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Abstract

A search for a Higgs boson decaying into two photons is described. The analysis
is performed using a dataset recorded by the CMS experiment at the LHC from pp
collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated lu-
minosity of 4.8 fb−1. Limits are set on the cross section of the standard model Higgs
boson decaying to two photons. The expected exclusion limit at 95% confidence level
is between 1.4 and 2.4 times the standard model cross section in the mass range be-
tween 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level,
the standard model Higgs boson decaying into two photons in the mass range 128 to
132 GeV. The largest excess of events above the expected standard model background
is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of
3.1 σ. The global significance of observing an excess with a local significance ≥3.1 σ
anywhere in the search range 110–150 GeV is estimated to be 1.8 σ. More data are
required to ascertain the origin of this excess.

Submitted to Physics Letters B

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

20
2.

14
87

v1
  [

he
p-

ex
] 

 7
 F

eb
 2

01
2

FERMILAB-PUB-12-675-CMS

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 





1

1 Introduction
The standard model (SM) [1–3] of particle physics has been very successful in explaining ex-
perimental data. The origin of the masses of the W and Z bosons that arise from electroweak
symmetry breaking remains to be identified. In the SM the Higgs mechanism is postulated,
which leads to an additional scalar field whose quantum, the Higgs boson, should be experi-
mentally observable [4–9].

Direct searches at the LEP experiments ruled out a SM Higgs boson lighter than 114.4 GeV
at 95% confidence level (CL) [10]. Limits at 95% CL on the SM Higgs boson mass have also
been placed by experiments at the Tevatron, excluding 162–166 GeV [11], and by the ATLAS
collaboration at the Large Hadron Collider (LHC), excluding the ranges 145–206, 214–224, and
340–450 GeV [12–14]. Precision electroweak measurements indirectly constrain the mass of the
SM Higgs boson to be less than 158 GeV at 95% CL [15].

The H → γγ decay channel provides a clean final-state topology with a mass peak that can
be reconstructed with high precision. In the mass range 110 < mH < 150 GeV, H → γγ is
one of the more promising channels for a Higgs search at the LHC. The primary production
mechanism of the Higgs boson at the LHC is gluon fusion with additional small contributions
from vector boson fusion (VBF) and production in association with a W or Z boson, or a tt
pair [16–27]. In the mass range 110 < mH < 150 GeV the SM H→ γγ branching fraction varies
between 0.14% and 0.23% [28]. Previous searches in this channel have been conducted by the
CDF and D0 experiments [29, 30], and also at the LHC by ATLAS [31].

This paper describes a search for a Higgs boson decaying into two photons in pp collisions at
a centre-of-mass energy of 7 TeV, using data taken in 2011 and corresponding to an integrated
luminosity of 4.8 fb−1. To improve the sensitivity of the search, selected diphoton events are
subdivided into classes according to indicators of mass resolution and signal-to-background
ratio. Five mutually exclusive event classes are defined: four in terms of the pseudorapidity
and the shower shapes of the photons, and a fifth class into which are put all events containing a
pair of jets passing selection requirements which are designed to select Higgs bosons produced
by the VBF process.

2 The CMS detector
A detailed description of the CMS detector can be found elsewhere [32]. The main features and
those most pertinent to this analysis are described below. The central feature is a supercon-
ducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of
3.8 T. The bore of the solenoid is instrumented with particle detection systems. The steel return
yoke outside the solenoid is instrumented with gas detectors used to identify muons. Charged
particle trajectories are measured by the silicon pixel and strip tracker, with full azimuthal cov-
erage within |η| < 2.5, where the pseudorapidity η is defined as η = − ln[tan(θ/2)], with θ
being the polar angle of the trajectory of the particle with respect to the counterclockwise beam
direction. A lead-tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator
hadron calorimeter (HCAL) surround the tracking volume and cover the region |η| < 3. The
ECAL barrel extends to |η| ≈ 1.48. A lead/silicon-strip preshower detector is located in front
of the ECAL endcap. A steel/quartz-fibre Cherenkov forward calorimeter extends the calori-
metric coverage to |η| < 5.0. In the region |η| < 1.74, the HCAL cells have widths of 0.087 in
both pseudorapidity and azimuth (φ). In the (η, φ) plane, and for |η| < 1.48, the HCAL cells
map on to 5× 5 ECAL crystal arrays to form calorimeter towers projecting radially outwards
from points slightly offset from the nominal interaction point. In the endcap, the ECAL arrays
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matching the HCAL cells contain fewer crystals. Calibration of the ECAL uses π0s, W → eν,
and Z → ee. Deterioration of transparency of the ECAL crystals due to irradiation during the
LHC running periods and their subsequent recovery is monitored continuously and corrected
for using light injected from a laser and LED system.

3 Data sample and reconstruction
The dataset consists of events collected with diphoton triggers and corresponds to an inte-
grated luminosity of 4.8 fb−1. Diphoton triggers with asymmetric transverse energy, ET, thresh-
olds and complementary photon selections were used. One selection required a loose calori-
metric identification using the shower shape and very loose isolation requirements on photon
candidates, and the other required only that the photon candidate had a high value of the R9
variable. This variable is defined as the energy sum of 3× 3 crystals centred on the most ener-
getic crystal in the supercluster (described below) divided by the energy of the supercluster. Its
value is used in the analysis to identify photons undergoing a conversion. The ET thresholds
used were at least 10% lower than the final selection thresholds. As the instantaneous luminos-
ity delivered by the LHC increased, it became necessary to tighten the isolation cut applied in
the trigger. To maintain high trigger efficiency, all four possible combinations of threshold and
selection criterion were deployed (i.e., with both photon candidates having the R9 condition,
with the high threshold candidate having the R9 condition applied and the low threshold can-
didate having the loose ID and isolation, and so on). Accepting events that satisfy any of these
triggers results in a >99% trigger efficiency for events passing the offline selection.

Photon candidates are reconstructed from clusters of ECAL channels around significant energy
deposits, which are merged into superclusters. The clustering algorithms result in almost com-
plete recovery of the energy of photons that convert in the material in front of the ECAL. In the
barrel region, superclusters are formed from five-crystal-wide strips in η centred on the locally
most energetic crystal (seed) and have a variable extension in φ. In the endcaps, where the
ECAL crystals do not have an η × φ geometry, matrices of 5×5 crystals (which may partially
overlap) around the most energetic crystals are merged if they lie within a narrow road in η.

The photon energy is computed starting from the raw supercluster energy. In the endcaps the
preshower energy is added where the preshower is present (|η| > 1.65). In order to obtain the
best resolution, the raw energy is corrected for the containment of the shower in the clustered
crystals, and the shower losses for photons which convert in material upstream of the calori-
meter. These corrections are computed using a multivariate regression technique based on the
TMVA boosted decision tree implementation [33]. The regression is trained on photons in a
sample of simulated events using the ratio of the true photon energy to the raw energy as the
target variable. The input variables are the global η and φ coordinates of the supercluster, a
collection of shower-shape variables, and a set of local cluster coordinates.

Jets, used in the dijet tag, are reconstructed using a particle-flow algorithm [34, 35], which uses
the information from all CMS sub-detectors to reconstruct different types of particles produced
in the event. The basic objects of the particle-flow reconstruction are the tracks of charged par-
ticles reconstructed in the central tracker, and energy deposits reconstructed in the calorimetry.
These objects are clustered with the anti-kT algorithm [36] using a distance parameter ∆R=
0.5. The jet energy measurement is calibrated to correct for detector effects using samples of
dijet, γ + jet, and Z + jet events [37]. Energy from overlapping pp interactions other than that
which produced the diphoton (pile-up), and from the underlying event, is also included in
the reconstructed jets. This energy is subtracted using the FASTJET technique [38–40], which



3

is based on the calculation of the η-dependent transverse momentum density, evaluated on an
event-by-event basis.

Samples of Monte Carlo (MC) events used in the analysis are fully simulated using GEANT4 [41].
The simulated events are reweighted to reproduce the distribution of the number of interac-
tions taking place in each bunch crossing.

4 Vertex location
The mean number of pp interactions per bunch crossing over the full dataset is 9.5. The inter-
action vertices reconstructed using the tracks of charged particles are distributed in the longi-
tudinal direction, z, with an RMS spread of 6 cm. If the interaction point is known to better
than about 10 mm, then the resolution on the opening angle between the photons makes a neg-
ligible contribution to the mass resolution, as compared to the ECAL energy resolution. Thus
the mass resolution can be preserved by correctly assigning the reconstructed photons to one
of the interaction vertices reconstructed from the tracks. The techniques used to achieve this
are described below.

The reconstructed primary vertex which most probably corresponds to the interaction vertex
of the diphoton event can be identified using the kinematic properties of the tracks associated
with the vertex and their correlation with the diphoton kinematics. In addition, if either of
the photons converts and the tracks from the conversion are reconstructed and identified, the
direction of the converted photon, determined by combining the conversion vertex position
and the position of the ECAL supercluster, can be used to point to and so identify the diphoton
interaction vertex.

For the determination of the primary vertex position using kinematic properties, three discrim-
inating variables are constructed from the measured scalar, pT, or vector, ~pT, transverse mo-
menta of the tracks associated with each vertex, and the transverse momentum of the diphoton
system, pγγ

T . These three variables are: ∑ p2
T, and two variables which quantify the pT balance

with respect to the diphoton system: -∑(~pT ·
~pγγ

T
|~pγγ

T |
) and (∑ pT− pγγ

T )/(∑ pT + pγγ
T ). An estimate

of the pull to each vertex from the longitudinal location on the beam axis pointed to by any re-
constructed tracks (from a photon conversion) associated with the two photon candidates is
also computed: |zconversion − zvertex|/σconversion. These variables are used in a multivariate sys-
tem based on boosted decision trees (BDT) to choose the reconstructed vertex to associate with
the photons.

The vertex-finding efficiency, defined as the efficiency to locate the vertex to within 10 mm of
its true position, has been studied with Z → µµ events where the algorithm is run after the
removal of the muon tracks. The use of tracks from a converted photon to locate the vertex is
studied with γ + jet events. In both cases the ratio of the efficiency measured in data to that
in MC simulation is close to unity. The value is measured as a function of the boson pT, as
measured by the reconstructed muons, and is used as a correction to the Higgs boson signal
model. An uncertainty of 0.4% is ascribed to the knowledge of the vertex finding efficiency
coming from the statistical uncertainty in the efficiency measurement from Z→ µµ (0.2%) and
the uncertainty related to the Higgs boson pT spectrum description, which is estimated to be
0.3%. The overall vertex-finding efficiency for a Higgs boson of mass 120 GeV, integrated over
its pT spectrum, is computed to be 83.0±0.2(stat)±0.4(syst)%.
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5 Photon selection
The event selection requires two photon candidates with pγ

T(1) > mγγ/3 and pγ
T(2) > mγγ/4

within the ECAL fiducial region, |η| < 2.5, and excluding the barrel-endcap transition region
1.44 < |η| < 1.57. The fiducial region requirement is applied to the supercluster position in the
ECAL, and the pT threshold is applied after the vertex assignment. The excluded barrel-endcap
transition region removes from the acceptance the last two rings of crystals in the barrel, to en-
sure complete containment of accepted showers, and the first ring of trigger towers in the end-
cap which is obscured by cables and services exiting between the barrel and endcap. In the rare
case where the event contains more than two photons passing all the selection requirements,
the pair with the highest summed (scalar) pT is chosen.

The dominant backgrounds to H → γγ consist of 1) the irreducible background from the
prompt diphoton production, and 2) the reducible backgrounds from pp → γ + jet and pp →
jet + jet where one or more of the “photons” is not a prompt photon. Photon identification re-
quirements are used to greatly reduce the contributions from non-prompt photon background.

Isolation is a powerful tool to reject the non-prompt background due to electromagnetic show-
ers originating in jets – mainly due to single and multiple π0s. The isolation of the photon can-
didates is measured by summing the transverse momentum (or energy) found in the tracker,
ECAL or HCAL within a distance ∆R =

√
∆η2 + ∆φ2 of the candidate (values of ∆R = 0.3 and

∆R = 0.4 are used). The tracks or calorimeter energy deposits very close to the candidates,
which might originate from the candidate itself, are excluded from the sum. Pile-up results in
two complications. First, the ET summed in the isolation region in the ECAL and in the HCAL
includes a contribution from other collisions in the same bunch crossing. The isolation sums
in the ECAL and HCAL, and hence both the efficiency and rejection power of selection based
on the sums, are thus dependent on the number of interactions in the bunch crossing. Second,
the track isolation requires that the tracks used in the isolation sum are matched to the chosen
vertex (so that the sum does not suffer from pile-up). If the vertex is incorrectly assigned, the
isolation sum will be unrelated to the true isolation of the candidate. This allows non-prompt
candidates which are not, in fact, isolated from tracks originating from their interaction point,
to appear isolated.

The first issue is dealt with by calculating the median transverse energy density in the event, ρ,
in regions of the detector separated from the jets and photons, and subtracting an appropriate
amount, proportional to ρ, from the isolation sums. The second problem is dealt with by apply-
ing a selection requirement not only on the isolation sum calculated using the chosen diphoton
vertex, but also on the isolation sum calculated using the vertex hypothesis which maximises
the sum. The isolation requirements are applied as a constant fraction of the candidate photon
pT, effectively cutting harder on low pT photons. It has been shown with Z → ee events that
the resulting variation of selection efficiency with pT is well modelled in the simulation.

In addition to isolation variables, the following observables are also used for photon selection:
the ratio of hadronic energy behind the photon to the photon energy, the transverse width of
the electromagnetic shower, and an electron track veto.

Photon candidates with high values of R9 are mostly unconverted and have less background
than those with lower values. Photon candidates in the barrel have less background than those
in the endcap. For this reason it has been found useful to divide photon candidates into four
categories and apply a different selection in each category, using more stringent requirements
in categories with higher background and worse resolution.

The efficiency of the photon identification is measured in data using tag and probe techniques [42].
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Table 1: Photon identification efficiencies measured in the four photon categories using a tag
and probe technique applied to Z → ee events (for all requirements except the electron veto).
Both statistical and systematic errors are given for the data measurement (in that order), and
these are combined quadratically to calculate error on the ratio εdata/εMC.

Category εdata (%) εMC (%) εdata/εMC
Barrel, R9 > 0.94 89.26±0.06±0.04 90.61±0.05 0.985±0.001
Barrel, R9 < 0.94 68.31±0.06±0.55 68.16±0.05 1.002±0.008
Endcap, R9 > 0.94 73.65±0.14±0.39 73.45±0.12 1.002±0.006
Endcap, R9 < 0.94 51.25±0.11±1.25 48.70±0.08 1.052±0.026

The efficiency of the complete selection excluding the electron veto requirement is determined
using Z → ee events. Table 1 shows the results for data and MC simulation, and the ratio of
efficiency in data to that in the simulation, εdata/εMC. The efficiency for photons to pass the
electron veto has been measured using Z → µµγ events, where the photon is produced by
final-state radiation, which provide a rather pure source of prompt photons. The efficiency ap-
proaches 100% in all except the fourth category, where it is 92.6±0.7%, due to imperfect pixel
detector coverage at large η. The ratio εdata/εMC for the electron veto is close to unity in all
categories. The quadratic sum of the statistical and systematic uncertainties for the measure-
ments of efficiencies using data are propagated to the uncertainties on the ratios. The ratios
are used as corrections to the signal efficiency simulated in the MC model of the signal. The
uncertainties on the ratios are taken as a systematic uncertainties in the limit setting.

The efficiency of the trigger has also been measured using Z → ee events, with the events
classified as described below. For events passing the analysis selection the trigger efficiency is
found to be 100% in the high R9 event classes, and about 99% in the other two classes.

6 Event classes
The sensitivity of the search can be enhanced by subdividing the selected events into classes
according to indicators of mass resolution and signal-to-background ratio and combining the
results of a search in each class.

Two photon classifiers are used: the minimum R9 of the two photons, Rmin
9 , and the maximum

pseudorapidity (absolute value) of the two photons, giving four classes based on photon prop-
erties. The class boundary values for R9 and pseudorapidity are the same as those used to
categorize photon candidates for the photon identification cuts. These photon classifiers are
effective in separating diphotons whose mass is reconstructed with good resolution from those
whose mass is less well measured and in separating events for which the signal-to-background
probability is higher from those for which it is lower.

A further class of events includes any event passing a dijet tag defined to select Higgs bosons
produced by the VBF process. Events in which a Higgs boson is produced by VBF have two
forward jets, originating from the two scattered quarks. Higgs bosons produced by this mech-
anism have a harder transverse momentum spectrum than those produced by the gluon-gluon
fusion process or the photon pairs produced by the background processes [43]. By using a dijet
tag it is possible to define a small class of events which have an expected signal-to-background
ratio more than an order of magnitude greater than events in the four classes defined by pho-
ton properties. The additional classification of events into a dijet-tagged class improves the
sensitivity of the analysis by about 10%.
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Candidate diphoton events for the dijet-tagged class have the same selection requirements im-
posed on the photons as for the other classes with the exception of the pT thresholds, which are
modified to increase signal acceptance. The threshold requirements for this class are pγ

T(1) >
55×mγγ/120, and pγ

T(2) > 25 GeV.

The selection variables for the jets use the two highest transverse energy (ET) jets in the event
with pseudorapidity |η| < 4.7. The pseudorapidity restriction with respect to the full calorime-
ter acceptance (|η| <5), avoids the use of jets for which the energy corrections are less reliable
and is found to have only a small effect (<2% change) on the signal efficiency. The following
selection requirements have been optimized using simulated events, of VBF signal and dipho-
ton background, to improve the expected limit at 95% CL on the VBF signal cross section, using
this class of events alone. The ET thresholds for the two jets are 30 and 20 GeV, and the pseu-
dorapidity separation between them is required to be greater than 3.5. Their invariant mass is
required to be greater than 350 GeV. Two additional selection criteria, relating the dijet to the
diphoton system, have been applied: the difference between the average pseudorapidity of the
two jets and the pseudorapidity of the diphoton system is required to be less than 2.5 [44], and
the difference in azimuthal angle between the diphoton system and the dijet system is required
to be greater than 2.6 radians (≈150◦).

For a Higgs boson having a mass, mH, of 120 GeV the overall acceptance times selection effi-
ciency of the dijet tag for Higgs boson events is 15% (0.5%) for those produced by VBF (gluon-
gluon fusion). This corresponds to about 2.01 (0.76) expected events. Events passing this tag
are excluded from the four classes defined by R9 and pseudorapidity, but enter the fifth class.
About 3% of Higgs boson signal events are expected to be removed from the four classes de-
fined by diphoton properties. In the mass range 100 < mγγ < 180 GeV the fractions of diphoton
events in the selected data, which pass the dijet VBF tag and enter the fifth class, and which
would otherwise have entered one of the four classes defined in Table 2, are 0.8%, 0.5%, 0.3%
and 0.4%, respectively.

Table 2: Number of selected events in different event classes, for a SM Higgs boson signal
(mH = 120 GeV), and for data at 120 GeV. The value given for data, expressed as events/GeV,
is obtained by dividing the number of events in a bin of ± 10 GeV, centred at 120 GeV, by
20 GeV. The mass resolution for a SM Higgs boson signal in each event class, is also given.

Both photons in barrel One or both in endcap Dijet
Rmin

9 >0.94 Rmin
9 <0.94 Rmin

9 >0.94 Rmin
9 <0.94 tag

SM signal expected 25.2 (33.5%) 26.6 (35.3%) 9.5 (12.6%) 11.4 (14.9%) 2.8 (3.7%)
Data (events/GeV) 97.5 (22.8%) 143.4 (33.6%) 76.7 (17.9%) 107.4 (25.1%) 2.3 (0.5%)
σeff (GeV) 1.39 1.84 2.76 3.19 1.71
FWHM/2.35 (GeV) 1.19 1.53 2.81 3.18 1.37

The number of events in each of the five classes is shown in Table 2, for signal events from
all Higgs boson production processes (as predicted by MC simulation), and for data. A Higgs
boson with mH=120 GeV is chosen for the signal, and the data are counted in a bin (± 10 GeV)
centred at 120 GeV. The table also shows the mass resolution, parameterized both as σeff, half-
the-width of the narrowest window containing 68.3% of the distribution, and as the full width
at half maximum (FWHM) of the invariant mass distribution divided by 2.35. The resolution
in the endcaps is noticeably worse than in the barrel due to several factors, which include the
amount of material in front of the calorimeter and less precise single channel calibration.

Significant systematic uncertainties on the efficiency of dijet tagging of signal events arise from
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the uncertainty on the MC modelling of jet-energy corrections and jet-energy resolution, and
from uncertainties in predicting the presence of the jets and their kinematics. These uncertain-
ties arise from the effect of different underlying event tunes, and from the uncertainty on parton
distribution functions and QCD scale factor. Overall, an uncertainty of 10% is assigned to the
efficiency for VBF signal events to enter the dijet tag class, and an uncertainty of 70%, which
is dominated by the uncertainty on the underlying event tune is assigned to the efficiency for
signal events produced by gluon-gluon fusion to enter the dijet-tag class. The uncertainty on
the underlying event tunes was investigated by comparing the DT6 [45], P0 [46], ProPT0 and
ProQ20 [47] tunes to the Z2 tune [48] in PYTHIA [49].

7 Background and signal modelling
The MC simulation of the background processes is not used in the analysis. However, the
diphoton mass spectrum that is observed after the full event selection is found to agree with
the distribution predicted by MC simulation, within the uncertainties on the cross sections of
the contributing processes which is estimated to be about 15%. The background components
have been scaled by K-factors obtained from CMS measurements [50–52]. The contribution
to the background in the diphoton mass range 110 < mγγ < 150 GeV from processes giving
non-prompt photons is about 30%.

The background model is obtained by fitting the observed diphoton mass distributions in each
of the five event classes over the range 100 < mγγ < 180 GeV. The choice of function used to
fit the background, and the choice of the range, was made based on a study of the possible bias
introduced by the choice on both the limit, in the case of no signal, and the measured signal
strength, in the case of a signal.

The bias studies were performed using background-only and signal-plus-background MC sim-
ulation samples and showed that for the first four classes, the bias in either excluding or find-
ing a Higgs boson signal in the mass range 110 < mγγ < 150 GeV can be ignored, if a 5th order
polynomial fit to the range 100 < mγγ < 180 GeV is used. In both cases the maximum bias
was found to be at least five times smaller than the statistical uncertainties of the fit. For the
dijet-tagged event class, which contains much fewer events, the use of a 2nd order polynomial
was shown to be sufficient and unbiased.

The description of the Higgs boson signal used in the search is obtained from MC simulation
using the next-to-leading order (NLO) matrix-element generator POWHEG [53, 54] interfaced
with PYTHIA [49], using the Z2 underlying event tune. For the dominant gluon-gluon fusion
process, the Higgs boson transverse momentum spectrum has been reweighted to the next-to-
next-to-leading logarithmic (NNLL) + NLO distribution computed by the HqT program [55–
57]. The uncertainty on the signal cross section due to PDF uncertainties has been determined
using the PDF4LHC prescription [58–62]. The uncertainty on the cross section due to scale un-
certainty has been estimated by varying independently the renormalization and factorization
scales used by HqT, between mH/2 and 2mH. We have verified that the effect of this variation
on the rapidity of the Higgs boson is very small and can be neglected.

Corrections are made to the measured energy of the photons based on detailed study of the
mass distribution of Z→ ee events and comparison with MC simulation. After the application
of these corrections the Z→ ee events are re-examined and values are derived for the random
smearing that needs to be made to the MC simulation to account for the energy resolution
observed in the data. These smearings are derived for photons separated into four η regions
(two in the barrel and two in the endcap) and two categories of R9. The uncertainties on the
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measurements of the photon scale and resolution are taken as systematic uncertainties in the
limit setting. The overall uncertainty on the diphoton mass scale is less than 1%.

The mγγ distributions for the data in the five event classes, together with the background fits,
are shown in Fig. 1. The uncertainty bands shown are computed from the fit uncertainty on
the background yield within each bin used for the data points. The expected signal shapes
for mH = 120 GeV are also shown. The magnitude of the simulated signal is what would be
expected if its cross section were twice the SM expectation. The sum of the five event classes is
also shown, where the line representing the background model is the sum of the five fits to the
individual event classes.

8 Results
The confidence level for exclusion or discovery of a SM Higgs boson signal is evaluated using
the diphoton invariant mass distribution for each of the event classes. The results in the five
classes are combined in the CL calculation to obtain the final result.

The limits are evaluated using a modified frequentist approach, CLs, taking the profile likeli-
hood as a test statistic [63–65]. Both a binned and an unbinned evaluation of the likelihood
are considered. While most of the analysis and determination of systematic uncertainties are
common for these two approaches, there are differences at the final stages which make a com-
parison useful. The signal model is taken from MC simulation after applying the corrections
determined from data/simulation comparisons of Z → ee and Z → µµγ events mentioned
above, and the reweighting of the Higgs boson transverse momentum spectrum. The back-
ground is evaluated from a fit to the data without reference to the MC simulation.

Since a Higgs boson signal would be reconstructed with a mass resolution approaching 1 GeV
in the classes with best resolution, the limit and signal significance evaluation is carried out in
steps of 0.5 GeV. The SM Higgs boson cross sections and branchings ratios used are taken from
ref. [66].

Table 3 lists the sources of systematic uncertainty considered in the analysis, together with the
magnitude of the variation of the source that has been applied.

The limit set on the cross section of a Higgs boson decaying to two photons using the frequen-
tist CLS computation and an unbinned evaluation of the likelihood, is shown in Fig. 2. Also
shown is the limit relative to the SM expectation, where the theoretical uncertainties on the
expected cross sections from the different production mechanisms are individually included as
systematic uncertainties in the limit setting procedure. The observed limit excludes at 95% CL
the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV.
The fluctuations of the observed limit about the expected limit are consistent with statistical
fluctuations to be expected in scanning the mass range. The largest deviation, at mγγ =124 GeV,
is discussed in more detail below. It has also been verified that the shape of the observed limit
is insensitive to the choice of background model fitting function. The results obtained from the
binned evaluation of the likelihood are in excellent agreement with the results shown in Fig. 2.

Figure 3 shows the local p-value calculated, using the asymptotic approximation [67], at 0.5 GeV
intervals in the mass range 110 < mH < 150 GeV. The local p-values for the dijet-tag event
class, and for the combination of the four other classes, are also shown (dash-dotted and
dashed lines respectively). The local p-value quantifies the probability for the background
to produce a fluctuation at least as large as observed, and assumes that the relative signal
strength between the event classes follows the MC signal model for the standard model Higgs
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Figure 1: Background model fit to the mγγ distribution for the five event classes, together with
a simulated signal (mH=120 GeV). The magnitude of the simulated signal is what would be ex-
pected if its cross section were twice the SM expectation. The sum of the event classes together
with the sum of the five fits is also shown. a) The sum of the five event classes. b) the dijet-
tagged class, c) both photons in the barrel, Rmin

9 > 0.94, d) both photons in the barrel, Rmin
9 <

0.94, e) at least one photon in the endcaps, Rmin
9 > 0.94, f) at least one photon in the endcaps,

Rmin
9 < 0.94.
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Table 3: Separate sources of systematic uncertainties accounted for in this analysis. The mag-
nitude of the variation of the source that has been applied to the signal model is shown in the
second column.

Sources of systematic uncertainty Uncertainty
Per photon Barrel Endcap
Photon identification efficiency 1.0% 2.6%
R9 >0.94 classification (class migration) 4.0% 6.5%
Energy resolution (∆σ/EMC) R9 > 0.94 (low η, high η) 0.22%, 0.61% 0.91%, 0.34%

R9 < 0.94 (low η, high η) 0.24%, 0.59% 0.30%, 0.53%
Energy scale ((Edata − EMC)/EMC) R9 > 0.94 (low η, high η) 0.19%, 0.71% 0.88%, 0.19%

R9 < 0.94 (low η, high η) 0.13%, 0.51% 0.18%, 0.28%
Per event
Integrated luminosity 4.5%
Vertex finding efficiency 0.4%
Trigger efficiency One or both photons R9 < 0.94 in endcap 0.4%

Other events 0.1%
Dijet selection
Dijet-tagging efficiency VBF process 10%

Gluon-gluon fusion process 70%
Production cross sections Scale PDF
Gluon-gluon fusion +12.5% -8.2% +7.9% -7.7%
Vector boson fusion +0.5% -0.3% +2.7% -2.1%
Associated production with W/Z 1.8% 4.2%
Associated production with tt +3.6% -9.5% 8.5%
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Figure 2: Exclusion limit on the cross section of a SM Higgs boson decaying into two photons as
a function of the boson mass (upper plot). Below is the same exclusion limit relative to the SM
Higgs boson cross section, where the theoretical uncertainties on the cross section have been
included in the limit setting.
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Figure 3: The local p-value as a function of Higgs boson mass, calculated in the asymptotic
approximation. The point at 124 GeV shows the value obtained with a pseudo-data ensemble.

boson. The local p-value corresponding to the largest upwards fluctuation of the observed
limit, at 124 GeV, has been computed to be 9.2×10−4 (3.1 σ) in the asymptotic approximation,
and 1.5±0.4×10−3 (3.0 σ) when the calculation uses pseudo-data (the value for the pseudo-data
ensemble at 124 GeV is shown in Fig. 3). The combined best fit signal strength, for a SM Higgs
boson mass hypothesis of 124 GeV, is 2.1±0.6 times the SM Higgs boson cross section. In Fig. 4
this combined best fit signal strength is compared to the best fit signal strengths in each of the
event classes. Since a fluctuation of the background could occur at any point in the mass range
there is a look-elsewhere effect [68]. When this is taken into account the probability, under the
background only hypothesis, of observing a similar or larger excess in the full analysis mass
range (110 < mH < 150 GeV) is 3.9×10−2, corresponding to a global significance of 1.8 σ.

9 Conclusions
A search has been performed for the standard model Higgs boson decaying into two photons
using data obtained from pp collisions at

√
s = 7 TeV corresponding to an integrated lumi-

nosity of 4.8 fb−1. The selected events are subdivided into classes according to indicators of
mass resolution and signal-to-background ratio, and the results of a search in each class are
combined. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times
the standard model cross section in the mass range between 110 and 150 GeV. The analysis
of the data excludes at 95% confidence level the standard model Higgs boson decaying into
two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected
standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with
a local significance of 3.1 σ. The global significance of observing an excess with a local signifi-
cance ≥3.1 σ anywhere in the search range 110–150 GeV is estimated to be 1.8 σ. More data are
required to ascertain the origin of this excess.
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Figure 4: The best fit signal strength, in terms of the standard model Higgs boson cross section,
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(points) for the hypothesis of a SM Higgs boson mass of 124 GeV. The band corresponds to
±1 σ uncertainties on the overall value. The horizontal bars indicate ±1 σ uncertainties on the
values for individual classes.
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A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
N. Shumeiko, J. Suarez Gonzalez

Research Institute for Nuclear Problems, Minsk, Belarus
M. Korzhik

Universiteit Antwerpen, Antwerpen, Belgium
S. Bansal, L. Benucci, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello,
S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van
Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes,
A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella
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A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén,
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M. Biasinia ,b, G.M. Bileia, B. Caponeria ,b, L. Fanòa,b, P. Laricciaa ,b, A. Lucaronia,b ,1,
G. Mantovania ,b, M. Menichellia, A. Nappia,b, F. Romeoa,b, A. Santocchiaa ,b, S. Taronia ,b ,1,
M. Valdataa,b
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