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Abstract

Measurements of jet characteristics from inclusive jet production in proton-proton
collisions at a centre-of-mass energy of 7 TeV are presented. The data sample was
collected with the CMS detector at the LHC during 2010 and corresponds to an inte-
grated luminosity of 36 pb−1. The mean charged-hadron multiplicity, the differential
and integral jet shape distributions, and two independent moments of the shape dis-
tributions are measured as functions of the jet transverse momentum for jets recon-
structed with the anti-kT algorithm. The measured observables are corrected to the
particle level and compared with predictions from various QCD Monte Carlo gener-
ators.
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1 Introduction
The jet transverse momentum profile (shape) [1, 2], transverse size, and charged-hadron multi-
plicity in jets are sensitive to multiple parton emissions from the primary outgoing parton and
provide a powerful test of the parton showering approximation of quantum chromodynamics
(QCD), the theory of strong interactions. Recently, there have been many methods proposed
to search for heavy particles by studying the substructure of jets formed by their decay prod-
ucts, as these particles can be highly boosted and thus their decay products are well collimated
[3–6]. Jets arising from the fragmentation of a single parton, hereafter referred to as QCD jets,
contribute to backgrounds in searches for such boosted-object jets. A good understanding of
the QCD jet structure is very important for these searches to be successful. The structures of
gluon-initiated and quark-initiated jets are different due to their different fragmentation prop-
erties. QCD predicts gluon-initiated jets to have a higher average particle multiplicity and a
broader distribution of particle transverse momentum with respect to the jet direction com-
pared to quark-initiated jets. Jet structure measurements test these predictions and can be used
to develop techniques to discriminate between gluon and quark jets. Such discrimination tech-
niques can enhance both standard model measurements and the ability to search for physics
beyond the standard model.

Historically the jet shape has been used to test perturbative QCD (pQCD) calculations up to the
third power in the coupling constant αs [7, 8]. These leading-order calculations, with only one
additional parton in a jet, showed reasonable agreement with the observed jet shapes. While
confirming the validity of pQCD calculations, jet shape studies also indicated that jet clustering,
underlying event contributions, and hadronization effects must be considered. Currently, these
effects are modelled within the framework of Monte Carlo (MC) event generators, which use
QCD parton shower models, in conjunction with hadronization and underlying event models,
to generate final-state particles. These MC event generators are used extensively to model the
signal and background events for a variety of standard model studies and searches for new
physics at hadron colliders. Jet shapes are used to tune phenomenological parameters in the
event generators. Jet shapes have been measured previously in pp collisions at the Tevatron [7–
10] and ep collisions at HERA [11–15].

We present measurements of the charged-hadron multiplicity, shape, and transverse size for
jets with transverse momentum up to 1 TeV and rapidity up to 3 using 36 pb−1 of pp collisions at
a centre-of-mass energy of 7 TeV collected by the CMS experiment at the Large Hadron Collider
(LHC). A similar measurement has been performed by the ATLAS Collaboration [16].

This paper is organised as follows. Section 2 contains a brief description of the CMS detector.
In Section 3 we present the event selection and reconstruction. The jet observables are defined
in Section 4 and the results are given in Section 5. The conclusions are summarized in Section 6.

2 The CMS detector
CMS uses a right-handed coordinate system in which the z axis points in the anticlockwise
beam direction, the x axis points towards the centre of the LHC ring, and the y axis points up,
perpendicular to the plane of the LHC ring. The azimuthal angle φ is measured in radians with
respect to the x axis, and the polar angle θ is measured with respect to the z axis. A particle with
energy E and momentum ~p is characterized by transverse momentum pT = |~p| sin θ, rapidity
y = 1

2 ln [(E + pz)/(E− pz)], and pseudorapidity η = − ln [tan(θ/2)].

The CMS superconducting solenoid, 12.5 m long with an internal diameter of 6 m, provides a
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uniform magnetic field of 3.8 T. The inner tracking system is composed of a pixel detector with
three barrel layers at radii between 4.4 and 10.2 cm and a silicon strip tracker with 10 barrel
detection layers extending outwards to a radius of 1.1 m. This system is complemented by two
endcaps, extending the acceptance up to |η| = 2.5. The momentum resolution for reconstructed
tracks in the central region is about 1% at pT = 100 GeV/c.

The calorimeters inside the magnet coil consist of a lead tungstate crystal electromagnetic
calorimeter (ECAL) and a brass-scintillator hadron calorimeter (HCAL) with coverage up to
|η| = 3. The quartz/steel forward hadron calorimeters extend the calorimetry coverage up
to |η| = 5. Muons are measured in gas-ionization detectors embedded in the steel return
yoke of the magnet. The calorimeter cells are grouped in projective towers of granularity
∆η × ∆φ = 0.087× 0.087 for the central rapidities considered in this paper. The ECAL was
initially calibrated using test beam electrons and then, in situ, with photons from π0 and η me-
son decays and electrons from Z boson decays [17]. The energy scale in data agrees with that in
the simulation to better than 1% in the barrel region (|η| < 1.5) and better than 3% in the end-
cap region (1.3 < |η| < 3.0) [18]. Hadron calorimeter cells in the |η| < 3 region are calibrated
primarily with test-beam data and radioactive sources [19, 20]. A detailed description of the
CMS detector may be found in [21].

3 Event selection and reconstruction
The data were recorded using a set of inclusive single-jet high-level triggers [22] requiring at
least one jet in the event to have an online jet pT of at least 15, 30, 50, 70, 100, or 140 GeV/c. These
jets are reconstructed only from energy deposits in the calorimeters using an iterative cone al-
gorithm. In addition, a minimum-bias trigger, defined as a signal from at least one of two beam
scintillator counters in coincidence with a signal from one of two beam pickup timing devices,
was used to collect low pT jets. These datasets are combined to measure the jet characteristics
in bins spanning the range 20 GeV/c < pT < 1 TeV/c, so that the trigger contributing to each
bin is fully efficient. Only a fraction of events satisfying the lower threshold jet triggers were
recorded because of limited data acquisition system bandwidth. Thus the effective integrated
luminosity for jets with pT < 140 GeV/c is less than 36 pb−1.

Jets are reconstructed offline using the anti-kT jet clustering algorithm [23–25]. This algorithm
is similar to the well-known kT algorithm, except that it uses 1/pT instead of pT as the weight-
ing factor for the scaled distance. The algorithm is collinear- and infrared-safe, and it pro-
duces circular jets in y-φ space except when jets overlap. Two different types of inputs are
used with this algorithm. In the first method, individually calibrated particle candidates are
used as inputs to the jet clustering algorithm. These particle candidates, photons, electrons,
muons, charged hadrons, and neutral hadrons, are reconstructed using the CMS particle flow
(PF) algorithm [26]. This algorithm combines the information from all the subdetectors includ-
ing the silicon tracking system, the electromagnetic calorimeter, the hadron calorimeter, and
the muon system in order to reconstruct and identify individual particles in an event. The
charged-particle information is primarily derived from the tracking system, and the photons
are reconstructed using information from the electromagnetic calorimeter. The neutral hadrons,
e.g. neutrons and K0

L mesons, carry on average about 15% of the jet momentum, and are recon-
structed using information from the hadron calorimeter. Jets reconstructed from these inputs
are referred to as PF jets.

In the second method, called the jet-plus-track (JPT) algorithm [27], the energy deposits in the
electromagnetic and hadron calorimeter cells, which are combined into calorimeter towers, are
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used as inputs to the clustering algorithm to form calorimeter jets. Tracks originating from the
interaction vertex [28] are associated with these calorimeter jets based on the separation in η-φ
space between the jet direction and track direction at the interaction vertex. In the case of par-
tially overlapping jets, tracks are assigned to the jet with the minimum pT-weighted distance
between each track and the jet axis. These tracks are categorized as muon, charged pion, and
electron candidates, and the jet momentum is corrected by substituting their expected parti-
cle energy deposition in the calorimeter with their momentum. These track-corrected jets are
referred to as JPT jets.

The pT of both types of jets are corrected to the particle-level jet pT [29]. In both cases, the ra-
tio of the reconstructed jet pT to the particle jet pT is close to unity, and only small additional
corrections to the jet energy scale, of the order of 5–10%, are needed. These corrections are
derived from GEANT4-based [30] CMS simulations, based on the pT ratio of the particle jet
formed from all stable (cτ > 1 cm) particles to the reconstructed jet, and also in situ measure-
ments using dijet and photon + jet events [29]. The uncertainty on the absolute jet energy scale
is studied using both data and MC events and is found to be less than 5% for all values of jet
pT and η. In order to remove jets coming from instrumental noise, jet quality requirements are
applied [31].

The JPT jets are reconstructed with the anti-kT jet clustering algorithm and distance parameter
D = 0.5 [23]. The tracks associated with JPT jets are used to measure the charged-hadron multi-
plicity and the transverse size of the jets in the jet pT range 50 GeV/c < pT < 1 TeV/c. The PF jets
reconstructed with a distance parameter D = 0.7 are used to measure the jet shapes in the jet pT
range 20 GeV/c < pT < 1 TeV/c. Owing to the larger jet size, jet shape measurements evaluate a
larger fraction of the momentum from the originating parton and are relatively more sensitive
to momentum deposited by multiple-parton interactions (MPIs), thus providing important in-
formation to tune both the parton showering and MPI models in the event generators. To
minimize the contribution from additional pp interactions in a triggered event (pileup), events
with only one reconstructed primary vertex are selected for jet shape measurements, as the
measurements use both charged and neutral particles. For charged-hadron multiplicity and jet
transverse size studies, the events with multiple vertices are also considered as these studies
use only those tracks that are associated with the primary vertex. The primary vertex is defined
as the vertex with the highest sum of transverse momenta of all reconstructed tracks pointing
to it.

4 Jet observables
We have studied several observables to characterize the jet structure. These observables are
complementary and they can provide a more comprehensive picture of the composition of jets.
In order to compare the resulting measurements with theoretical predictions, all the observ-
ables are corrected back to the particle level by taking into account detector effects using MC
simulations.

4.1 Jet shapes

The differential jet shape ρ(r) is defined as the average fraction of the transverse momentum
contained inside an annulus of inner radius ra = r − δr/2 and outer radius rb = r + δr/2 as
illustrated in Fig. 1:

ρ(r) =
1
δr

∑
ra<ri<rb

pT,i

∑
ri<R

pT,i
,
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Figure 1: Pictorial definition of the differential (top) and integrated (bottom) jet shape quanti-
ties. Analytical definitions of these quantities are given in the text.

where δr = 0.1.

The integrated jet shape Ψ(r) is defined as the average fraction of the transverse momentum of
particles inside a cone of radius r around the jet axis:

Ψ(r) =
∑

ri<r
pT,i

∑
ri<R

pT,i
.

The sums run over the reconstructed particles, with the distance ri =
√
(yi − yjet)2 + (φi − φjet)2

relative to the jet axis described by yjet and φjet, and R = 0.7.

The observed detector-level jet shapes and true particle-level jet shapes differ because of jet
energy resolution effects, detector response to individual particles, smearing of the jet direc-
tions, smearing of the individual particle directions, and inefficiency of particle reconstruction,
especially at low pT. The data are unfolded to the particle level using bin-by-bin corrections
derived from the CMS simulation based on the PYTHIA 6.4 (PYTHIA6) MC generator [32] tuned
to the CMS data (tune Z2). The Z2 tune is identical to the Z1 tune described in [33], except that
Z2 uses the CTEQ6L [34] parton distribution function (PDF), while Z1 uses CTEQ5L [35] PDF.
The correction factors are determined as functions of r for each jet pT and rapidity bin and vary
between 0 and 20%. Since the MC model affects the momentum and angular distributions and
flavour composition of particles in a jet, and therefore the simulated detector response to the
jet, the unfolding factors depend on the MC model. In order to estimate the systematic un-
certainty due to the fragmentation model, the corrections are also derived using PYTHIA8 [36],
PYTHIA6 tune D6T [32], and HERWIG++ [37]. The largest difference of these three sets of cor-
rection factors from those of PYTHIA6 tune Z2 is assigned as the uncertainty on the correction.
This uncertainty is typically 2–3% in the region where the bulk of the jet energy is deposited
and increases to as high as 15% at large radii where the momentum of particles is very small.
For very high pT jets where the fraction of jet momentum deposited at large radii is extremely
small, the uncertainty is less than 1% at r = 0.1 and reaches 25% at high radii.

The impact of the calibration uncertainties for particles used to measure the jet shapes is studied
separately for charged hadrons, neutral hadrons, and photons. The calibration of each type of
particle is varied within its measurement uncertainty, depending on its pT and η. The resulting
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change in the jet shape distributions is negligible as expected since the effect is largely cancelled
out in the jet shapes, which are defined as pT sum ratios.

The jet energy scale uncertainty has a larger impact on the jet shape measurements because it
affects the migration of jets between different jet pT bins. The jet energy scale uncertainty is
estimated to be less than 5% for all jet pT and η bins [29] and results in a maximum uncertainty
of 2–3% in both the differential and integrated jet shape distributions.

4.2 The charged-hadron multiplicity and the transverse size of jets

In addition to the study of ρ(r) and Ψ(r), we have measured characteristics of the charged com-
ponents of jets, namely, the mean charged-hadron multiplicity per jet, 〈Nch〉, and the second
moments of the transverse jet size, defined by

〈
δη2〉 = ∑

i∈jet
(ηi − ηC)

2 · pT,i

∑
i∈jet

pT,i
,

〈
δφ2〉 = ∑

i∈jet
(φi − φC)

2 · pT,i

∑
i∈jet

pT,i
,

where

ηC =

∑
i∈jet

ηi · pT,i

∑
i∈jet

pT,i
, φC =

∑
i∈jet

φi · pT,i

∑
i∈jet

pT,i
,

and pT,i, ηi, and φi are the transverse momentum, pseudorapidity, and azimuthal direction of
a particle i in the jet. These moments are combined to obtain the second moment of the jet
transverse width: 〈

δR2〉 = 〈δη2〉+ 〈δφ2〉 .

We measure 〈Nch〉 and
〈
δR2〉 using tracks with pT > 0.5 GeV/c associated with JPT jets. The

tracks identified as electrons or muons are explicitly removed. As the tracks are required to
be attached to the primary vertex, the tracks resulting from photon conversions are not used
either.

The particle-level 〈Nch〉 and
〈
δR2〉 values, defined to correspond to all stable charged hadrons

with pT > 0.5 GeV/c, are obtained by separately correcting the measured observables for the
tracking inefficiency and the jet energy resolution. The corrections to the track detection effi-
ciency are applied in two steps: first, corrections for the tracker acceptance and for losses due
to interactions in the detector material are determined for isolated charged pions as functions
of pT and η using CMS simulation and applied as a weight assigned to each track [38]. Next,
residual corrections for both the tracking inefficiency and misidentified tracks inside the dense
high-pT jet environment are calculated for 〈Nch〉 and

〈
δR2〉 as functions of jet pT in two jet ra-

pidity ranges: |y| < 1 and 1 < |y| < 2. These corrections are derived from MC by comparing
the detector-level and particle-level 〈Nch〉 and

〈
δR2〉 for each jet pT bin. The correction factors

for 〈Nch〉 increase from about 2% for jets with pT = 40 GeV/c to 5% for jets with pT = 200 GeV/c.
The corrections increase to 20% for a jet with pT of 800 GeV/c. For

〈
δR2〉, the corrections increase

from 3 to 8% as the jet pT goes from 40 GeV/c to 200 GeV/c, and rise to 20% for 800 GeV/c pT
jets. The uncertainty on 〈Nch〉 due to these residual corrections is 1%, while the uncertainty on〈

δR2〉 is 2–5%.

The jet energy resolution corrections are extracted bin by bin from the CMS simulation based
on the PYTHIA6 tune Z2 MC samples. The uncertainty on 〈Nch〉 (

〈
δR2〉) due to jet energy

resolution is 1–2% (2–5%). A cross-check of the correction procedure is performed using the
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Tikhonov regularization method with a quasi-optimal solution [39, 40]. The results obtained
with these two methods are consistent to within 2%.

5 Results
In this section, data results are compared to MC simulations using the PYTHIA6 [32], PYTHIA8 [36],
and HERWIG++ [37] event generators. Three different tunes of the PYTHIA 6.4 generator are con-
sidered: tune D6T, tune Z2, and the Perugia2010 tune [41]. Tune D6T uses virtuality-ordered
parton showers, while tune Z2 and the Perugia2010 tune use pT-ordered parton showers. Gen-
erator input parameters controlling the underlying event, radiation, and hadronization are
tuned in order to provide a better description of collider data. Tune D6T was developed us-
ing previous hadron and lepton collider data, while tune Z2 also uses CMS soft pT data [42].
The Perugia2010 tune [41] was tuned using LEP and Tevatron data, notably the CDF jet shape
results [9]. Tunes D6T and Z2 are simulated with PYTHIA 6.4.22, and the Perugia2010 tune is
simulated with PYTHIA 6.4.24. The CTEQ6L1 [34] parton distribution function (PDF) of the
proton is used with tunes D6T and Z2, while the CTEQ5L [35] PDF is used with the Peru-
gia2010 tune. The PYTHIA 8.145 generator, tune 2C, uses an improved diffraction model, and
the HERWIG++ 2.4.2 generator uses angular-ordered parton showers and a cluster-based frag-
mentation model. For HERWIG++ 2.4.2, the default underlying event tune is used together with
the MRST2001 [43] PDF.

The differential jet shape measurements for central jets (|y| < 1) for representative bins in jet
pT, along with their statistical and systematic uncertainties, compared with predictions from
different MC generators and tunes are presented in Figs. 2 and 3. Larger values of ρ(r) de-
note larger transverse momentum fraction in a particular annulus. At high jet pT, the data are
peaked at low radius r, indicating that jets are highly collimated with most of their pT close
to the jet axis while they widen at lower jet pT. For the lowest jet pT bins, the pT distribution
within the jet flattens considerably. For 20 GeV/c jets in the central rapidity region, approxi-
mately 15% of the jet pT is within a radius of r = 0.1 around the jet axis, whereas at 600 GeV/c
this fraction increases to about 90%. This behaviour is illustrated in Figs. 4 and 5 where the
amount of jet energy deposited outside a cone of r = 0.3, 1−Ψ(r = 0.3), is shown as a function
of jet pT for central jets and also in six different jet rapidity regions up to |y| = 3. These figures
also show comparisons of the data with the PYTHIA6, PYTHIA8, and HERWIG++ generators.

As depicted in Figs. 4 and 5, at low jet pT the PYTHIA8 generator predicts somewhat narrower
jets than those found in data, while PYTHIA6 tune D6T predicts wider jets. Tune Z2 provides
a good description of data at low jet pT. At jet pT & 40 GeV/c the Perugia2010 and D6T tunes
describe the data better than tune Z2. This trend holds for all rapidity ranges. HERWIG++
predicts wider jets than observed in data over most of the jet pT region except at the forward
rapidity regions where the agreement is better. The measurement is presented as a function of
jet rapidity for different pT regions in Fig. 6, which shows that jets become somewhat narrower
with increasing |y| in both data and simulation. The measured 〈Nch〉 and

〈
δR2〉 as functions of

jet pT are presented in Figs. 7 and 8 for two different rapidity intervals, |y| < 1 and 1 < |y| < 2,
along with their statistical and systematic uncertainties. The total systematic uncertainty in-
cludes the uncertainty on the jet energy scale, jet energy resolution, tracking inefficiency, jet
unsmearing procedure, and pileup contribution. The ratios of the MC predictions to data, cor-
rected to the particle level, of these two observables are shown at the bottom of the figures. The
measured values of 〈Nch〉 are systematically lower than the values predicted by both PYTHIA6
and HERWIG++. In the case of

〈
δR2〉 the predicted values are in agreement with the measured

values with the exception of some disagreement observed with PYTHIA6 tune Z2 at |y| < 1.
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Figure 2: Differential jet shape as a function of the distance from the jet axis for central jets
(|y| < 1) with jet transverse momentum ranging from 20 to 125 GeV/c for representative jet pT
bins. The data are compared to particle-level HERWIG++, PYTHIA8, and PYTHIA6 predictions
with various tunes. Statistical uncertainties are shown as error bars on the data points and the
shaded region represents the total systematic uncertainty of the measurement. Data points are
placed at the bin centre; the horizontal bars show the size of the bin. The ratio of each MC
prediction to the data is also shown in the lower part of each plot.
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Figure 3: Differential jet shape as a function of the distance from the jet axis for central jets
(|y| < 1) with jet transverse momentum ranging from 140 to 1000 GeV/c for representative jet
pT bins. The data are compared to particle-level HERWIG++, PYTHIA8, and PYTHIA6 predictions
with various tunes. Statistical uncertainties are shown as error bars on the data points and the
shaded region represents the total systematic uncertainty of the measurement. Data points are
placed at the bin centre; the horizontal bars show the size of the bin. The ratio of each MC
prediction to the data is also shown in the lower part of each plot.
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Figure 5: Measured integrated jet shape, 1 − Ψ(r = 0.3), as a function of jet pT in different
jet rapidity regions, compared to HERWIG++, PYTHIA8, and PYTHIA6 predictions with various
tunes. Statistical uncertainties are shown as error bars on the data points and the shaded region
represents the total systematic uncertainty of the measurement. Data points are placed at the
bin centre; the horizontal bars show the size of the bin. The ratio of each MC prediction to the
data is also shown in the lower part of each plot.
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Figure 6: Measured integrated jet shape, 1−Ψ(r = 0.3), as a function of jet rapidity for repre-
sentative jet pT bins. The data (points) are compared to particle-level HERWIG++, PYTHIA8, and
PYTHIA6 predictions with various tunes. Statistical uncertainties are shown as error bars on the
data points and the shaded region represents the total systematic uncertainty of the measure-
ment. Data points are placed at the bin centre; the horizontal bars show the size of the bin. The
ratio of each MC prediction to the data is also shown in the lower part of each plot.
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Figure 7: The average charged-particle multiplicity 〈Nch〉 as a function of jet pT for jets with 0 <
|y| < 1 (top) and 1 < |y| < 2 (bottom). Data are shown with statistical error bars and a band
denoting the systematic uncertainty. Also shown are predictions based on the PYTHIA6 tune
D6T (dashed line) and tune Z2 (solid line) and HERWIG++ (dot-dashed line) event generators.
The bottom of each plot shows the ratio of the MC simulations to data with statistical error bars
and a band denoting the systematic uncertainties on the data measurement.
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Figure 8: The average transverse jet size
〈
δR2〉 as a function of jet pT for jets with 0 < |y| < 1

(top) and 1 < |y| < 2 (bottom). Data are shown with statistical error bars and a band denoting
the systematic uncertainty. Predictions are shown based on the PYTHIA6 tune D6T (dashed
line), tune Z2 (solid line), and HERWIG++ (dot-dashed line) event generators. The bottom of
each plot shows the ratio of the MC simulations to data with statistical error bars and a band
denoting the systematic uncertainties on the data measurement.
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The ratio of the second moments in the η and φ directions is shown as a function of jet pT
for |y| < 1 in Fig. 9. Systematic uncertainties largely cancel in this ratio. The measured jet
width in the η direction is slightly wider than in the φ direction. These results agree with
PYTHIA6 predictions, while HERWIG++ predicts a larger difference of the jet width in the η and
φ directions.

A comparison of the 〈Nch〉 and
〈
δR2〉 values obtained from the data as functions of jet pT in two

ranges of jet rapidity is shown in Fig. 10. The data are in good agreement with the hypothesis
that the fraction of quark-induced jets increases with increasing jet pT and jet rapidity.
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Figure 9: The ratio of the jet transverse width second moments in the η and φ directions as a
function of jet pT for jets with |y| < 1. The systematic uncertainty is shown as a band around
the data points. Also shown are predictions based on the PYTHIA6 tune D6T (dot-dashed line),
tune Z2 (solid line), and HERWIG++ (dashed line) event generators.

Tables containing the measured jet shape, charged-hadron multiplicity, and transverse size data
are available as a supplement to the online version of this article.

6 Summary
We have presented measurements of jet shapes, mean charged-hadron multiplicity, and trans-
verse width for jets produced in proton-proton collisions at a centre-of-mass energy of 7 TeV,
collected by the CMS detector at the LHC. Jets become narrower with increasing jet pT, and
they also show a mild rapidity dependence in which jets become somewhat narrower with
increasing |y|, in the manner predicted by various QCD Monte Carlo models. At low jet pT,
the PYTHIA6 Z2 model tuned to the initial CMS soft pT data [42] provides a fair description of
the measured jet shapes. At jet pT & 40 GeV/c, the tune Z2 predicts slightly narrower jets than
those observed in data whereas the D6T and Perugia2010 tunes describe the data better. The
measurements may be used to further improve these Monte Carlo models.
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Figure 10: Average charged-particle multiplicity 〈Nch〉 (top) and average transverse jet size〈
δR2〉 (bottom) as functions of jet pT for jets with 0 < |y| < 1 (solid squares) and with 1 < |y| <

2 (open squares). Data are shown with statistical error bars and a band denoting the systematic
uncertainty. Also shown are predictions for quark-induced and gluon-induced jets for |y| < 1
based on the PYTHIA6 tune Z2 event generator.



16 6 Summary

The mean charged-hadron multiplicity and the second moment of the jet width are compared
with predictions from the PYTHIA6 (tunes D6T and Z2) and HERWIG++ generators. All these
models predict slightly higher mean charged-hadron multiplicities than found in the data;
however, good agreement is observed between the models and the measured second moment
of the jet transverse width. The observed behaviour of the mean multiplicity and jet transverse
width agrees with the predicted increase in the fraction of quark-induced jets at higher jet trans-
verse momentum and rapidity. Decomposition of the transverse width second moment into
second moments for η and φ demonstrates that jets are slightly wider in the η direction than in
the φ direction. This observation is in good quantitative agreement with PYTHIA6 predictions,
while HERWIG++ predicts a larger difference between jet widths in the η and φ directions.

Acknowledgements
We congratulate our colleagues in the CERN accelerator departments for the excellent perfor-
mance of the LHC machine. We thank the technical and administrative staff at CERN and
other CMS institutes. This work was supported by the Austrian Federal Ministry of Science
and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschap-
pelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the
Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Min-
istry of Science and Technology, and National Natural Science Foundation of China; the Colom-
bian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport;
the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recur-
rent financing contract SF0690030s09 and European Regional Development Fund, Estonia; the
Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of
Physics; the Institut National de Physique Nucléaire et de Physique des Particules / CNRS, and
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Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
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