βγ ,
which is a nontrivial contribution to the total uncertainty.
In future experiments, highly polished chamber walls

would not strengthen constraints by much. Polished
metal, with f̄ref ≈ 0.85− 0.9, would only double the af-
terglow signal, improving constraints on βγ by 21/4−1 ≈
20%. What is important is measuring f̄ref at the 10%
level so that a precise bound can be placed on βγ .

IX. ANALYSIS AND CONSTRAINTS

A. Profile likelihood analysis

Finally, we apply the results of the preceding sec-
tions to CHASE data using the profile likelihood method
of [38]. The afterglow photon rate Faft from (17) depends
on the afterglow and decay rates per chameleon, Γaft and
Γdec, as well as the production time tprod. The rates Γaft

and Γdec, as functions of the chameleon parameters meff

ξV , and βγ , for CHASE as described in Sec. VII, are
computed in Sec. VIII; Fig. 21 shows these rates for a
particular choice of ξV and βγ . Thus for CHASE we
know Faft(meff , ξV , βγ , t).
A diagram of CHASE is shown in Fig. 9 (Bottom). In

each run, during the afterglow phase of the experiment,
CHASE counts photons in 15 second bins. A shutter
covers the detector, a PMT, in every other bin, allowing
the background photon “dark rate” to be monitored in
real time. The excess photon rate observed by the PMT
must come from the vacuum chamber. It is some com-
bination of the afterglow rate Faft(meff , ξV , βγ , t) and a
background systematic rate Fsyst({℘i}, t) which depends
on “nuisance parameters” {℘i}.
Let the eight data runs and seven calibration runs be

labeled by r, and the time bins in run r by br; the mean

photon rate observed in the brth bin of run r is F̄
(obs)
r,br

.

The predicted photon rate F̄
(pred)
r,br

(meff , ξV , βγ , {℘i}), for
a given choice of the chameleon and nuisance parame-
ters, is found by averaging Faft + Fsyst over time t in
the appropriate bin. The uncertainty σr,br in that bin is
dominated by the Poisson noise in the 28 Hz dark rate,
√

28Hz/15sec = 1.4 Hz, and contains additional noise
from background photons [32]. Summing over all runs
and all bins in each run, we define

χ2(meff , ξV , βγ , {℘i}) =
∑

r,br

(

F̄
(obs)
r,br

− F̄
(pred)
r,br

)2

σ2
r,br

. (69)

At each point in the chameleon parameter space, the
profile likelihood method defines χ2(meff , ξV , βγ) to be
χ2(meff , ξV , βγ , {℘i}) minimized over the nuisance pa-
rameters. This is compared with the value χ2

null for the
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null model βγ = Faft = 0, which has no photon-coupled
chameleon field.

B. Systematic rate Fsyst

The total background rate Fsyst is found to have three
important components [32]:

1. a dark rate Fdark = 28 Hz in the PMT, which is
the same for all data runs;

2. a “glow” Fpump emitted by the ion pump, which
varies from run to run with a mean of Fpump,mean =
1.2 Hz and a standard deviation of σpump = 0.4 Hz;

3. a transient rate Ftran(t) which is the same function
of time for all data runs.

Fdark is degenerate with individual pump glow rates, so
we fix it in the analysis.
At late times, the background is dominated by the

first two of these, Fsyst → Fdark + Fpump,r. Since Fdark

and Fpump,r are time-independent, neither one depends

upon the bin number br. Poisson variations in Fdark of
√

Fdark/∆tr,br are the dominant component of the uncer-
tainty in a bin of width ∆tr,br . The set {℘i} of nuisance
parameters includes the pump glows Fpump,r, with the

mean and standard deviation above, but not the known
dark rate Fdark. We modify (69) above to include the
term

∑

r(Fpump,r − Fpump,mean)
2/σ2

pump in order to ac-

count for the uncertainty in Fpump,r.

The transient rate Ftran(t) is studied in [35]. It cannot
be a chameleon afterglow because it is independent of
the magnetic field, and because its amplitude peaks in
the orange region of the electromagnetic spectrum rather
than the green 2π/ω = 532 nm of the input photons.
Because of this spectrum, references [32, 35] refer to this
transient component as the “orange glow”. It is modeled
as a run-independent exponentially decaying background
photon rate Ftran(t) = For,0 exp(−Γor,0t).
Although Ftran cannot be a chameleon afterglow sig-

nal, it can mimic such a signal in one particular run.
Furthermore, Ftran will introduce correlations among the
errors in the first several data bins. Therefore we cannot
simply measure Ftran and subtract it from the observed
signal. We must treat it as a systematic to be fit; that
is, we must include For,0 and Γor,0 in the set {℘i} of
systematics parameters. Analysis of CHASE calibration
data shows For,0 ≈ 7 Hz and 1/Γor,0 ≈ 2 minutes. In or-
der to avoid the portion of the data most contaminated
by this systematic, henceforth we discard the first two
minutes of afterglow data in each run.
The “profile χ2” minimizes over the nuisance param-

eters {℘i}. Since the total systematic rate Fsyst(t) de-
pends linearly on all of the nuisance parameters except
for Γor,0, given a value for Γor,0 the χ2-minimizing values
for the others can be found by solving a linear system.

Letting tr,br and ∆tr,br , respectively, be the central time
and the width of bin br in run r, we define

F̄
(aft)
r,br

=

∫ tr,br+∆tr,br/2

tr,br−∆tr,br/2

Faft(t)dt (70)

Sr,br =
1

2
sinc

(

1

2
Γor,0∆tr,br

)

exp(−Γor,0tr,br ) (71)

Ar,m =
∑

br

Smr,br
σ2
r,br

(72)

Ar,pump =
1

σ2
pump

+
∑

br

1

σ2
r,br

(73)

Br,m =
∑

br

(F̄
(obs)
r,br

− F̄
(aft)
r,br

)Smr,br
σ2
r,br

(74)

for m = 0, 1, 2. Then For,0 and the Fpump,r are given by

For,0 =
1

2

∑

r

(

Br,1 − Br,0 Ar,1

Ar,pump

)

∑

r

(

Ar,2 −
A2

r,1

Ar,pump

) (75)

Fpump,r =
Br,0

Ar,pump
− 2For,0

Ar,1

Ar,pump
. (76)

χ2 must be minimized numerically with respect to the
remaining nuisance parameter, Γor,0, in order to deter-
mine the profile χ2, which depends only upon meff , ξV ,
and βγ . Henceforth we will use χ2 to refer to the profile
χ2 defined above.

C. What would a chameleon signal look like?

Simulated CHASE “data” show what a chameleon
afterglow signal would look like in the experiment.
For a given chameleon model, the predicted rate

F̄
(pred)
r,br

(meff , ξV , βγ , {℘i}) was simulated by setting

For,0 = 7 Hz and Γor,0 = 1/120 sec, and by choosing
the pump glows for each run from a Gaussian distribu-
tion of mean 1.2 Hz and standard deviation 0.4 Hz. In
bin br of run r this implies F̄

(pred)
r,br

∆tr,br photons. The
simulated “data” for this bin are generated by randomly
choosing a number from a Poisson distribution of mean

F̄
(pred)
r,br

∆tr,br .
“Data” were simulated for three different scenarios:

1. a chameleon with meff = 10−4 eV, ξV = 0, and
βγ = 1014, near the center of the CHASE sensitiv-
ity region;

2. a chameleon withmeff = 2.4×10−3 eV, ξV = 0, and
βγ = 1012, near the edge of the sensitivity region;

3. a null model, with no chameleon afterglow.

Figure 24 shows the constraints resulting from analysis
of these three simulations. For the first scenario, ana-
lyzed in Fig. 24 (Left), CHASE data would be extremely
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FIG. 24: Analysis of simulated CHASE data. Yellow regions show previous constraints; blue regions show models excluded
relative to the null (no-chameleon) model by ∆χ2 = 6.0, corresponding to a 95% confidence level for a Gaussian probability
distribution; green regions show chameleon models preferred relative to the null model by ∆χ2 = 9.2, corresponding to a 99%
confidence level; pink regions within the green regions show chameleons within ∆χ2 = 6.0 of the best-fit chameleon model.
Black “+” signs show the fiducial chameleon model. (Left) Simulated chameleon near the center of the CHASE sensitivity
region, meff = 10−4 eV and βγ = 1014. The inset shows 0.99 × 10−4 eV < meff < 1.02 × 10−4 eV on the horizontal axis and
0.9999 × 1014 < βγ < 1.0001 × 1014 on the vertical axis; the black ellipse shows the ∆χ2 = 2.3 contour, corresponding to the
68% confidence level. (Middle) Simulated chameleon near the edge of the CHASE sensitivity region, meff = 2.4× 10−3 eV and
βγ = 1012. (Right) Simulated data with no chameleon. In all of the analyses, ξV = 0 has been assumed.

powerful. The experiment would be able to constrain the
chameleon mass to ∼ 1% and the photon coupling to bet-
ter than 0.01%. In the second scenario, CHASE would
detect the presence of a chameleon to high significance
(∆χ2 > 50), but severe parameter degeneracies would
make a determination of meff and βγ difficult. Fur-
ther study of this chameleon would require a new or
redesigned experiment. Finally, in the third scenario,
CHASE would exclude chameleon models over a large
range of parameters. The profile likelihood analysis pre-
vents a spurious identification of the orange glow system-
atic as a chameleon afterglow.

D. CHASE model-independent constraints

Now that the CHASE analysis has been tested on simu-
lations, we proceed to the actual data. Here we calculate
constraints which are model-independent, in the sense
that the chameleon parameters are the effective massmeff

inside the oscillation chamber, the phase ξV , and the pho-
ton coupling βγ , rather than the potential and the matter
coupling. In order for these constraints to be applicable,
the chameleon mass in the chamber walls must be large
enough that chameleon particles are contained inside the
chamber.

Figure 25 shows CHASE constraints [32] on scalar and
pseudoscalar chameleons with ξV = 0. Yellow regions
are previous constraints in this parameter space; Gam-
meV constraints are taken from [31], and collider con-
straints were found by [28, 40, 41]. In the blue region,
the null model is preferred relative to the chameleon
by ∆χ2 = 6.0, which corresponds to exclusion at the
95% confidence level for a Gaussian probability density
function; henceforth we use “95% CL” to refer to this
∆χ2 = 6.0 contour. CHASE constraints improve upon
those of GammeV by: extending to higher meff , well be-
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FIG. 25: Model-independent chameleon constraints for ξV =
0, from [32]. The solid blue region is exluded at the ∆χ2 = 6.0
level (95% CL for Gaussian probability) for scalar chameleons,
and the interior of the green curve is excluded at that level
for pseudoscalar chameleons.

yond the dark energy scale of 2.4×10−3 eV; bridging the
gap between GammeV and collider constraints; improv-
ing the low-meff upper bound on βγ through a tighter
control of systematic uncertainties.

As shown in Figure 26, these results are not strongly
dependent on ξV . This is because the afterglow rate
Γaft is dominated by particles bouncing from the walls
at grazing incidence, for which photon reflection itself
contributes the large polarization-dependent phase shifts
shown in Fig. 7. Averaging over polarizations weakens
the dependence of Γaft on ξV .

The model-independent plots in this section and in
Ref. [32] assume that meff is the same in all runs. How-
ever, in some modelsmeff can depend significantly on the
magnetic field. This is particularly true at the largest val-
ues of B0, where the electromagnetic energy density is of
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FIG. 26: Model-independent scalar chameleon constraints for
several reflection phases ξV .

5.00 T
2.24 T
1.00 T
0.45 T
0.20 T
0.09 T
0.05 T

 1e-05  0.0001  0.001  0.01  0.1

effective mass meff [eV]

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 1e+17

p
h
o
to

n
 c

o
u
p
lin

g
 β

γ

FIG. 27: Model-independent scalar chameleon constraints for
each of the magnetic fields used in CHASE, assuming ξV = 0.

the same order of magnitude as the gas density inside the
vacuum chamber.
Thus, for completeness, we show in Figure 27 the con-

straints resulting from each of the seven different mag-
netic fields individually. A joint analysis of data and
calibration runs is necessary to distinguish between the
“orange glow” systematic and an actual chameleon after-
glow, as described in Sec. IXB. In order to avoid double-
counting the calibration data, we analyze a different one
of the seven calibration runs along with each magnetic
field value in Fig. 27.

E. CHASE constraints on φ4 theory

Chameleon fragmentation in φ4 theory, V (φ) = λ
4!φ

4,
was studied in Sec. III D. Figure 28 shows CHASE con-
straints on φ4 theory. The effects of fragmentation are
evident at large λ and low βγ , where fragmentation com-
petes with oscillation as a means of reducing the de-
tectable chameleon population in the experiment. Be-
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FIG. 28: CHASE constraints on φ4 chameleons. Chameleon
fragmentation becomes important for λ & 0.01 and low βγ .
Note that the entire parameter space shown has already been
excluded by the Casimir force constraints of [42].

low λ ≈ 0.01, fragmentation has only a negligible effect
on afterglow constraints. Meanwhile, at low βm the con-
straining power of CHASE is limited by the chameleon
containment requirement; for low βm and λ, chameleons
can escape though the walls of the chamber.
As a result, CHASE constraints on φ4 chameleons

are considerably weaker than fifth force constraints from
measurements of the Casimir force [42]. The entire pa-
rameter space region shown in Fig. 28 is already excluded
by Casimir force constraints.

F. CHASE constraints on dark energy

Next, we apply CHASE data to chameleon dark energy
models (9). Since the constraints of the previous section
apply also to n = 4 chameleon dark energy, we focus
here on inverse power laws, n < 0. We also look at the
exponential potential (40), which we write in a form

V (φ) =M4
Λ +M4

Λ exp

(

− κφ

MΛ

)

(77)

suitable to a dark energy model. As discussed in
Sec. IVB, these potentials are the easiest to study be-
cause their phase changes ξV are independent of incident
angle; more complicated potentials would require a nu-
merical computation of ξV as a function of θ.
CHASE constraints on inverse power law chameleon

dark energy are shown in Figure 29. Twelve orders of
magnitude in βm are excluded for a range of βγ in each
of the models shown in Fig. 29 (Top), with the excluded
region limited at low βm by the containment require-
ment and at high βm by destructive interference in os-
cillation due to a large effective mass inside the chamber.
Fig. 29 (Bottom) shows that changing κ has the effect of
translating the excluded region in the βm direction; the
same behavior is seen for other n. Figure 30 constrains
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FIG. 29: Constraints on chameleon dark energy models (9).
(Top) assumes κ = 1 and varies n; (Bottom) fixes n = −1 and
varies κ.
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FIG. 30: Constraints on exponential dark energy models (77).
Models with κ & 104 have particles too massive to be probed
by CHASE.

exponential dark energy (77). In these models meff =
√

κ(βmρmat + βγρL,EM)/(MΛMPl) grows so rapidly with
κ that κ & 104 is inaccessible to CHASE [34].
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FIG. 31: Combined constraints on n = −1, κ = 1 chameleon
dark energy (9). Solid regions show current constraints from
analyses of experimental data, while lines represent forecasts
and preliminary analyses.

G. Combined constraints on n = −1 dark energy

Chameleon dark energy is described by a compli-
cated parameter space, with several experimental con-
straints which depend on the parameters in different
ways. While the previous discussion attempted to com-
pare CHASE to existing constraints, such constraints do
not exist (or have not been published) for all of the po-
tentials considered here. Furthermore, new experiments
have constrained chameleon models since the publication
of CHASE results in [32], and forecasts of planned exper-
iments have been made.

It is instructive to include as many chameleon con-
straints as possible on a single plot. For that we choose
a specific potential, chameleon dark energy (9) with
n = −1 and κ = 1. Figure 31 shows current constraints
and forecasts on this model. Collider constraints have
been studied extensively [28, 40, 41, 43] and are weakly
dependent on βm and V (φ), but only exclude extremely
strong photon couplings. Afterglow constraints are due
to CHASE. At large matter couplings, the chameleon-
mediated fifth force would affect electronic energy levels
in atoms, which are inconsistent with the data [44]. More
recently, fifth force contributions to the quantized energy
levels of neutrons in a classical gravitational field have
been used to constrain chameleons [45, 46]. Since the
neutron wavefunction in such experiments is de-localized
to a cloud of several microns, chameleon screening is in-
effective for suppressing fifth forces, resulting in powerful
constraints at large βm.

The upcoming neutron experiments qBounce and
GRANIT are expected to improve constraints on the
matter coupling by several orders of magnitude [46–48].
“Helioscopes” designed to convert solar axions into pho-
tons can also be used to constrain chameleons [49–51].
Refs. [52, 53] study chameleon-photon oscillation using
more distant astrophysical sources; however, since they
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describe their analysis as “preliminary” and systematic
effects due to astrophysical uncertainties remain to be
analyzed, we include this constraint as a forecast. Not
shown on the plot are Casimir force tests [54] and the
original GammeV Experiment [31], which do not con-
strain the potential chosen here. The Eöt-Wash torsion
pendulum experiment [55] likely excludes a range of mod-
els around βm = 1, but constraints for this specific model
have yet to be computed.

X. CONCLUSION

We conducted a thorough investigation of the physics
of chameleon particles in afterglow experiments, focusing
on questions which arose during the design and analysis
of CHASE. Afterglow experiments rely upon two assump-
tions about chameleon particles: reflection from dense
matter, which is necessary for trapping chameleon parti-
cles; and oscillation, which allows chameleon production
as well as photon regeneration. By studying the interac-
tion of a chameleon particle with atoms, in isolation as
well as in a lattice, we showed that the matter density
can be treated as homogeneous inside the chamber as well
as in its walls. Chameleon-atom scattering is negligible
in the vacuum; Fig. 2 showed that the chameleon parti-
cle ignores the electron cloud, so that the cross section
is dominated by hard-sphere scattering from the nucleus
alone. Fig. 5 showed that a chameleon particle “sees” the
chamber wall as a homogeneous solid until its mass be-
comes much larger than the ∼ 1 eV needed for reflection,
so trapping is unaffected by the fact that real matter is
a lattice of atoms.
On the other hand, the smoothly varying magnetic

field found in an afterglow experiment could poten-
tially suppress chameleon production significantly. If the
length scale on which the magnetic field drops from its
maximum value to zero, at the edge of the magnetic
field region, is much larger than the chameleon oscilla-
tion length, then the transition will be adiabatic, and an
incoming photon will emerge from the magnetic field in
a pure photon state. This adiabatic suppression can be
mitigated substantially by placing glass windows inside
the magnetic field region, as is evident from a compari-
son of Figs. 12 and 14 (Top). Such interior windows were
included in CHASE and will be essential to any future
afterglow experiment which seeks to improve constraints
at greater chameleon masses.
After studying these general effects, we proceeded to

calculate the signal expected in an afterglow experiment.
The analytic approximation of [34] was improved upon in

Sec. V. This approximation, in the limit where it becomes
exact, was used to verify that the Monte Carlo simulation
of Sec. VIII was correct. The Monte Carlo simulation, in
turn, was used to show that the predicted signal will not
be decreased by diffuse reflection in the chamber walls.
The dependence of the signal on the wall reflectivity and
the chamber geometry was shown in Fig. 23. Afterglow
and decay rates per chameleon particle for CHASE were
shown in Fig. 21.

Finally, in Sec. IX, we explained in greater detail the
analysis underlying the constraints of [32]. The model-
independent constraints of that reference were shown for
different chameleon phase shifts and for each of the mag-
netic field runs used in the experiment. CHASE data
were then used to constrain a wide range of models, in-
cluding dark energy candidates. Since additional con-
straints on chameleons have been released since the publi-
cation of [32], and since further experiments are planned,
we compared several different constraints and forecasts
in Fig. 31. For the model shown, CHASE excluded
five orders of magnitude in the photon coupling over a
range of ten orders of magnitude in the matter coupling.
CHASEhas made a substantial contribution to the study
of photon-coupled chameleon field theories.
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